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Abstract This paper concerns with a new error estimator for finite element approximation to the
linear elliptic problem. A posteriori error estimator employing both a residual and a recovery based
estimator is introduced. The error estimator is constructed by employing the recovery gradient
method to obtain the approximated solutions of the linear elliptic problem. These solutions are
combined with the residual method to produce the error estimator. Numerical results for selected
test problems are demonstrated for the resulting error estimators and discussed.
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1 Introduction
The adaptive finite element scheme based on a posteriori error estimates has become an im-

portant tool in scientific and engineering problem. One class of a posteriori error estimator is the
gradient recovery, see e.g.[5], [7]–[9]. Zienkiewicz et al. [10]–[11] constructed a superconvergent
patch recovery which converge at a rate one order higher than σ h and yield asymptotically exact
error estimates. Babuska et al. [1] present the accuracy of the derivatives which are recovered by
local averaging for complex finite element meshes. Bank et al. [2] illustrated three posteriori error
estimators based on the norm of the residual of the elliptic equation, see [3],[4] for more example.

The main focus of this paper will be to provide the new error estimator for the finite element
approximation to a linear elliptic problem. In section 2, we summarize the basic finite element
formulation for the linear elliptic problem. In section 3, we present the residual method for obtain-
ing the new error estimator. The recovery gradient method is described in section 4. In section 5,
we give some numerical results illustrating the performance of the error estimators. Finally, some
concluding remarks are presented.

2 Preliminaries
For simplicity, we focus our attention on the following model problem:

−4u = f ∈ Ω, (1)

u = 0 on ∂Ω
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where Ω⊂R2 is an open bounded with Lipschitz boundary ∂Ω, f ∈ L2(Ω). The weak formulation
of Eq (1) is as follows: find u ∈ H1

0 such that

a(u,v) = ( f ,v) ∀v ∈ H1
0 (Ω), (2)

where
a(u,v) =

∫

Ω
∇u ·∇v dx and ( f ,v) =

∫

Ω
f v dx. (3)

3 The residual error estimator
In this section we shall applied the residual technique to produce a new error estimator for the

model problem (1). Let the finite element error for each element Ωi be

4ei
h = (4u−4uh)|Ωi = (− f −4uh)|Ωi ≡−ri

h (4)

where ri
h is called the residual in Ωi. The aim of this method is to determine the error in energy

norm which is given by

a(eh,eh) = ‖eh‖2
E =

m

∑
i=1

∫

Ωi

(5ei
h)

2 dx. (5)

Applying the vector identity and the divergence theorem in Eq (5), we get
∫

Ωi

(5ei
h)

2 dx =
∫

Ωi

ei
hri

h dx+
∫

∂Ωi

ei
h

∂ei
h

∂ni
j

ds, (6)

where ni
j is the outward normal direction from element Ωi across the edge Γi

j, j=1, 2, 3. Integrating
twice over a common element edge is solved by taking an average value for the boundary integral.
Then

m

∑
i=1

∫

∂Ωi

ei
h

∂ei
h

∂ni
j

ds =
m

∑
i=1

3

∑
j=1

∫

Γi
j

ei
h

2
( ∂ei

h

∂ni
j
− ∂e j

h

∂ni
j

)
ds, (7)

where e j
h, j = 1,2,3 are the error contributors from the neighborly element Ωi which have the

common edges Γi
j. Now,

∂ei
h

∂ni
j
− ∂e j

h

∂ni
j
=

∂
∂ni

j
(u−uh)|Ωi −

∂
∂ni

j
(u−uh)|Ω j ≡ J j,

where J j is called jump of ∂uh
∂ni

j
, across the common edge j with unit outward normal vector ni

j.

For the piecewise linear case, the Eq (6) becomes

‖eh‖2
E =

m

∑
i=1

∫

Ωi

ei
h f i dx+

m

∑
i=1

3

∑
j=1

∫

Γi
j

ei
h

2
J j ds, (8)

Unfortunately, ei
h can not determine because the exact solution does not know. One way to solve

this problem, the exact solution may be replaced by u∗ which will be described in the next section.

4 The Zienkiewicz-Zhu error estimator
Let uh be the finite element approximation and u be the analytical solution. The discretization

error are defined as
e = u−uh, ∇e = ∇u−∇uh. (9)

If the recovered solution u∗ can be obtained by some suitable recovery process then the errors in Eq
(9) become

e∗ = u∗−uh, ∇e∗ = ∇u∗−∇uh. (10)
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The energy norm of the exact and the estimate errors can be written as

‖∇e‖E(Ω) =
(∫

Ω
∇eT ∇e dx

)1/2
, ‖∇ẽ‖E(Ω) =

(∫

Ω
∇e∗T ∇e∗ dx

)1/2
. (11)

The quality of the error estimator ‖ẽ‖E(Ω) is measured by

θE =
‖∇ẽ‖E(Ω)

‖∇e‖E(Ω)
. (12)

If θE approaches unity as the true error ‖∇e‖E(Ω) tends to zero, this imply that the estimators
converges to the exact error([11]). Wiberg et al. [7] expressed the polynomial expansion for u∗ as

u∗ = Pa, (13)

where P contains one or two higher order term than those the original finite element solution and a
is a set of unknown parameters. We then apply a least square fit of expression (13) for u∗. Thus we
minimize

F(a) =
NS

∑
i=1

(
uh(xi,yi)−P(xi,yi)a

)2

. (14)

This implies
a = A−1 b, (15)

where

A =
NS

∑
i=1

PT (xi,yi)P(xi,yi) and b =
NS

∑
i=1

PT (xi,yi)uh(xi,yi). (16)

5 Numerical experiment
In this section we determine finite element solution to the tested problems for which the exact

solutions are known. In addition, the tolerance for uniform and adaptive refinement are computed
as

Tol =
( R

100

)(
‖ uh ‖2

E(Ω) + (‖ e ‖2
E(Ω))/NE

)1/2
,

where R is the percentage of relative error [6].

5.1 Numerical example 1
Consider the two dimensional boundary value problem

−4u = f in Ω = (−1,1)× (−1,1)

u = 0 on ∂Ω.

The problem is solved on a sequence of uniform mesh using the triangular element. The function
f is chosen so that the exact solution is of the form u(x,y) = e−100(x2+y2), see Fig. 3 (a). The
performance for the set of successive refined uniform meshes can be seen in Table 1. In Fig.
1(a) the curve for the uniform refinement is shown as a solid line with the value at each new
mesh point marked with a square whilst the ZZ and the residual estimator curves are illustrated
as a solid line marked with plus and star respectively. It is clear that for the coarser meshes the
convergence is slow. this is to be expect as the mesh is not able to correctly resolve the spike
feature of the displacement. However, it can be seen that the adaptive route converging to the
required 10% error requirement. In Fig. 1 (b) the effectivity index versus log(node) for the ZZ and
the residual estimators are represented by a solid line marked with plus and diamond respectively.
The comparison between the error estimators is illustrated in Fig. 2.
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Table 1: Results for example 1: uniform refinement

Element Node ‖u−uh‖E R%
128 81 1.4797517 73.6581
512 289 1.0488931 62.0644

2048 1089 0.6674518 37.7634
8192 4225 0.3511169 19.8140
32768 16641 0.1779495 10.0399
131072 66049 0.0892811 5.0372
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Figure 1: Example 1. (a) Comparison between uniform and adaptive refinement (b)
Effectivity indices
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Figure 2: Example 1: Adaptive meshes generated from (a) ZZ method (b) residual
method

5.2 Numerical example 2
We consider the two dimensional model problem

−4u = f in Ω = (0,1)× (0,1)

u = ū on ∂Ω

The function f and ū are chosen so that the theoretical solution to the problem is u(x,y) = x(2−
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Figure 3: The theoretical solution (a) Example 1 (b) Example 2.

Table 2: Results for example 2: uniform refinement

Element Node ‖u−uh‖E R%
4 5 0.5804054 61.9514

16 13 0.2878635 31.3248
64 41 0.1439360 15.8107
256 145 0.0719976 7.9308

1024 545 0.0360049 3.9690
4096 2213 0.0180034 1.9850
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Figure 4: Example 2. (a) Comparison between uniform and adaptive refinement (b)
Effectivity indices

y)sin(xy), see Fig. 3 (b). The linear element is used to test the performance of the ZZ and residual
method. The numerical results were found to behave in the same way as in the first example. The
results obtained for uniform refinement are listed in Table 2. The adaptive and uniform refinement
are displayed in Fig. 4 (a). The effectivity indices of the residual and the ZZ method are plotted
in Figure 4 (b). In Fig. 5 we compare the performance of the ZZ and residual method for the
computation of the error energy norm.
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Figure 5: Example 2: Adaptive meshes generated from (a) ZZ method and (b) resid-
ual method

6 Conclusion
In this article we introduced the a posteriori error estimator based on the residual and the

recovery gradient technique. The ZZ and residual estimators can provide accurate a posteriori error
estimators for the linear triangular element in the energy norm. The numerical results show both
the residual and the ZZ estimators to be performing well.
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