
Remodelling of the Inverse DEA Model: A
Prediction Tool for Not-for-profit

Organizations∗

Jin-Chuan Cui Xiang-Sun Zhang Xiao-Ya Li

Institute of Applied Mathematics, Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100080, China

Abstract A resource allocation model (RAM) for not-for-profit organization in the framework of
Data Envelopment Analysis (DEA) was introduced by Zhang and Cui ([1]). The model is an inverse
formulation to the DEA model , as pointed in paper [2], and can be transformed into a parametric
linear programming problem. Also a multi-objective programming problem was introduced in [2]
to solve RAM when the efficiency index of the discussed organization is strictly less than one. In
this paper, inadequacy of the original RAM model is discussed and then a revised new model is
presented. The new model can be transformed into a multi-objective programming problem or a
linear programming problem for any efficiency index value an organization has.
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1 Introduction
Since Charnes, Cooper and Rhodes(CCR)[3] first proposed DEA method in

1978, it has become a very amateur tool for assessing the relative efficiency for not-
for-profit organizations, such as government departments, military units and social
service entities. The CCR ratio model can calculate the efficiency index for every
DMU which reflects the existing technical structure or efficiency level. By ranking
the efficiency indexes, the executives can evaluate the efficiency or inefficiency of
every DMU compared with all the other same kind of DMUs. Zhang and Cui’s work
([1]) was the first paper to extend DEA as a tool for resource allocation. The problem
is, among a group of decision-making units or non-profit organizations, how to al-
locate limited resources (inputs) to a particular organization with an assumption that
the organization maintains (changes) its current efficiency level with respect to other
organizations according to expected increments of the service (outputs)? Or how to
forecast the output change when additional investment (increment of inputs) is dis-
tributed to an organization with the same assumption? Both of the problems can be
referred to as prediction problems.
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Denote the n DMUs by S1, · · · ,Sn. Each DMU Sk has an input vector xk ∈ IRm,
an output vector yk ∈ IRs where xk > 0,yk > 0.

The problem is described as[1]: if the kth DMU plans to increase its outputs
by ∆y, how much additional inputs ∆x should be allocated to the DMU to satisfy the
efficiency expectation; or if the decision maker (DM) wants to invest increment inputs
∆x to the kth DMU, how much additional outputs ∆y can the kth DMU produce?
Zhang and Cui transformed the original m-dimensional parameter problem to a one-
dimensional parameter problem and provided an approximation algorithm to solve
the problem. In the paper (Wei Quanling, et, al.[2]), the above two problems are
termed in the first time as inverse DEA. The resource allocation problem based on
DEA now becomes an important research topic in DEA field([4, 5, 6]).

The allocation process of RAM consists of two steps. The first step is evaluating
the relative efficiency of the studied organizations. The second step then is calculating
the desired changes in the input or output under the idea that the relative efficiency
of the organization with new input and output remains the same.

In detail, the second step uses the DEA model in the following way: (allocation
problem) knowing the relative efficiency θl and given an increment of the output,
∆yl , find an increment of xl , ∆xl , as small as possible such that a new DMU with
(xl + ∆xl,yl + ∆yl) still has relative efficiency ϑl; (investment analysis problem) If
an increment of the input, ∆xl , is given, we want to find an increment of yl , ∆yl ,
as large as possible such that Sl with the new input and output keeps the efficiency
unchanged. In this paper we mainly study the resource allocation model. For the
investment analysis problem, the discussion is similar. The term inverse DEA is first
used in paper [2] to highlight the second step of the prediction process.

In paper [2], the inverse DEA problem is transformed into and solved as a multi-
objective programming problem. It is also shown that in some special cases, the
inverse DEA problem can be simplified as a single-objective linear programming
problem. The similar formulas can also be seen in paper [6] where the resource allo-
cation problem is discussed. A traditional approach is proposed in both paper [2] and
[6] to solve the multi-objective programming problem by allowing simultaneous pro-
portional scaling of all the inputs or all the outputs. This paper will try to reduce the
proportional assumption and exploit an algorithm to solve the inverse DEA problem.

The remainder of the paper is organized as follows. In section 2 the original re-
source allocation model and related computational models presented in [1] and [2] are
briefly reviewed. Two linear realizations of the prediction model were introduced as
computational models: parametric linear programming formulation and linear multi-
objective programming formulation. But the multi-objective programming problem
only works in the case ϑl < 1. This promotes us to improve the resource allocation
model. Such an improved model is presented in section 3. The improved model
maintains the original economic meaning but now is well-defined. As a result, the
related multi-objective programming problem now also works at ϑl = 1. For the
case that there exists a weight vector for either the input or the output, the prediction
model can be realized by a linear programming problem for any value of ϑl .

368 The First International Symposium on Optimization and Systems Biology



We use x ≥p y to represent a set of inequalities xi ≥ yi, i = 1, · · · ,n such that
there is at least one strict inequality xi0 > yi0 existing.

2 A Prediction Model Based on DEA
The DEA model is a linear programming problem with (xk,yk),k = 1, · · · ,n as

coefficients of the constraint to find the relative efficiency of an assigned DMU, Sl:

(P)

Maximize uT yl

subject to wT xk−uT yk ≥ 0, k = 1, · · · ,n
wT xl = 1
w≥ 0, u≥ 0,

where w ∈ IRm,u ∈ IRp. Denote the optimal solution of (P) by wl,ul .
The dual problem of (P) is as follows:

(D)

Minimize ϑ

subject to
n

∑
k=1

λkxk + s− = ϑxl

n

∑
k=1

λkyk− s+ = yl

λk ≥ 0, k = 1, · · · ,n,

s+ ≥ 0, s− ≥ 0,

where λ = (λ1, · · · ,λn)T ,s+ ∈ IRs,s− ∈ IRm,ϑ ∈ IR. Denote the optimal solution by
λ l = (λ l

1, · · · ,λ l
n)

T ,s+l,s−l,ϑl . ϑl is the efficiency index of Sl .
Definition 1 If ϑl = 1, Sl is called weak DEA-efficient; if ϑl = 1 and also

for any optimal solution (λ l,s+l
,s−l

,ϑl)

there are s+l = 0, s−l = 0,
(1)

then Sl is called DEA-efficient. ¤
Based on above notation, a resource allocation model (RAM) in [1] is abstracted

as follows: (The statement of investment analysis problem and the related algorithm
is similar)

(RAM)

A set of DMUs has efficiency indices ϑ1, · · · ,ϑn. Assign an incre-
ment, ∆yl ≥p 0, to the output of Sl which has efficiency index ϑl .
Find the “smallest” additional resources, ∆xl , to the input of Sl such
that the resulted status of Sl remains its efficiency index unchanged.

Let Sl be an assigned DMU whose efficiency index is ϑl ≤ 1 given by (D). As
suggested in [1], we define an additional DMU Sn+1 with input and output vectors
(xl +∆x,yl +∆yl), where ∆x is an unknown vector variable. The following extended
CCR model is constructed to realize the (RAM):
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(ED)

Minimize ϑ ≡ ϑn+1

subject to
n

∑
j=1

λ jx j +λn+1(xl +∆x)≤ ϑ(xl +∆x)

n

∑
j=1

λ jy j +λn+1(yl +∆yl)≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n+1.

Find the ‘smallest’ solution ∆xl of (ED) such that the optimal value ϑn+1 = ϑl , where
ϑl is given by (D).

3 The Prediction Model Remodelling
Consider an extended DMU set: {(x1,y1), · · · ,(xn,yn),(xl +∆xl,yl +∆yl)} .

(RAM)′

A set of DMUs has efficiency indices ϑ1, · · · ,ϑn. Assign an incre-
ment, ∆yl ≥p 0, to the output of Sl which has efficiency index ϑl .
Find the “smallest” additional resources, ∆xl , to the input of Sl such
that S1, · · · ,Sl, · · · ,Sn have their efficiency indices unchanged and the
resulted status of Sl , i.e., Sn+1 with (xl +∆xl,yl +∆yl), has efficiency
index ϑl .

This can be put in the following detailed description. Let Sl be an assigned
DMU whose efficiency index is ϑl . The following extended CCR model

(ED)

Minimize ϑ ≡ ϑ̄n+1

subject to
n

∑
j=1

λ jx j +λn+1(xl +∆x)≤ ϑ(xl +∆x)

n

∑
j=1

λ jy j +λn+1(yl +∆yl)≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n+1.

has the optimal value ϑ̄n+1 = ϑl . And for k = 1, · · · , l, · · · ,n the following problem

(EDk)

Minimize ϑ ≡ ϑ̄k

subject to
n

∑
j=1

λ jx j +λn+1(xl +∆xl)≤ ϑxk

n

∑
j=1

λ jy j +λn+1(yl +∆yl)≥ yk

λ j ≥ 0, j = 1, · · · ,n+1.

have optimal solution ϑ̄k = ϑk. Then ∆xl is the solution of the resource allocation
problem.
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As defined in the DEA research, the convex cone

T =





(x,y) :

n

∑
k=1

λkxk ≤ x,
n

∑
k=1

λkyk ≥ y,

λk ≥ 0, k = 1, · · · ,n





(2)

is called a production set associated with the problem (D). Using the concept T , The
following Lemma gives a sufficient condition for a solution ∆xl of (ED) satisfying
problems (EDk).
Lemma 1 The original DMU set remains the efficiency indices with respect to the
extended DMU set unchanged if (xl +∆xl,yl +∆yl) ∈ T , where ∆xl is the solution of
(ED), T is the production set defined in (2).
Lemma 2 The optimal solution of (ED) at λn+1 = ϑn+1 = 1 corresponds to a pair
of inputs and outputs not in T , i.e., (xl +∆xl,yl +∆yl) = (xl,yl +∆yl) /∈ T.

Lemma 2 says that the optimal solution with λn+1 = ϑn+1 = 1 is not feasible to
problem (RAM)’. With Lemma 1 the (RAM)’ model can be put in a more compact
form:

(RAM)∗ Find the “smallest” solution ∆xl of problem (ED) such that ϑ̄n+1 = ϑl

and (xl +∆xl,yl +∆yl) ∈ T .
The next Lemma gives an explanation: why the (RAM) model in the case ϑl < 1

can be replaced by linear models.
Lemma 3 If Sl has its efficiency index ϑl < 1, then for any solution ∆xl of problem
(ED), (xl +∆xl,yl +∆yl) ∈ T is naturally satisfied.
Corollary 1 In the case ϑl = 1, if an optimal solution of (ED) is reached at λ ∗

n+1 <
1, then (xl +∆xl,yl +∆yl) ∈ T.

Now we return to the main problem (ED) and study the property of its feasible
region:

Ω =





f = (λ ,∆x,ϑ) :

n

∑
k=1

λkxk +λn+1(xl +∆x)≤ ϑ(xl +∆x),

n

∑
k=1

λkyk +λn+1(yl +∆yl)≥ yl +∆yl,

λk ≥ 0, k = 1, · · · ,n+1, 0≤ ϑ ≤ 1





(3)

Lemma 4 It follows from Lemma 2 that if there is a feasible solution of (RAM)∗,
then it has property λn+1 < ϑl ≤ 1. ¤
Lemma 5 Let Ω∗ be the optimal solution set of (RAM)∗, Ω∗ = Ω∩{f : λn+1 = 0}.

¤
In conclusion, we have the following main theorem .

Theorem 1 Problem (ED) reaches its optimal solution at λn+1 = 0. In other words,
(ED) can be simplified as follows,
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(ED)−

Minimize ϑ ≡ ϑn+1

subject to
n

∑
j=1

λ jx j ≤ ϑ(xl +∆xl)

n

∑
j=1

λ jy j ≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n.

It is interesting to note that the virtual DMU Sn+1 is introduced in our first pa-
per ([1]) to formulate a reasonable and logical prediction model. After the above
discussion we know now that this virtual DMU can be neglected in the computation.

3.1 Linear Multi-Objective Programming Formulation
Consider the following linear multi-objective programming problem:

(VP)

V−minimize (xl
1 +∆x1, · · · ,xl

m +∆xm)

subject to
n

∑
j=1

λ jx j ≤ ϑl(xl +∆x)

n

∑
j=1

λ jy j ≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n.

where ϑl is the solution of problem (D). Consider the following multi-objective pro-
gramming problem corresponding to (ED):

(VP)+

V−minimize (∆x1, · · · ,∆xm)

subject to
n

∑
j=1

λ jx j +λn+1(xl +∆x)≤ ϑl(xl +∆x)

n

∑
j=1

λ jy j +λn+1(yl +∆yl)≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n+1.

Using the similar reasoning in Lemma 5, (VP)+ can be simplified as

(VP)∗

V−minimize (∆x1, · · · ,∆xm)

subject to
n

∑
j=1

λ jx j ≤ ϑl(xl +∆x)

n

∑
j=1

λ jy j ≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n.

We now consider the case ϑl = 1, i.e., the following problem
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(VP)∗∗

V−minimize (∆x1, · · · ,∆xm)

subject to
n

∑
j=1

λ jx j ≤ xl +∆x

n

∑
j=1

λ jy j ≥ yl +∆yl

λ j ≥ 0, j = 1, · · · ,n.

Theorem 2 Suppose that the optimal value of problem (D) is ϑl = 1, and the
outputs for this DMU are going to increase from yl to yl +∆yl, ∆yl ≥p 0.

(i) Let (∆xl, λ̄ ) be a weak Pareto solution of the multi-objective problem (VP)∗∗.
Then when the inputs of Sl are increased to xl + ∆xl , the optimal value of (ED)− is
still ϑl , i.e., ϑn+1 = 1.
(ii) Conversely, let xl +∆xl, λ̄ be a feasible solution of problem (VP)∗∗. If the optimal
value of problem (ED)− is ϑl = 1, then (∆xl, λ̄ ) must be a weak Pareto solution of
(VP)∗∗.

3.2 Linear Programming Formulation
In some applications it is possible to have ’price making’ for the m inputs. In

other words, there exists a set of weights W = (W1, · · · ,Wm)T associated with the m
inputs. It is natural to assume that W j > 0, j = 1, · · · ,m.

In this case, the initial CCR model can be revised as the follows.

(P)′

Maximize
uT yl

W T xl

subject to
uT yk

W T xk ≤ 1, k = 1, · · · ,n
u≥ 0,

where u∈ IRp. Let W be normalized such that W T xl = 1. Using the Charnes-Cooper
transformation problem (P)′ is rewritten as

(P)∗
Maximize uT yl

subject to uT yk ≤W T xk, k = 1, · · · ,n
u≥ 0,

Its dual problem is

(D)′

Minimize
n

∑
k=1

λkW
T xk

subject to
n

∑
k=1

λkyk ≥ yl

λk ≥ 0, k = 1, · · · ,n,
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or equivalently

(D)∗

Minimize ϑ ≡ ϑl

subject to
n

∑
k=1

λkW
T xk ≤ ϑW T xl = ϑ

n

∑
k=1

λkyk ≥ yl

λk ≥ 0, k = 1, · · · ,n,

where ϑl is the efficiency index of Sl . The resource allocation problem is raised
similarly. If the output of Sl is changed from yl to yl + ∆yl , what we expected for a
proper increment ∆xl for the input to remain the efficiency index of Sl unchanged. A
corresponding extended CCR model is

(ED)∗

Minimize ϑ ≡ ϑn+1

subject to
n

∑
k=1

λkW
T xk +λn+1W

T (xl +∆xl)≤ ϑW T (xl +∆xl)

n

∑
k=1

λkyk +λn+1(yl +∆yl)≥ yl +∆yl

λk ≥ 0, k = 1, · · · ,n+1.

It is noted that the reasoning of Lemma 2 — Lemma 5 is still valid for problem
(ED)∗. Then we only need to solve the following problem,

Minimize ϑ ≡ ϑn+1

subject to
n

∑
k=1

λkW
T xk ≤ ϑW T (xl +∆xl)

n

∑
k=1

λkyk ≥ yl +∆yl

λk ≥ 0, k = 1, · · · ,n.

There ∆xl is a vector taken as as ’small’ as possible. This problem is equivalent to
the following linear programming problem:

(LP)

Minimize W T ∆x

subject to
n

∑
k=1

λkW
T xk ≤ ϑlW

T (xl +∆xl)

n

∑
k=1

λkyk ≥ yl +∆yl

λk ≥ 0, k = 1, · · · ,n,

374 The First International Symposium on Optimization and Systems Biology



where ϑl ≤ 1 is the efficiency index of Sl . The solution ∆xl of (LP) has the property
described by the following theorem.
Theorem 3 If there is a ’price making’ for the inputs, then the (RAM) model is
solved by a linear programming problem (LP). Each solution ∆xl of (LP) is a Pareto
solution of the following linear multi-objective programming problem:

(VP)∗

V−minimize (∆x1, · · · ,∆xm)

subject to
n

∑
k=1

λkW
T xk ≤ ϑlW

T (xl +∆xl)

n

∑
k=1

λkyk ≥ yl +∆yl

λk ≥ 0, k = 1, · · · ,n.

4 Conclusion
A revised prediction model based on the DEA methodology is discussed in this

paper. Mathematically the model is a nonlinear problem. Then linear substitutions
such as linear multi-objective programming and linear programming formulation are
studied.
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