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Abstract Langrangian Support Vector Machine (LSVM) and Least Squares Support Vector Ma-
chine (LSSVM) are two quick and effective classification methods. In this paper, we first introduce
the mathematical models for LSVM and LSSVM and analyze their properties. In the nonlinear case,
Sherman-Morrison-Woodbury identity is not used to compute the inversion of a matrix. According
to block computation of a matrix and properties of a symmetric and positive-definite matrix, an
approach to compute the inversion of a matrix is obtained and applied in the decremental learning
algorithms for nonlinear LSVM and LSSVM. The online and batch decremental learning algo-
rithms for nonlinear LSVM and LSSVM are presented, respectively, in which it is not necessary
to relearn since the inversion of matrix after decrement is solved based on the former information.
Thus, the computation time can be reduced. Through experiments, it is shown that the algorithms
proposed in this paper can reduce the computation time.

1 Introduction
Support vector machine (SVM) is a new machine learning technique based on

optimization methods, which is introduced by Vapnik [1][8] in the last decades of the
20 century. Since SVM has good learning and generalization capacity, it has become
one of the most useful tools to overcome the challenges in machine learning, for
example, nonlinear, dimension disaster, over learning and so on.

With the increment of the scale of the training set, the computation of the La-
grangian multiplier and kernel function is also increased. The approaches to reduce
the scale of the training set must be adopted otherwise the computation time will
increase and the processor will be overloaded. To overcome this problem, the decre-
mental learning of SVM is introduced. There are two kinds of decremental learning
of SVM: (1) online decremental learning: there is one and only one sample to
be discarded from the training set for each decrement; and (2) batch decremen-
tal learning: there are more than one samples to be discarded from the training set
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for each decrement. Cauwenberghs and Poggio[6] presented the online incremental
and decremental learning algorithms for SVM, where the decremental learning is
regarded as an reversible procedure of the incremental learning, and offers an ef-
ficient method to exactly evaluate leave-one-out generalization performance. Tveit
etc.[7] presented decremental algorithm for SVM based on decay coefficients, which
is compared with an existing window-based decremental algorithms, and showed it
provided significantly better computational performance.

Lagrangian support vector machine (LSVM) is a quick and simple classifica-
tion method[3] which is an implicit Lagrangian[5] formulation for the dual of a sim-
ple reformulation of the standard linear SVM quadratic programming (QP) problem.
Least squares support vector machine (LSSVM) was developed by Suykens [10] in
which analytical solutions can be obtained by solving linear equations instead of
a QP problem. For linear LSVM and LSSVM, the inversion of m-order matrix in
the algorithm is transformed into the inversion of (n + 1)-order matrix by using the
Sherman-Morrison-Woodbury (SMW) identity (n¿ m)[2].

For nonlinear LSVM and LSSVM, it can not process large scale problems be-
cause SMW identity can not be used for the inversion of matrix. Especially, the com-
putation in the nonlinear case is more complex than that in the linear case. Therefore,
the decremental learning algorithms for nonlinear LSVM and LSSVM are necessary
to be researched. In this paper, we propose the online and batch decremental learning
algorithms for nonlinear LSVM and LSSVM to reduce the computation time, respec-
tively. In the decremental learning algorithms, the inversion of matrix after decrement
is solved by using the results before decrement, in which it is not necessary to re-learn
the new classification problem. Experiments shown that the computation time can be
reduced by our algorithms proposed in this paper.

This paper is organized as follows. Section 2 presents LSVM and LSSVM. Sec-
tion 3 gives the decremental learning algorithms for LSVM and LSSVM. In section
4, the algorithms will be experimentally evaluated. Section 5 concludes the whole
paper and gives the discussions.

2 LSVM and LSSVM
First, we describe our notations used for the discussions in this paper.
(1) Let T = {(xi,yi)|xi ∈ Rn, i = 1, · · · ,m} be the training set of a classification

problem, where xi is the sample point of an n-dimensional space, represented by
AT

m×n = (x1, · · · ,xm), and yi ∈ {±1} be the labels of the positive and negative class as
to xi where i = 1, · · · ,m, represented by Dm×m = diag(y1, . . . ,ym).

(2) For any vector x ∈ Rn, K is a subset of the subscript set of x. x\K is obtained
by discarding the elements {xi|i ∈ K} from x.

(3) The identity matrix of arbitrary dimension will be denoted by I. An elemen-
tary matrix P(i, j) is obtained by transforming the ith row (or column) and jth row
(or column) of I.
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2.1 LSVM: Langrangian Support Vector Machines
Linear LSVM is defined by:

min 1
2(‖w‖2 +b2)+ C

2 ξ T ξ
s.t. yi((w · xi)+b)+ξi ≥ 1 (1)

where C > 0 is the penalty parameter. The dual problem is:

min
0≤α∈Rm

1
2

αT Qα− eT α (2)

where Q = I
C +HHT , H = D[A −e], e = (1, . . . ,1)T is a vector of ones of the appro-

priate dimension.
The optimization KKT condition of its dual problem is: 0≤ α⊥Qα− e≥ 0.
By using the identity between any two real numbers (or two vectors) a and b:

0≤ a⊥ b≥ 0⇐⇒ a = (a−λb)+, λ > 0

where (x)+ denotes the vector in Rn in which all of its negative components are set to
zero.

The iteration formula given by LSVM algorithm is

α i+1 = Q−1(e+((Qα i− e)−λα i)+), λ > 0, i = 0,1, . . . (3)

While 0 < λ < 2
C , the algorithm is the global linear convergence from any start-

ing point [3]. The inversion of m matrix Q changes to the inversion of n + 1(n ¿ m)
matrix by using SMW identity. This leads to process large data sets feasibly, and the
computation time is reduced.

The SMW identity is:
(

I
C

+HHT

)−1

= C
(

I−H(
I
C

+HT H)−1HT

)

where C > 0 and H is an m×n matrix.
The above discussions are about linear LSVM. In the nonlinear case, we intro-

duce kernel function K(x,y)= Φ(x)T Φ(y), and let H = [A −e]. Q = I
C +DK(H,HT )D

in the nonlinear case. In the above discussions, we replace Q using Q = I
C +

DK(H,HT )D and keep other contents invariant, the results in the nonlinear case can
be obtained. However, the SMW identity is not applicable.

2.2 LSSVM: Least Squares Support Vector Machine
Linear LSSVM is defined by:

min 1
2(‖w‖2 + C

2

m
∑
i=1

ξ 2
i

s.t. yi((w · xi)+b) = 1−ξi =⇒ (w · xi)+b = yi−ξiyi

i = 1, . . . ,m

(4)

360 The First International Symposium on Optimization and Systems Biology



And, its Lagrangian function is:

L =
1
2
‖w‖2 +

C
2

m

∑
i=1

ξ 2
i −

m

∑
i=1

αi((w · xi)+b− yi +ξiyi)

where αi is the Lagrangian multiplier.
The KKT condition is:





∂L
∂w = 0−→ w =

m
∑
i=1

αixi

∂L
∂b = 0−→

m
∑
i=1

αi = 0
∂L
∂ξi

= 0−→Cξi = αiyi
∂L
∂αi

= 0−→ w · xi +b+ξiyi− yi = 0

(5)

After eliminating w and ξ from the above KKT condition (5),

(
0 eT

e Q

)(
b
α

)
=

(
0
y

)
(6)

where α = (α1, . . . ,αm)T , y = (y1, . . . ,ym)T , Q = AAT + 1
cI.

Therefore, the classification problem (4) can be solved by solving the linear
equations (6). Thus, the computation time can be reduced. For the nonlinear case, to
solve LSSVM is similar to that in the linear case, and the only difference is that Q is
replaced by Q = K(A,AT )+ 1

cI where K(x,y) is the kernel function.
By solving the linear equations (6),

b =
eT Q−1y
eT Q−1e

, α = Q−1
(

y− eeT Q−1y
eT Q−1e

)
(7)

According to (7), Q−1 is the key problem to solve LSSVM.
In the linear case, Q−1 can be solved using SMW identity to reduce computation

time. However, in the nonlinear case, SMW identity can not be used for Q−1 to re-
duce computation time. In the following discussions, we mainly focus on decremen-
tal learning algorithms for the nonlinear LSVM and LSSVM to reduce computation
time.

3 Decremental Learning Algorithms for LSVM and
LSSVM

3.1 Primary Knowledge
First, a lemma used in the following discussions is introduced.

Lemma 1[9] Let matrix T =
(

A B
C D

)
and D are inverse, then
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T−1 =
(

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1C(A−BD−1C)−1BD−1 +D−1

)

For Q is a m-order symmetric and positive-definite matrix, Q−1 is known. First,
we have elementary transformations on Q. Assume that there are m samples in the
original training set, and there are k samples discarded in each decrement. The dis-
carded sample set is {(xι(1),yι(1)), . . . ,(xι(k),yι(k))}. We transform the corresponding
rows and columns of the k samples to be discarded to the first k rows and k columns.
Without loss of generalization, we assume that the subscript set of the k samples
discarded is {ι(1), . . . , ι(k)}. Qm−k is used to represent the matrix obtained by dis-
carding the k samples from Q. Let P(k, ι(k)) · · ·P(1, ι(1))QP(1, ι(1))
· · ·P(k, ι(k)) = Q̂, Q̂−1 = P(k, ι(k)) · · ·P(1, ι(1))Q−1P(1, ι(1)) · · ·P(k, ι(k)) = U .

We have block decomposition on Q̂ and U as following:

Q̂ =
(

Q̂11 Q̂12

Q̂T
12 Qm−k

)
, U =

(
U11 U12

UT
12 Um−k

)

where Q̂11 and U11 are k× k matrixes, and Q̂12 and U12 are k× (m− k) matrixes.

According to Lemma 1, Q̂−1 can be written as:

Q̂−1 =
(

(Q̂11− Q̂12Q−1
m−kQ̂T

12)
−1 −(Q̂11− Q̂12Q−1

m−kQ̂T
12)

−1Q̂12Q−1
m−k

−Q−1
m−kQ̂T

12(Q̂11− Q̂12Q−1
m−kQ̂T

12)
−1 Q−1

m−kQ̂T
12(Q̂11− Q̂12Q−1

m−kQ̂T
12)

−1Q̂12Q−1
m−k +Q−1

m−k

)

By Q̂−1 = U ,

(Q̂11− Q̂12Q−1
m−kQ̂

T
12)

−1 = U11

−(Q̂11− Q̂12Q−1
m−kQ̂

T
12)

−1Q̂12Q−1
m−k = U12

−Q−1
m−kQ̂

T
12(Q̂11− Q̂12Q−1

m−kQ̂
T
12)

−1 = UT
12

Q−1
m−kQ̂

T
12(Q̂11− Q̂12Q−1

m−kQ̂
T
12)

−1Q̂12Q−1
m−k +Q−1

m−k = Um−k

(8)

According to (8),
Q−1

m−k = Um−k−UT
12U

−1
11 U12 (9)

In (9), if k > 1, the above discussions are about batch decremental learning.
If k = 1, U11 in (9) is a positive number, and this case is about online decremental
learning. In the following, the online and batch decremental learning algorithms are
presented together.

3.2 Decremental Learning Algorithm for LSVM
According to the above discussions, Q−1

m−k can be obtained by Q−1, in which it
is not necessary to recompute Q−1

m−k, thus the computation time can be reduced.
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According to the iteration formula (3) of LSVM, the solution αnew after decre-
ment,

α i+1
new = Q−1

m−k

(((
Qm−kα i

new− e
)−λα i

new

)
+ + e

)
, i = 0,1,2, . . . , λ > 0 (10)

where α0
new = α\{ι(1), · · · , ι(k)} and α is the optimal solution before decrement.

Therefore, we can present the decremental learning algorithm for LSVM as fol-
lowing.

Step 1 Select parameter λ such that 0 < λ < 2
C , parameter C, and precision

ε > 0. Obtain the sample set to be discarded {(xι(1),yι(1)), . . . ,(xι(k),yι(k))};
Step 2 Let α0

new = α\{ι(1), · · · , ι(k)}, and let i = 0;
Step 3 The inversion of Qm−k is solved using (9);
Step 4 Using the iteration formula (10) to compute α i+1

new ;
Step 5 If ‖α i+1

new−α i
new‖≤ ε , the new solution is obtained. Otherwise, let i = i+1

and go to Step 4.

3.3 Decremental Learning Algorithm for LSSVM
The linear equation after decrement,

(
0 eT

e Qm−k

)(
bnew

αnew

)
=

(
0
ynew

)
(11)

where αnew = α\{ι(1), · · · , ι(k)} and α is the optimal solution before decrement.
Based on (11), the new solution after decrement is:

bnew =
eT Q−1

m−ky
new

eT Q−1
m−ke

, αnew = Q−1
m−k

(
ynew− eeT Q−1

m−ky
new

eT Q−1
m−ke

)
(12)

The decremental learning algorithm for LSSVM can be presented as following.
Step 1 Obtain the sample set to be discarded {(xι(1),yι(1)), . . . ,(xι(k),yι(k))};
Step 2 Formula (9) is used to compute the inversion of Qm−k ;
Step 3 Formula (12) is used to solve the new solution.

4 Experiment
In this section, we present the experiments to evaluate the performance of the

online and batch decremental learning algorithms for LSVM and LSSVM.
In the following discussions, in order to save space, we denote the online (batch)

decremental learning algorithm proposed in this paper for LSVM as DOLSVM
(DBLSVM) and online (batch) decremental learning algorithm for LSSVM as
DOLSSVM (DBLSSVM), respectively. The approach to solve the inversion of a
matrix directly for the online (batch) decremental learning algorithm for LSVM is
denoted as OLSVM (BLSVM) and the online (batch) decremental learning algo-
rithm for LSSVM is denoted as OLSSVM (BLSSVM), respectively.

Nonlinear Langrangian and Least Squares Support Vector Machines 363



The experiments are given based on UCI machine learning database (http://ww
w.ics.uci.edu). The experiments are implemented by Matlab 7.0, and they run on PC
environment. The main configurations of the PC are: (1) CPU: Pentium IV 2.0G, (2)
Memory: 256M, and (3) OS: Windows XP. All the experiments are presented for the
nonlinear cases, and the kernel function is Gaussian Radial Basis Kernel K(x,y) =
exp(−‖x− y‖2/2σ 2) and σ = 2. For LSVM, we take λ = 1.9

C where C is the penalty
factor and C = 1/m where m is the sample number of training set, and the precision
is ε = 10−5.

Since to solve the inversion of the matrix is the only difference between the
algorithms proposed in this paper and the approaches to solve the inversion of a
matrix directly, the training correctness and testing correctness will keep invariant.
Therefore, in the experiments, we only compare the differences of CPU running time.

(1) Online case
The experimental results of online decremental learning for LSVM and LSSVM

in the nonlinear case are shown in Table 1, in which we compare the difference
between the computation time of OLSVM, DOLSVM, OLSSVM, and DOLSSVM.
According to the results shown in Table 1, we can see that the CPU running time of
DOLSVM and DOLSSVM is less than OLSVM and OLSSVM, respectively. When
the scale of the training set is not large, their difference is not very clear. However,
on the large-scale training set (such as Image1 and Image2), the difference of the
CPU running time between DOLSVM and DOLSSVM and OLSVM and OLSSVM
is obvious.

Table 1: The experimental results of online decremental learning for LSVM and
LSSVM

Dataset OLSVM DOLSVM OLSSVM DOLSSVM
Thyoid (140×5) 1.40625 1.39065 1.54688 1.53128
Ringnorm (400×20) 11.3281 11.2812 11.9844 11.9375
German(720×20) 35.4688 35.1407 36.25 35.9219
Splice (1000×60) 76.0781 75.25 111.063 110.2349
Image1 (1300×18) 122.438 120.6411 125.547 123.7501
Image2 (2020×18) 289.326 282.4934 292.321 285.4884

(2) Batch case
The experimental results of batch decremental learning for LSVM and LSSVM

in the nonlinear case are shown in Table 2. According to the results shown in Table
2, we can see:

• the CPU running time of DBLSVM and DBLSSVM is less than BLSVM and
BLSSVM, respectively, especially on the large-scale training set.

• the value of k (k is the number of samples to be discarded in each decrement)
is bigger, the more CPU running time will be saved.
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Table 2: The experimental results of batch decremental learning LSVM and LSSVM
Dataset k BLSVM DBLSVM BLSSVM DBLSSVM
Thyoid (140×5) 20 1.34375 1.26565 1.20313 1.12503

50 1.375 1.3125 0.7343 0.6718
Ringnorm (400×20) 20 11.1563 11.0157 10.7344 10.5938

50 11.1563 11.0625 9.25 9.1562
German(720×20) 20 34.3594 34.00 3.1563 33.7969

50 34.9844 34.6719 31.3438 31.0313
Splice (1000×60) 20 75.2188 74.4063 104.094 103.2815

50 75.0469 74.3438 98.6094 97.9063
Image1 (1300×18) 20 120.5 118.7344 120.156 118.3904

50 122.125 120.5156 116.078 114.4686
Image2 (2020×18) 20 287.531 280.8591 273.766 267.0941

50 281.109 275.0184 262.656 257.7654

5 Conclusion
LSVM and LSSVM are two fast and efficient algorithms for classification prob-

lems. With the increasing of the scale of the training set, the approaches to reduce
the scale must be adopted otherwise the computation time will also increment and
the processor will be overloaded. To overcome this problem, this paper proposes the
online and batch decremental learning algorithms for LSVM and LSSVM. One of the
main contributions in the proposed algorithms is that it is not necessary to re-learn
the whole data set while part of samples are discarded. According to the experimen-
tal results, the algorithms proposed in this paper can reduce the CPU running time
heavily and keep the training correctness and the testing correctness invariant.

In this paper, we only present the online and batch decremental learning algo-
rithms for LSVM and LSSVM. In the proposed algorithms, how to select the samples
to be discarded is not discussed. The standards to select the samples to be discarded
for decremental learning algorithms of SVM are the future research work.
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