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Abstract In this paper, we present a new MPEC model for calculating the optimal value of cost
parameter C for particular problems of linear non-separability of data. The objective function of the
new model is an integer lower semi-continuous one. Smoothing technique is employed for solving
this model, and the relationship between the MPEC model and its associated smoothing problem
is given. It is proved that one of the global solution of the smoothing problem is also a solution of
the MPEC problem. Numerical experiments show that this model is more efficient for choosing the
parameter C.
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1 Introduction
Consider a support vector machine (SVM) [2][3] [4][10] classifier for the binary

classification setting. Given a set of training data T = {x1,x2, . . . ,xm} ∈ Rn along with
labels {y1,y2, . . . ,ym} ∈ {1,−1}, we aim to find a linear decision function of the form
f (x) = wT x+b, where w ∈ Rn and b ∈ R, such that a new data x is assigned to a label
+1 if f (x) > 0, and a label−1 otherwise. The SVM classifier is determined by w and
b which can be obtained by solving the following optimization problem:

min
w,b,ξ

1
2‖w‖2

2 +C
m
∑
i=1

ξi

s. t. yi(wT xi +b)≥ 1−ξi, i = 1, · · · ,m,
ξi ≥ 0, i = 1, · · · ,m,

(1)

where ξi ≥ 0,1≤ i≤m are the slack variables to allow some classification errors and
C is the so-called cost parameter to control the balance between the “margin” and
classification error.
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The value of C is usually pre-defined, or determined by a tuning procedure [6].
In the latter case, a candidate set V of C and a tuning set are needed. A typical
candidate set V is composed of finite positive real numbers in an ascending order.
A tuning set can be selected from the training set. For each C in the candidate set
V , a SVM classifier is constructed and the correctness of the classifier is computed.
The selected C is the one maximizing classification correctness for the tuning set.
However, It is not easy to determine a candidate set V . There is no criteria to choose
a proper set V . If the size of set V is too large, the tuning procedure may take too
much time. If the size of set V is too small, a proper C may not be found.

Recently, Schittkowski [9] has proposed a two-level approach to choose optimal
SVM parameters. Different from the standard SVM model (1), the SVM model
discussed in [9] uses L2-norm measuring the hinge loss of misclassification. Due to
the measurement of loss in L2-norm, a gradient-based optimization method can be
used to search an optimal cost parameter. However, Studies [3] show that measuring
loss with L1-norm gives smaller classification error and is particularly suitable for
some types of data. In this case, derivatives of the functions do not exist, and hence,
gradient-based techniques cannot be applied.

In this paper, we consider an efficient bilevel approach for optimizing the cost
parameter in the standard SVM model (1). It is formulated in the form of one of
bilevel programming problems with an integer objective function. In order to tackle
the nonsmoothness of the objective function, we approximate the objective func-
tion by a smoothing function, and we proved that an exact solution of nonsmooth
model can be obtained from a solution of the smoothed model for a finite value of
the smoothing parameter.

This paper is organized as follows. In Section 2, an MPEC model for choosing
the cost parameter is presented. In Section 3, a concave approximation is chosen for
solving the MPEC model, and the relationship between the solutions of approxima-
tion problem and MPEC model is given. In Section 4, results on numerical experi-
ments are reported.

2 MPEC Model
We choose two subsets, denoted by A and B, from the training data set T . Set A

is used for constructing a SVM classifier and set B for evaluating the classifier. The
goal is to find a SVM classifier such that the classification error based on set B is
minimized. Here, we treat the cost parameter C as a variable instead of a parameter.

At the lower level, the cost parameter C is fixed. Define A = {i : xi ∈ A} and
B = {i : xi ∈ B}. The SVM solutions based on set A determine a set of classifiers,
which is defined by

S (C) = argmin
w,b,ξ

{1
2
‖w‖2

2 +C ∑
i∈A

ξi : yi(wT xi +b)≥ 1−ξi, ξi ≥ 0, i ∈A }.

At the upper level, in the objective function, the optimal C is need to be chosen for
minimizing the classification error based on the set B. In this paper, the classification
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error is measured by the number of data points being wrongly classified. If xk,k ∈
B, is correctly classified, then −yk(wT xk + b) < 0. If nonnegative variables zk are
introduced, the problem can be summarized as follows,

min
w,b,ξ ,z,C

∑
k∈B

(zk)∗

s. t. (w,b) ∈S (C),
zk ≥−yk(wT xk +b), k ∈B,
zk ≥ 0, k ∈B,
C ≥C0,

(2)

where (zk)∗ is a step function,

(zk)∗ =
{

1 zk > 0;
0 otherwise.

This model is also called a mathematical program with equilibrium constraints(MPEC),
in which the essential constraint w ∈S (C) is defined by a parametric quadratic pro-
gramming.

In order to solve (2), we consider the KKT conditions of (1). The Lagrangian
function of (1) is defined as

Lp ≡ 1
2
‖w‖2 +C ∑

i∈A

ξi− ∑
i∈A

αi{yi(wT xi +b)−1+ξi}− ∑
i∈A

µiξi, (3)

where the αi, i ∈ A , are the Lagrange multipliers introduced to the inequality con-
straints yi(wT xi + b) ≥ 1− ξi, i = 1, · · · ,m, and µi are the Lagrange multipliers for
ξi ≥ 0, i = 1, · · · ,m. The KKT conditions for the primal problem (1) are

∂Lp

∂w : w− ∑
i∈A

αiyixi = 0,

∂Lp

∂b : ∑
i∈A

yiαi = 0,

∂Lp

∂ξi
: αi + µi = C, ∀i ∈A ,

µiξi = 0, ∀i ∈A ,

yi(wT xi +b)−1+ξi ≥ 0, ∀i ∈A ,

αi{yi(wT xi +b)−1+ξi}= 0, ∀i ∈A ,

ξi ≥ 0, αi ≥ 0, µi ≥ 0, ∀i ∈A .

(4)

Note that the constraints of problem (1) are linear. The intersection of the sets of
feasible directions with the sets of descent directions coincides with the intersection
of the sets of feasible directions for linearized constraints with the sets of descent
directions. In other words, the regularity condition holds [5]. Hence, the KKT con-
ditions must be satisfied at the optimal solutions to (1). Also, (1) is convex, thus the
KKT conditions are sufficient. In summary, we have
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Proposition 1: The KKT conditions for problem (1) are necessary and sufficient
for w,b,ξ to be solution of (1). 2

This proposition implies that (1) can be solved by finding solutions to those
KKT conditions. Thus, we can rewrite (2) as

min
w,b,ξ ,z,C,α,µ

∑
k∈B

(zk)∗

s. t. w− ∑
i∈A

αiyixi, = 0,

∑
i∈A

yiαi = 0,

αi + µi = C, i ∈A ,
αi{yi(wT xi +b)−1+ξi} = 0, i ∈A ,
µiξi = 0, i ∈A ,
yi(wT xi +b)−1+ξi ≥ 0, i ∈A ,
ξi ≥ 0, αi ≥ 0, µi ≥ 0, i ∈A ,
zk + yk(wT xk +b) ≥ 0, k ∈B,
zk ≥ 0, k ∈B,
C ≥C0.

(5)

3 Concave Approximation
Note that (zk)∗ in (5) is not differentiable, gradient-based nonlinear program-

ming techniques can not be used for solving problem (5). Instead of solving (5)
directly, we approximate function (zk)∗ by a differentiable function t(x,β ) := 1−
e−βx, β > 0, x≥ 0, see [1][7]. Now, (5) can be approximately solved by

min
w,b,ξ ,z,C,α,µ

{
∑

k∈B

(1− e−β zk) | constraints in (5)

}
. (6)

We have the following proposition.
Proposition 2: Solutions to the problem (6) exist.
proof Firstly, we show that the feasible regions of (6) are not empty. Since for

any C ≥ C0, (1) is a quadratic programming, the feasible region of (1) is an closed
nonempty set (e.g. take b = 0, wi = 0, ξi = 1, i = 1, · · · ,m ), the minimal solutions to
problem (1) can always be obtained. Thus, For any C ≥C0, S (C) is not empty, and
the solution set to the KKT conditions is not empty. Obviously, as long as zk is large
enough, problems (6) have feasible solutions. Secondly, we notice that the feasible
regions of (6) are closed. Then, we can derive the conclusion from the fact that the
objective functions of problems (6) are concave and bounded below. 2

Let p = (z,w,b,ξ ,C), γ = (α,µ,0), and by using some standard transformation,
the constraint region of (6) can be written as a more general form

Ω = {s := (p,γ) |Mp≤ d,Nγ ≤ d′,γ ≥ 0,Dp+Eγ ≤ 0,γT (Mp−d) = 0}, (7)

where M,N,D and E are coefficients transformed from the constraints of (5). Note
that zk ≥ 0,k ∈B, thus the nonsmooth problem can be stated as follows

min
s∈Ω

hT |s|∗, (8)
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and the smooth problem (6) can be transformed into the following concave minimiza-
tion problem

min
s∈Ω

hT (1− e−β |s|), (9)

where h = (1, · · · ,1,0, · · · ,0)T ∈ Rk, which the first |B| components are 1, where
|B| is the dimension of variable z, 1 = (1, · · · ,1)T , |s|∗ = (|s1|∗, · · · , |sk |∗)T , e−β |s| =
(e−β |s1|, · · · ,e−β |sk |)T .

We have the following theorem.
Theorem 1: Let Ω be defined by (7) that contains no straight lines going to

infinity in both directions, and let h ≥ 0. Then for a sufficiently large positive but
finite value β0 of β , the smooth problem (9) has a global solution that also solves the
original nonsmooth problem (8).

Proof: Note first that the following obvious relations

hT |s|∗ ≥ hT (1− e−β |s|), ∀s ∈ Rk. (10)

and
lim

βi→∞
hT (1− e−βi|s|) = hT |s|∗, ∀s ∈ Rk. (11)

hold. Define

F = {s := (p,γ) | γT (Mp−d) = 0},
Ω1 = {s := (p,γ) |Mp≤ d,γ ≥ 0,Dp+Eγ ≤ 0,Nγ ≤ d′}.

One has

F = {s | γ1(MT
1 p−d1) = 0, · · · ,γl (M

T
l p−dl) = 0}

=
⋂l

i=1{s | γi(MT
i p−di) = 0}

=
⋂l

i=1 {{s | γi = 0,MT
i p−di ≤ 0} or {s | γi ≥ 0,MT

i p−di = 0}} ,

where γ = (γ1, · · · ,γl ) ∈ Rl . Let

F1 = {s | γ1 = 0, MT
1 p−d1 ≤ 0, · · · , γl = 0, MT

l p−dl ≤ 0},
F2 = {s | γ1 ≥ 0, MT

1 p−d1 = 0, · · · , γl = 0, MT
l p−dl ≤ 0},

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
F2l = {s | γ1 ≥ 0, MT

1 p−d1 = 0, · · · , γl ≥ 0, MT
l p−dl = 0}.

Then, we have

Ω = Ω1∩F = Ω1∩ (∪2l

i=1Fi) = ∪2l

i=1(Ω1∩Fi),

where Ω1 ∩Fi, i = 1, · · · ,2l , are polyhedral sets. Thus, Ω is a union of finite poly-
hedral sets. The smoothing problem (9) is equivalent to the following concave mini-
mization problem

min
(s,u)∈T

hT (1− e−βu), (12)
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where T := {(s,u) | s ∈Ω,−u≤ s≤ u}=
2l⋃

i=1
{(s,u) | s ∈Ω1∩Fi,−u≤ s≤ u}.

Since the objective function of this problem is concave in (s,u) on R2k and is
bounded below on T , if follows by [8] that it has a vertex (s(β ),u(β )) of one of the
polyhedral {(s,u) | s∈Ω1∩Fi,−u≤ s≤ u} as a global solution for each β > 0. Since
T has a finite number of such vertices, one vertex, say (s̄, ū), will repeatedly solve
(12) for some sequence {β0,β1, · · ·} ↑ ∞. Hence for βi ≥ β0,

hT (1− e−βiū) = hT (1− e−βiu(βi))
= min

(s,u)∈T
hT (1− e−βiu)

= min
s∈Ω

hT (1− e−βi|s|)

≤ inf
s∈Ω

hT |s|∗,

where the last inequality follows from (10). Letting i→ ∞ if follows by (11) that

hT |s̄|∗ ≤ hT |ū|= lim
i→∞

hT (1− e−βiū)≤ inf
s∈Ω

hT |s|∗

Since s̄ ∈Ω, it follows that s̄ solves (8), i.e., s̄ is the solution of (5). 2

4 Numerical experiments
We demonstrate now the effectiveness of this approach by comparing it numeri-

cally with the model that C takes the default value 1.0. All experiments are run on the
Intel(R) AT/AT Compatible with CPU 3.0G and 2GM RAM. We ran all tests on six
publicly available datasets: the Wisconsin Prognostic Breast Cancer Database and
six datasets, Ionosphere, Cleveland Heart Problem, Wine and Tic-tac-toe from the
Irvine Machine Learning Database Repository. For wine data set, class 1 and class
2 are selected for numerical experiment. We randomly extract 10% points from the
training set as set B, and the rest as the set A. We performed tenfold cross-validation
on each dataset and use tenfold training correctness and tenfold testing correctness
to evaluate how well the cost parameter C generalizes to future data. Experimental
results are summarized in Table 1.
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