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Abstract The automatic classification for protein structure plays an important role in bioinfor-
matics. Here we present an improved multiclass SVM for the classification based on the features
of the protein structure which were extracted from the protein convex hull. Firstly, we modify
the gauss radial kernel by adding a positive constant to the kernel function. Secondly, we take
weighted SVM to deal with the imbalanced dataset. Experiments demonstrate the superiority of
our new strategies. In addition, we design the hierarchical classifier which is more suitable to the
CATH database.
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1 Introduction
One of the main tasks of biology is to describe and compare biological struc-

tures. And the protein structure prediction is the central problem in computational
biology. However, there are few known protein structures that are obtained by the
more costly and time- consuming experimental methods, which restrict our insight
into the structure and the function of the protein. So it is essential to use theory
computation and statistical forecast to predict the structure of the protein.

In the post-genomic era, the accumulated DNA sequence information has grown
and it is a challenge for us to predict the structure and function of the protein by using
this expanded information. Having a computational method based on machine learn-
ing to accurately automatic recognize the protein structure will provide us a new
insight into the task. Before designing the classifier we must construct some features
to describe the protein, and then to compare the similar structures. In recent years,
some discriminative methods of machine learning and statistics have been used to
solve the classification or prediction of protein structure. These methods are mainly
dependent on the information of protein’s amino acid sequence such as the works
of Cai. et al.[1], Ding and Dubchak [2], E. Eskin and Stafford [3], F. Markowetz
[4], A.C. Tan[5], Nitin et al[6] etc. More and more attention of similarity measure
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of protein structures have been focused on extracting features from geometric pat-
terns. For example, the author proposed a new method based on Gauss Integrals[14]
to construct the features of a protein structure and then to group protein shapes in
an unsupervised way. And in the thesis [7] (see also [15, 16]), the author proposed
another new method regarding the convex hull of the protein as the 3-dimensional
structure of the protein, and constructed the classification features according to the
convex hull. Furthermore, the author used NN(Neural Networks) method to construct
the classifier [7]; however, the NN classifier didn’t demonstrate the good generaliza-
tion on this problem, especially on the testing precision. In this paper, we will build
an improved multiclass SVM classifier based on the above features. As far as we
know, Wang is the first people who proposed the new features by using the hull of
protein to present its 3-D structures [15, 16]. Here our works are mainly dependent
on this method, and we compare our results with that of Wang’s only.

In section 2 we outline the protein structure prediction problem on the CATH
database. Section 3 introduces the multiclass SVM, while Section 4 presents the
experimental results of our improved method on multiclass SVM for the CATH
database. And finally Section 5 gives the conclusions and discusses the future work.

2 Protein Structure Prediction on
CATH Dataset
It is well known that the protein structure has its own different levels including:

protein sequence, secondary structure, tertiary structure and quaternary structure etc.
We focus on the protein structure domain level due to its overlap of the domain may
infect the classification of the protein, and take the protein structure domain as the
basic element of the structure comparisons and the classification problems. There are
many databases to deal with the protein structure classification such as SCOP [8],
FSSP, MMDB and CATH [9] etc. We use the CATH database to construct our multi-
class SVM classifier just because it has a more definite standard of the sequence and
the structure of the protein. Now the CATH database uses four main levels to classify
a protein: Class (C-level), Architecture (A-level), Topology (Fold family, T-level),
and Homologous Superfamily (H-level). Based on the principle of the minimum re-
dundancy and the maximum class cover of the classification dataset, finally a dataset
of 2771 samples with 93 classification features1 is constructed. These samples be-
long to 4 classes, 36 architectures, 622 folds and 1096 homologous superfamilies
according to the CATH classification system. These features are mainly based on
the convex hull representation of the protein structure. As described in [16], there
are roughly four catalogs of these features: Global shape, Protein surface, Interior of
protein structure, and Chemical character of amino acids.

The obtained dataset here is imbalanced on the four levels. E.g. in the C-
level the ab class has 1384 samples while the few secondary structure class has only
82 samples. This lead to an imbalance in the number of the positive samples and

1 The detailed features could be found in the materials[7,15,16]
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the negative samples that is likely to cause misclassification during the process of
constructing the multiclass classifier.

So the final problem is how to construct the more accurately multiclass SVM as
well as design the SVM that can deal with the imbalance samples.

3 Multiclass Support Vector Machines
Firstly, we briefly give the outline of the support vector machines (SVMs) [10,

11]. SVM was introduced firstly by Vapnik et al for binary classification, and it
is based on the statistical learning theory. Given the training datasetχ = {(xi,yi) :
xi ∈ Rn,yi ∈ {±1}}m

i=1, where each xi is labeled by yi. SVM defines a boundary
that maximizes the margin between the samples of the two classes. The ultimate
aim of the classifier is to predict a class label of the newcome samples. The core
parts of the SVM include the optimal margin hyperplane and kernel’s mapping. The
corresponding dual Quadratic Programming is as follows [10]:

min
α

1
2

m

∑
i=1

m

∑
j=1

αiα jyiy jK(xi,x j)−
m

∑
i=1

αi (1)

s.t.
m

∑
i=1

αiyi = 0, 0≤ αi ≤C, i = 1,2, ...,m (2)

Where C is a constant controlling the trade-off between maximizing the margin and
minimizing the errors, K(x,y) is a kernel function. The final decision function is

f (x) = sgn{∑α∗
i yiK(xi,x)+ γ∗}. (3)

SVMs have demonstrated better performance than neural networks and other meth-
ods in many real-world applications such as classifying microarray data[12], image
classification and fold recognition[6] etc.

There are many approaches to extend binary SVM to the multiclass SVM. The
traditional methods include so called “one-against-one”, “one-against-rest” and “al-
together” etc. Fork classification problem, the “one-against-one” method constructk(k-
1)/2 classifiers based on the pairwise classifiers, the “one-against-rest” method per-
form k classifiers, and the “altogether” strategy perform only one optimal program-
ming to construct the classifier. For the prediction scheme, the “one-against-one”
takes the voting rule as follows: for a sample, the corresponding class gain one vote
if the sample is assigned to the class according to the two-way classifier and then
take the highest votes class as the final class of the sample. For the “one-against-
rest” method, it takes the highest output of the k classifier function. Differently, the
“altogether” method predicts the sample according to the only one decision function.
Note, the training time is not very different for each method and the “one-against-
one” method may perform more accurately [17].

Many popular methods are used to deal with the imbalance problems such as
treating two class samples with different error cost weights, the undersampling and
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oversampling techniques etc. Here we introduce a new approach by modifying the
diagonal elements of the kernel matrix during SVM optimization, which has achieved
success on the gene expression problem [13]. This method can avoid misclassifying
the minor class’s samples to the other class. The detail modification is as follows:
let K(x,x):=K(x,x) +ls/m, where K(x,x) is the diagonal element of the kernel matrix,
s is the number of the positive samples if the x is positive sample, otherwises is the
number of the negative samples if the x is negative sample, m is the total number of
training dataset of the corresponding two-way classification, and l is a scale factor
which can control the accurate ratio. In addition, our experiments show the adopted
method can accelerate computation of the optimization procedure.

In this paper, we adopt the “one-against-one” method to solve the multiclass
problems on the four levels of the CATH dataset. And we also introduce the weighted
method to deal with the imbalance case of the two-way classification issue.

4 Experiments
Comparing with the traditional nonlinear kernel function, we find the linear ker-

nel performs better on the C-level. But they all don’t work well on the A, T and
H-levels. Fortunately, we get the acceptable results on the all four levels by modify-
ing gauss radial kernel function. The modified kernel function is obtained by adding
a positive constant to the traditional gauss radial kernel function, that is K(x,y) =
exp{-||x-y||2/2s2} +b, where b>0. Obviously, the Gram matrix [10] of the new kernel
is also positive semi-defined matrix.

In the experiments present here, we adopt both “Resubstitution test (Self-consi-
stency)” and “Cross-validation test” methods to evaluate the classifiers, and consider
the sensitivity as the criterion of the correctness of the classifiers. “Resubstitution
test” demonstrates how well the classifier has turned into the internal knowledge,
while “Cross-validation” mainly shows the generalization of the classifier, usually
including the following methods: k-fold CV, LOO, Sub-sampling etc. Let TPk be the
number of the samples which are classified into the kth class correctly, FNk be the
number of the samples which belong to the kth class but are misclassified to other
classes, and SEk = T Pk

T Pk+FNk
×100% be the sensitivity of the kth class samples. Then

the total sensitivity of the multiclass SVM classifiers is defined by

SE = ∑l
k=1 T Pk

∑l
k=1 (T Pk +FNk)

×100% (4)

where l is the number of the classes.

5 SVM vs. NN
Now we present the results of the multiclass SVM on the CATH dataset. Com-

paring with the results of the Neural Networks (NN) method given in [15], the pro-
posed multiclass SVM performs better with both “Self-consistency test” and “Cross-
validation test” criterions. Table (1) describes the comparison results on the Class-
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level. Here the parameters of the SVM are set as follows by 5-fold cross-validation:
C = 10, σ = 0.6, b = 5, λ = 0.1.

Table 1: Comparison of the NN and multi-class SVM on the Class-level (4 classes)
SVM NN

Percentage Tr(%) Te(%) Self_T(%) Tr(%) Te(%) Self_T(%)
50% 98.196 82.166 90.184 98.99 69.33 84.16
60% 98.196 84.386 92.674 98.62 69.15 86.83
70% 98.918 85.078 94.767 98.56 82.19 93.65
80% 98.827 83.755 95.814 98.42 79.27 94.59
90% 98.717 87.004 97.546 98.27 85.17 96.96
100% 99.747 —— 99.747 98.70 ——- 98.70

Where the percentage in the first column donates the ratio of the selected training
dataset to the whole dataset. E.g. the value of 90% means that the total dataset is
random divided into two halves, and training sets is occupying 90% of the whole
dataset while the rest 10% of the whole dataset is the testing dataset. And Tr donates
the classifier’s accuracy on the training dataset, Te donates the correctness on the
testing dataset, and Self_T is the Resubstitution correctness on the whole dataset.

From the results above, we find that the features based on the convex hull of
the 3-D structure of the protein describe the second structure similarity of the protein
appropriately. The comparisons of the SVM and NN on the A-level, H-level, and
T-level of the protein are demonstrated on Table (2), (3) and (4) respectively. The
results show that our new methods are superior to that of NN on the four levels.

Table 2: Comparison of the NN and multiclass SVM on the A-level (36 classes)
SVM NN

Percentage Tr(%) Te(%) Self_T(%) Tr(%) Te(%) Self_T(%)
50% 95.310 55.572 75.470 92.82 28.58 60.70
60% 93.746 56.159 78.750 92.49 20.97 63.88
70% 92.526 56.265 81.661 92.00 34.70 74.81
80% 93.460 58.696 86.529 90.75 35.5 79.07
90% 92.422 61.733 89.354 89.95 24.05 83.36
100% 93.071 ——– 93.071 89.90 ——- 89.90

As mentioned previously, the positive constant b plays a crucial role in the per-
formance of the SVM. In the following, we demonstrate the variety of the accuracy
according to the different value of bin order to reveal the importance of b. Figure (1)
illustrates the variety of the correctness according to the different value of b on the
A-level.

It is remarkable that in our experiments, we cannot get the precision greater than
35% whatever the parameter C and s take if the value of the b is zero. And the train-
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Table 3: Comparison of the NN and multiclass SVM on the T-level (622 classes)
SVM NN

Percentage Tr(%) Te(%) Self_T(%) Tr(%) Te(%) Self_T(%)
50% 95.310 40.307 70.862 94.44 22.20 58.32
60% 94.108 40.805 73.989 93.96 13.51 61.78
70% 96.907 42.511 82.469 93.85 20.05 71.71
80% 96.370 43.428 85.782 92.69 15.94 77.34
90% 95.309 45.868 90.936 93.78 15.28 85.93
100% 96.350 ——– 96.350 92.82 ——- 92.82

Table 4: Comparison of the NN and multiclass SVM on the H-level (1096 classes)
SVM NN

Percentage Tr(%) Te(%) Self_T(%) Tr(%) Te(%) Self_T(%)
50% 91.270 39.151 66.565 93.82 26.28 60.05
60% 92.742 41.376 72.196 93.46 16.16 62.54
70% 93.814 41.286 78.056 93.33 10.89 68.60
80% 93.189 41.912 82.934 93.44 —— 74.16
90% 94.146 47.479 89.479 93.82 —— 77.52
100% 94.082 ——- 94.082 91.56 —— 91.56

ing, testing, and self-consistency correctness increase from 31.636% to 88.292%,
26.087% to 55.596%, and 31.083% to 85.023% respectively when b changes from
zero to one. Meanwhile it goes best when b=5 which can be shown from the Figure
(1).

Table 5: Hierarchy classifiers on the A-level
50% 60% 70% 80% 90% 100%

α
Tr(%) 98.635 98.823 97.384 97.282 97.938 99.747
Te(%) 77.733 78.593 79.357 82.223 82.95 ——
Self_T(%) 88.19 90.754 92.00 94.28 96.549 99.747

β
Tr(%) 97.2918 98.380 97.669 98.090 98.817 99.72
Te(%) 60.977 65.141 62.854 65.493 65.722 ——–
Self_T(%) 79.281 85.196 87.291 91.643 95.945 99.72

αβ
Tr(%) 93.84 92.720 91.620 90.914 95.707 97.69
Te(%) 60.756 60.018 62.128 60.748 60.688 ——–
Self_T(%) 77.397 79.674 82.787 84.899 92.215 97.69

Few* Self_T(%) ——– ——— ——— ——– ——— ——-

Hierarchy SVM
Tr(%) 93.011 92.774 91.736 91.471 94.192 95.80
Te(%) 62.641 63.535 64.157 64.759 64.942 ——-
Self_T(%) 77.915 81.129 83.492 86.158 91.408 95.80
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Figure 1: Precision varies according to b

6 Hierarchy Classifiers
In addition, we introduce the hierarchy classifiers. As discussed above, the

CATH dataset have four main levels and there are closely hierarchical relationships
of the four levels. For example, there are four classes on the Class-level and they
have their own subclasses. The mainly a class has five subclasses, the mainly b class
has eighteen subclasses, the ab class has twelve subclasses and the few secondary
structure class has only one subclass. The total 36 classes constitute the class of our
CATH dataset on the Architecture level. And the similarity has happened on the T-
level and H-level. So we can construct multiclass SVM classifiers according to the
subclass datasets respectively and classify the data from C-level to the lower level
hierarchically. Here we denote the previous SVM as “Standard SVM” and the new
classifiers as “Hierarchy SVM”. Now we design the hierarchy classifiers on the A-
level, that is to say, construct the classifier on the subclasses of the four classes on
the C-level independently. And then evaluate the A-level classifier by combining the
four sub-classifiers. Table (5) describes the results of the subclasses of the C-level
and the hierarchy results according to the formula (4).

*Remark: The few secondary structure class belongs to only one class on the
A-level, so we define the correctness of the subclassifier is 100%

It is reasonable to think that the “Hierarchy SVM” performs better than the
“Standard SVM”. In the following experiments we compare the performance results
of the two SVM classifiers which are constructed with the same training dataset and
testing dataset. The results based on the A-level are presented on Figure (2) where the
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Figure 2: Standard SVM vs. Hierarchy SVM on A-Level

first three series are the correctness of the “Standard SVM”, and the other three are
that of the “Hierarchy SVM”. At the bottom of the figure there are the corresponding
accuracy of the two classifiers on the training datasets which occupy the different
percentage of the whole dataset. And the results validate our hypothesis that the
“Hierarchy SVM” implements better than the “Standard SVM”.

Similarly, we construct the “Hierarchy SVM” on the T and H-levels, and com-
pare them with the “Standard SVM”. Because there are a large number of the classes,
here we don’t display the detailed results of the “Hierarchy SVM” on these sub-
classes. We only show the comparison of the “Standard SVM” and “Hierarchy SVM”
on the T, H-levels. The results are displayed on Figure (3) & (4).

7 Conclusion and Future Work
In this paper, we proposed a new multiclass SVM for the protein structure pre-

diction based on the CATH dataset. The features of the classification are based on
the convex hull of the 3-Dimension structure of the protein. The improvements of
the new SVM include that modify the traditional gauss kernel by adding a positive
constant to the kernel function and take weighted SVM when training datasets of the
two-way scenario is imbalanced. It performs batter than NN on all four levels ac-
cording to both “Resubstitution test” and “Cross-validation test” methods, especially
for the cross-validation correction. In the future work, we focus on the reconstruc-
tion of the features based on the Gauss integrals[14], as well as combining SVM with
other classification methods such as Hidden Markov Models (HMM) to design more
efficient classifier for the T and H-levels.
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Figure 3: Standard SVM vs. Hierarchy SVM on T-Level
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Figure 4: Standard SVM vs. Hierarchy SVM on H-Level
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