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Abstract Support vector ordinal regression machine (SVORM) is an effective method for ordinal
regression problem. Up to now, the SVORM implicitly assumes the training data to be known
exactly. However, in practice, the training data subject to measurement noise. In this paper, we
propose a robust version of SVORM. The robustness of the proposed method is validated by our
preliminary numerical experiments.

1 Introduction
Ordinal regression [2, 7, 8] may be viewed as a problem bridging between the

two standard machine learning tasks of classification and metric regression. Ordinal
regression arises frequently in social science and information retrieval where human
preferences play a major role. The training samples are labeled by ranks, which
exhibits an ordering among the different categories. In contrast to metric regression
problems, these ranks are of finite types and the metric distances between the ranks
are not defined. These ranks are also different from the labels of multiple classes in
classification problems due to the existence of the ordering information.

There are several approaches to deal with ordinal regression problems in the
domain of machine learning, for example, in [1, 2, 7, 8, 9, 10, 11]. But in the men-
tioned methods, the parameters in the optimization problems are implicitly assumed
to be known exactly. However, in real world applications, the parameters are not al-
ways known exactly; what have perturbations since they are estimated from the data
subject to measurement and statistical errors [4]. Since the solutions to optimiza-
tion problems are typically sensitive to parameter perturbations, errors in the input
parameters tend to get amplified in the decision function, often resulting in far from
optimal solutions [12, 13, 16]. So it will be useful to explore formulations that can
yield robust discriminants to such estimation errors.
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Figure 1: (a) The fixed margin version;(b) The effect of measurement noises;(c) The
result of Robust version.

In this paper, we propose a robust formulation of support vector ordinal regres-
sion machine (SVORM) based on fixed margin version [1], which is represented as a
second order cone program (SOCP) [5, 14].

2 Robust Counterpart of Linear SVORM
Support vector ordinal regression machine (SVORM) is studied in [1, 2]. Now

we introduce its fixed margin version.
Suppose a training set is given by

T = {x j
i } j=1,··· ,k

i=1,··· ,l j , (1)

where x j
i ∈ Rn is the input, j = 1, · · · ,k denotes the class number and i = 1, · · · , l j is

the index with each class. We need to find a real value function g(x) and an orderly
real sequence b1 ≤ ·· · ≤ bk−1 and construct a decision

f (x) = min
r∈{1,··· ,k}

{r : g(x)−br < 0}, (2)

where bk = +∞.
The training data x j

i , j = 1, · · · ,k, i = 1, · · · , l j used in Linear SVORM [1, 3]
are implicitly assumed to be known exactly (see Fig.1 (a)). However, in real world
applications, the data are corrupted by measurement and statistical errors [4]. Errors
in the input space tend to get amplified in the decision function, which often results
in misclassification. For example, suppose each training point in Fig.1 (a) is allowed
to move in a sphere, the original decision function cannot separate the training set in
this case (see Fig.1 (b)) properly. So we explore formulation which can yield robust
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discriminants to such estimation errors. Intuitively, it is expected to yield a separation
lines as show in Fig.1 (c) which separate three classes of perturbed spheres.

Assume that

x̄ j
i ∈ {x j

i +ρ j
i u j

i : ‖u j
i ‖ ≤ 1}, j = 1, · · · ,k, i = 1, · · · , l j, (3)

where x̄ j
i is the true value of the training data and ρ j

i u j
i is the measurement noise with

u j
i ∈ Rn, ρ j

i ≥ 0 being a given constant.
Now we are seeking for a decision function that minimizes the misclassification

in the worst case, i.e. one that minimizes the maximum misclassification when sam-
ples are allowed to move within their corresponding confidence balls. In this case,
the robust counterpart of linear SVORM is given by the following robust optimization
problem

min
w,b,ξ (∗)

1
2
‖w‖2 +C

k

∑
j=1

l j

∑
i=1

(ξ j
i +ξ ∗ j

i ), (4)

s.t. (w · (x j
i +ρ j

i u j
i ))−b j ≤−1+ξ j

i ,∀u j
i ∈U , j = 1, · · · ,k, i = 1, · · · , l j, (5)

(w · (x j
i +ρ j

i u j
i ))−b j−1 ≥ 1−ξ ∗ j

i ,∀u j
i ∈U , j = 1, · · · ,k, i = 1, · · · , l j,(6)

ξ j
i ≥ 0, ξ ∗ j

i ≥ 0, j = 1, · · · ,k, i = 1, · · · , l j, (7)

where U = {u ∈ Rn : ‖u‖ ≤ 1}.
Since

min{ρ j
i (w ·u j

i ) : u j
i ∈U }=−ρ j

i ‖w‖, (8)

the problem (4)-(7) is equivalent to

min
w,b,ξ (∗)

1
2

t2 +C
k

∑
j=1

l j

∑
i=1

(ξ j
i +ξ ∗ j

i ), (9)

s.t. −(w · x j
i )−ρ j

i t +b j +ξ j
i ≥ 1, j = 1, · · · ,k, i = 1, · · · , l j, (10)

(w · x j
i )−ρ j

i t−b j−1 +ξ ∗ j
i ≥ 1, j = 1, · · · ,k, i = 1, · · · , l j, (11)

ξ j
i ≥ 0, ξ ∗ j

i ≥ 0, j = 1, · · · ,k, i = 1, · · · , l j, (12)
‖w‖ ≤ t. (13)

By introducing new scalar variables u and v, replacing t2 in the objective by
u− v and requiring that u and v satisfy the linear and second order cone constraints
u + v = 1 and

√
t2 + v2 ≤ u, since the latter imply that t2 ≤ u− v, problem (9)-(13)
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can be reformulated as a following second order cone program (SOCP):

min
w,b,ξ (∗),u,v,t

1
2
(u− v)+C

k

∑
j=1

l j

∑
i=1

(ξ j
i +ξ ∗ j

i ), (14)

s.t. −(w · x j
i )−ρ j

i t +b j +ξ j
i ≥ 1, j = 1, · · · ,k, i = 1, · · · , l j, (15)

(w · x j
i )−ρ j

i t−b j−1 +ξ ∗ j
i ≥ 1, j = 1, · · · ,k, i = 1, · · · , l j, (16)

ξ j
i ≥ 0, ξ ∗ j

i ≥ 0, j = 1, · · · ,k, i = 1, · · · , l j, (17)
‖w‖ ≤ t, (18)
u+ v = 1, (19)√

t2 + v2 ≤ u, (20)

where b = (b1, · · · ,bk−1)T , b0 =−∞, bk = +∞, ξ (∗) = (ξ 1
1 , · · · ,ξ 1

l1 , · · · ,ξ k
1 , · · · ,ξ k

lk ,
ξ ∗1

1 , · · · ,ξ ∗1
l1 , · · · ,ξ ∗k

1 , · · · ,ξ ∗k
lk ), the penalty parameter C > 0.

3 Robust Linear SVORM Algorithm
In order to get the solution w,b of the SOCP problem (14)-(20), we usually solve

its dual problem and express w,b by the solution of the dual problem.
Writing problem (14)-(20) into the standard form and using the definition of the

dual of the standard form SOCP problem [5], the dual problem can be written as:

max
α(∗),β ,γ,zu,zv

k

∑
j=1

l j

∑
i=1

(α j
i +α∗ j

i )+β , (21)

s.t. γ ≤∑
j,i

ρ j
i (α

j
i +α∗ j

i )−
√

∑
j,i

∑
j′,i′

(α∗ j
i −α j

i )(α
∗ j′
i′ −α j′

i′ )(x
j
i · x j′

i′ ),

(22)√
γ2 + z2

v ≤ zu, (23)

β + zv =−1
2
,β + zu =

1
2
, (24)

l j

∑
i=1

α j
i =

l j+1

∑
i=1

α∗ j+1
i , j = 1,2, · · · ,k−1, (25)

0≤ α j
i ,α

∗ j
i ≤C, j = 1,2, · · · ,k, i = 1,2, · · · , l j, (26)

where α (∗) = (α1
1 , · · · ,α1

l1 , · · · ,αk
1 , · · · ,αk

lk ,α∗1
1 , · · · ,α∗1

l1 , · · · ,α∗k
1 , · · · ,α∗k

lk )T , α∗1
i = 0,

i = 1,2, · · · ,n1, αk
i = 0, i = 1,2, · · · ,nk.

Using the complementary equations at optimality about second order cone con-
straint, the solution w,b of the primal problem (14)-(20) can be expressed by the
solution α (∗),β ,γ,zu,zv of the dual problem (21)-(26). Because of the limitation of
the space, the derivation is omitted and the final formulation is given in step 4 and
step 5 in the following algorithm:

Algorithm 1: Robust Linear SVORM (R-LSVORM)
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1. Given a training set (1);
2. Select C > 0;
3. Solve the dual problem (21)-(26) and get its solution α (∗) = (α1

1 , · · · ,α1
l1 , · · · ,

αk
1 , · · · ,αk

lk ,α∗1
1 , · · · ,α∗1

l1 , · · · ,α∗k
1 , · · · ,α∗k

lk )T ,β ,γ,zu,zv;
4. Compute

g(x) =
γ

(zv− zu)(
k
∑
j=1

l j

∑
i=1

ρ j
i (α

j
i +α∗ j

i )− γ)

k

∑
j=1

l j

∑
i=1

(α∗ j
i −α j

i )(x
j
i · x); (27)

5. For j = 1, · · · ,k−1, execute the following steps:

5.1 Choose some component α j
i ∈ (0,C) in α (∗). If we get such i, let

b j = 1+
k

∑
j′=1

l j′

∑
i′=1

(α∗ j′
i′ −α j′

i′ )(x
j′
i′ · x j

i )+ρ j
i t, (28)

otherwise go to 5.2;
5.2 Choose some component α∗ j+1

i ∈ (0,C) in α (∗). If we get such i, let

b j =
k

∑
j′=1

l j′

∑
i′=1

(ᾱ∗ j′
i′ − ᾱ j′

i′ )(x
j′
i′ · x j+1

i )−ρ j+1
i −1, (29)

otherwise go to 5.3;
5.3 Let

b j =
1
2
(bdn

j +bup
j ), (30)

where

bdn
j = max{max

i∈I j
1

(g(x j
i )+ρ j

i t +1),max
i∈I j

4

(g(x j+1
i )−ρ j+1

i t−1)},

bup
j = min{min

i∈I j
3

(g(x j
i )+ρ j

i t +1),min
i∈I j

2

(g(x j+1
i )−ρ j+1

i t−1)},

where

I j
1 = {i ∈ {1, · · · , l j}|α j

i = 0}, I j
2 = {i ∈ {1, · · · , l j+1}|α∗ j+1

i = 0},
I j
3 = {i ∈ {1, · · · , l j}|α j

i = C}, I j
4 = {i ∈ {1, · · · , l j+1}|α∗ j+1

i = C};

6. If there exists j ∈ {1, · · · ,k} such that b j ≤ b j−1, the algorithm stop or go to 2;
7. Define bk = +∞, construct the decision function

f (x) = min
r∈{1,··· ,k}

{r : g(x)−br < 0}. (31)
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4 Robust Counterpart of Nonlinear SVORM
The above discussion is restricted in the linear case. In this section, we will ana-

lyze nonlinear SVORM by introducing Gaussian kernel function K(x,x′) =
exp(−‖x−x′‖2

2σ 2 ) with a real parameter σ .
Consider the training data (3) and assume that Φ is the transformation corre-

sponding to the Gaussian kernels. It can be shown that

Φ(x̄ j
i ) = Φ(x j

i )+ ρ̄ j
i ū j

i , ū j
i ∈ Ū , (32)

where Ū is a unit sphere in Hilbert space and ρ̄ j
i = (2−2exp(−(ρ j

i )
2/2σ 2))

1
2 .

This leads to the following algorithm
Algorithm 2: Robust SVORM (R-SVORM)

1. Given a training set (1);
2. Select C > 0 and a kernel parameter σ ;
3. Solve the dual problem

max
α(∗),β ,γ,zu,zv

k

∑
j=1

l j

∑
i=1

(α j
i +α∗ j

i )+β , (33)

s.t. γ ≤∑
j,i

ρ̄ j
i (α

j
i +α∗ j

i )−
√

∑
j,i

∑
j′,i′

(α∗ j
i −α j

i )(α
∗ j′
i′ −α j′

i′ )K(x j
i ,x

j′
i′ ),

(34)√
γ2 + z2

v ≤ zu, (35)

β + zv =−1
2
,β + zu =

1
2
, (36)

l j

∑
i=1

α j
i =

l j+1

∑
i=1

α∗ j+1
i , j = 1,2, · · · ,k−1, (37)

0≤ α j
i ,α

∗ j
i ≤C, j = 1,2, · · · ,k, i = 1,2, · · · , l j, (38)

where α (∗) = (α1
1 , · · · ,α1

l1 , · · · ,αk
1 , · · · ,αk

lk ,α∗1
1 , · · · ,α∗1

l1 , · · · ,α∗k
1 , · · · ,α∗k

lk )T ,
α∗1

i = 0, i = 1,2, · · · ,n1, αk
i = 0, i = 1,2, · · · ,nk. and get its solution α (∗),β ,

γ,zu,zv;
4. Compute

g(x) =
γ

(zv− zu)(
k
∑
j=1

l j

∑
i=1

ρ̄ j
i (α

j
i +α∗ j

i )− γ)

k

∑
j=1

l j

∑
i=1

(α∗ j
i −α j

i )K(x j
i ,x); (39)

where ρ̄ j
i = (2−2exp(−(ρ j

i )
2/2σ 2))

1
2 .

5. For j = 1, · · · ,k−1, execute the following steps:

5.1 Choose some component α j
i ∈ (0,C) in α (∗). If we get such i, let

b j = 1+
k

∑
j′=1

l j′

∑
i′=1

(α∗ j′
i′ −α j′

i′ )K(x j′
i′ ,x

j
i )+ ρ̄ j

i t, (40)
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otherwise go to 5.2;
5.2 Choose some component α∗ j+1

i ∈ (0,C) in α (∗). If we get such i, let

b j =
k

∑
j′=1

l j′

∑
i′=1

(ᾱ∗ j′
i′ − ᾱ j′

i′ )K(x j′
i′ ,x

j+1
i )− ρ̄ j+1

i −1, (41)

otherwise go to 5.3;
5.3 Let

b j =
1
2
(bdn

j +bup
j ), (42)

where

bdn
j = max{max

i∈I j
1

(g(x j
i )+ ρ̄ j

i t +1),max
i∈I j

4

(g(x j+1
i )− ρ̄ j+1

i t−1)},

bup
j = min{min

i∈I j
3

(g(x j
i )+ ρ̄ j

i t +1),min
i∈I j

2

(g(x j+1
i )− ρ̄ j+1

i t−1)},

where

I j
1 = {i ∈ {1, · · · , l j}|α j

i = 0}, I j
2 = {i ∈ {1, · · · , l j+1}|α∗ j+1

i = 0},
I j
3 = {i ∈ {1, · · · , l j}|α j

i = C}, I j
4 = {i ∈ {1, · · · , l j+1}|α∗ j+1

i = C};

6. If there exists j ∈ {1, · · · ,k} such that b j ≤ b j−1, the algorithm stop or go to 2;
7. Define bk = +∞, construct the decision function

f (x) = min
r∈{1,··· ,k}

{r : g(x)−br < 0}. (43)

Note that we get the original SVORM algorithm by choosing ρ j
i = 0, j = 1, · · · ,k,

i = 1, · · · , l j.

5 Preliminary Numerical Results
Our numerical experiments follow the approach in [16]. In fact, following [15,

11], the ordinal regression problems are obtained from the regression problems in
[15] by discretizing their output values. Due to the time consuming, only 4 regression
problems are selected among the 29 ones in [15]. These 4 problems are the smallest
ones according to the number of the training points.

In order to test our algorithms, the measurement error (3) in the training points
is introduced, where, for simplicity, ρ j

i is assumed to be a constant independent of i
and j. On the other hand, for the test point, there is also a perturbation around the
attribute x j

i generated by x̄ j
i = x j

i +ρ j
i u j

i , where ρ is the same constant with that in the
training point and the noise u j

i is generated randomly from the normal distribution
and scaled on the unit sphere.

The parameters in both Algorithm 1 and Algorithm 2 are chosen by ten-fold
cross validation: in Algorithm 1, for data sets “Diabetes” and “Triazine” C = 1000,
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Table 1: For Algorithm 1, the percentage of tenfold testing error for datasets with
noise.

ρ
Dataset Instances Dimension Model 0.1 0.2 0.3 0.4 0.5

Diabetes 43 2
R-LSVORM 0.4884 0.4651 0.4651 0.4651 0.4651

LSVORM 0.4884 0.4884 0.4884 0.4884 0.4884

Pyrimidines 74 27
R-LSVORM 0.5811 0.5811 0.5811 0.5811 0.5811

LSVORM 0.5946 0.5811 0.6081 0.6351 0.7027

Triazines 186 60
R-LSVORM 0.5215 0.5215 0.5215 0.5215 0.5215

LSVORM 0.5376 0.6183 0.7366 0.6882 0.7258

Wisconsin 194 32
R-LSVORM 0.7320 0.7113 0.6495 0.6804 0.6959

LSVORM 0.7320 0.7165 0.7423 0.7629 0.7216

Table 2: For Algorithm 2, the percentage of tenfold testing error for datasets with
noise.

ρ
Dataset Model 0.1 0.2 0.3 0.4 0.5

Diabetes
R-SVORM 0.4651 0.4651 0.4651 0.4651 0.4651

SVORM 0.5349 0.5349 0.5581 0.4884 0.5116

Pyrimidines
R-SVORM 0.4865 0.5811 0.5811 0.5811 0.5946

SVORM 0.4865 0.5811 0.6351 0.6892 0.6081

Triazines
R-SVORM 0.5215 0.5215 0.5215 0.5215 0.5215

SVORM 0.5323 0.6613 0.7581 0.8280 0.8333

Wisconsin
R-SVORM 0.7216 0.7474 0.7216 0.7216 0.7216

SVORM 0.7990 0.7784 0.7784 0.7784 0.7784

for data sets “ Pyrimidines” C = 10, for data sets “Wisconsin” C = 10000; in Al-
gorithm 2, for four data sets, the penalty parameters are the same C = 1000; the
kernel parameters, for data sets “Diabetes" and “Triazines” σ = 1, for data sets “
Pyrimidines” σ = 4, for data sets “Wisconsin” σ = 0.25. The numerical results for
Algorithm 1 (R-LSVORM) and Algorithm 2(R-SVORM) are given in Table 1 and
Table 2 respectively. What we are concerned here is the percentage of tenfold testing
error, which are shown with different noise level ρ . In addition, for comparison, the
results corresponding to the original LSVORM and SVORM are also listed in these
tables. It can be seen that the performance of our Robust SVORM is better. All of
the results on the percentages of tenfold testing error are comparable to that in [15].
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