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Abstract Distance measure is a key component for fast protein structure comparison. The iden-
tical representation of protein structure combining with different distance measures results in dif-
ferent structure comparison methods. In this paper, we provide and further analyze three structure
comparison methods with contact vector representation based on three different distance measures
respectively, i.e. Euclidean distance, cross entropy and FDOD function, in an empirical manner.
Relying on a public data set, we evaluate the ability for detecting function similarity of the three
methods. The comparison results reveal that two information-based measures outperform the Eu-
clidean distance, in particular the method based on FDOD function is the best in the three distance
measures. We show that the information-based measure can really identify the subtle difference
given abstract representations of protein structures. Moreover, the FDOD for protein comparison is
also superior to cross entropy in terms of mathematical consistency.

Keywords Protein structure comparison; contact vector; euclidean distance; cross entropy; FDOD
function; function prediction.

1 Introduction
Proteins are macromolecules that regulate all biological processes in a living

organism and their structures are generally better conserved than sequences. Thus,
identifying similarity of structures by comparing proteins could yield valuable clues
to their functions, and can be employed for fold family classification, motif finding,
phylogenetic tree reconstruction and even protein docking[1].

So far, a number of automatic protein structure comparison methods have been
proposed [1-17]. Generally, these works can be roughly classified into two categories,
namely, structural alignment methods and alignment-free methods. The traditional
alignment methods mainly focus on finding the optimal rigid-body superposition of
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two structures such that the root mean square deviation (RMSD) between the aligned
atoms is minimized [2]. They all use the element-based representation for a structure,
such as atoms, residues, and secondary structure elements (SSEs), and adopt the
RMSD scoring scheme to measure the similarity [2,5]. Generally, these methods
require intensive computation and are too slow to scan large databases.

In contrast, recently alignment-free methods have been developed by adopt-
ing a different strategy to speed up the computation[2-6,12-17]. They all accord
with such a framework that the relevant features are extracted and represented in
structure descriptions, and the equivalence is obtained by the specific distance mea-
sure [2,4,5,7,12]. In other words, alignment-free methods are mainly composed
of two key components: the abstract representation of protein structure and a dis-
tance measure used to compare different structures’ representations. For example,
in GSM method, a protein structure is represented as a 30 dimensional vector, then
Euclidean distance is used to measure the difference between two 30 dimensional
vectors [14,15]. In contact metric method, a contact vector is used to represent a
protein structure and the difference between two vectors is measured by Euclidean
distance.

Besides the protein structure representation, the choice of distance measures is
also very important for developing a high-accuracy comparison method. It is ob-
vious that the identical representation of protein structure combining with different
distance measures generally results in different structure comparison methods. A dis-
tance measure may be as crucial as the choice of the representation itself. Despite
the important role in structure comparison method, the performance of the distance
measures has not been systematically explored yet, and these measures are currently
used on an ad-hoc basis.

In this paper we provide and further analyze three structure comparison methods
based on distance measures, in order to gain insight or hints on structure comparison
problems. Since protein structure can be abstracted as a vector, frequency distribution
and so on in the existing alignment-free methods, Euclidean distance, cross entropy
and FDOD function are commonly used to evaluate the difference between two vector
representations or frequency distribution representations. Thus we will focus on these
three distance measures to assess their ability in measuring the difference between
two vectors or frequency distributions.

Specifically, a procedure is designed in this paper to compare Euclidean dis-
tance, cross entropy and FDOD function. Firstly, contact vector [17] is applied to
represent protein structure, then it is combined with each of the three distance mea-
sures to form three structure comparison methods. Finally, relying on a public data
set, these three structure comparison methods are compared in terms of the ability
detecting functional similarity.

The remainder is organized as follows. In Section 2, we give the details of
contact vector representation and the three distance measures respectively. Then, in
Section 3 we present functional prediction test on public data sets. The Section 4
discusses the results with several general remarks. Finally, Section 5 shows some
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directions needed to be explored in future.

2 Methods
2.1 Contact vector representation of a protein structure

On the process of protein folding, the amino acids along the polypeptide chain
interact with each other in a cooperative manner to form a stable native structure.
Some residues that are spatially neighboring can contact each other. These contact
patterns can reflect the overall fold topology. The contact vector representation of
protein structures just expresses the contact pattern, where each of its components
records the number of residue-residue contacts as a function of their separation along
the sequence.

In a given protein, every pair of residues with Cα backbone atoms closer than 9
is recorded in a contact matrix. Summing up diagonally all the contacts of the contact
matrix among residues i and j such that i− j = k with k ≥ 2, leads to a histogram
that enumerates all structural contacts among residues that are k positions apart in
the sequence[17]. Typically many contact lengths k are short (k = 2,3,4), and are
consistent with the local secondary structure constraints of helices and turns[17]. But
other contact lengths are longer, almost equal to the length of the chain, and carries
important information of the entire fold[17]. Thus the contact vector representation
of a tertiary structure is (q2,q3, · · ·qT ), where qk is the absolute number of contact
lengths 2 ≤ k ≤ T . The cut-off T is often set to T = 399 which reflects that the two
amino acids seldom interact if they have a gap larger than 399 in sequence position.

2.2 Three distance measures
2.2.1 Euclidean distance

Given two proteins A and B, their structures are represented as

QA = (qA
2 ,q

A
3 , · · ·qA

399)

and
QB = (qB

2 ,q
B
3 , · · ·qB

399)

respectively. Then the difference between them can be measured by Euclidean dis-
tance as:

Ed(QA,QB) =
399

∑
k=2
|qA

k −qB
k | (1)

However, different lengths in protein chains bias (raise) the contact metric dis-
tances of longer chains. It is known that dl(X ,Y ) < c(LX + LY ), where LA and LB

denote A and B’s chain lengths respectively. This can be corrected by normalizing
the contact metric with the factor 1/[c(LX + LY )] to yield the length-corrected con-
tact metric. The length-corrected contact metric can then be written by the simple
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formula[17]:

LCM(QA,QB) = ∑399
k=2 |qA

k −qB
k |

∑399
k=2(qA

k +qB
k )

(2)

2.2.2 Cross Entropy
Cross entropy is a tool based on information theory to measure the discrepancy

between two distributions [18]. It has been successfully applied to phylogenetic tree
reconstruction and so on[19].

Cross entropy is used to compare two distributions, so the contact vector repre-
sentation should be transformed into frequency distribution. Finally, the difference
between A and B can be measured by cross entropy as:
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2.2.3 FDOD Function
Function of Degree of Disagreement (FDOD) is another measure based on in-

formation theory for information discrepancy [20] and it has a close connection with
Shannon entropy. Comparing with cross entropy, it has many good mathemati-
cal characteristics, such as symmetry, boundedness, triangle inequality, and so on.
FDOD has been successfully applied to the study of phylogeny, multiple sequence
alignment, discrimination of homodimeric proteins and protein structure comparison
and so on [21-24].

FDOD function is also a tool to compare two distributions, provided that the
contact vector representation is transformed into frequency distribution. Finally, the
difference between A and B can be measured by FDOD function as:
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3 Experiment design and Results
The characterization of biological function among newly determined protein

structures is a central challenge in structural genomics. One class of computational
solutions to this problem is based on the similarity of protein structure. At present,
rapid detection of similarity in protein function through protein structure compari-
son has become one of the most important applications. To test whether these three
protein comparison methods formulated above can detect functional similarity, as
defined by Gene Ontology(GO), they are compared in large-scale computational ex-
periment.
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3.1 Dataset
To make the comparison objectively, we employ the data set used originally

by contact metric [17]. The data set is composed of 1662 non-redundant protein
structures with < 25% mutual sequence identity from PDBselect25, March 2006,
that also had at least one available GO annotation term recorded (version GOA 28.0).
The 1662 proteins’s GO terms represent 261 molecular functions, 216 biological
processes and 75 cellular components. It is widely accepted that two proteins with
common GO term can be viewed as functionally similar.

3.2 Function predictor
Next we focus on the assessment of the three methods on the ability of function

similarity detection. The Prediction procedure is designed as follows [17]:

Step 1. Computation of discrepancy: Each pair of structures is compared
using the three methods respectively.

Step 2. Ranking: These 1662×1661
2 = 1380291 scores are sorted ascendingly.

Step 3. Performance assessment: We define two criteria to evaluate perfor-
mance: sensitivity and speci f icity. They are defined as

sensitivity(S) =
Nt p(S)

Nt

speci f icity(S) =
Ntn(S)

1380291−Nt
,

where Nt p(S) denotes the number of protein pairs whose discrepancy score is ≤ S
with a common GO term, Nt denotes the number of protein pairs with a common
GO term. Ntn(S) denotes the number of protein pairs whose discrepancy score is > S
without a common GO term.

It is obvious that sensitivity and speci f icity are all functions dependent on S.
Thus, many pairs of sensitivity and speci f icity can be obtained. At present, the
test is limited to specificities of no less than 90%. Finally, the Receiver Operating
Characteristic (ROC) curve that combines sensitivity and speci f icity is applied to
assess the three structure comparison methods in terms of the ability of function
similarity detection. The resulting ROC graphs are shown in Fig 1.

4 Discussion and Conclusion
From Fig.1, we can see that the three methods are all have satisfactory functional

similarity detection ability. These three methods are all based on contact vector rep-
resentation, so their good performance in detecting function similarity demonstrates
that contact vector representation is an outstanding abstraction of protein structure.
It also hints that contact vector may be a intrinsical attribute.
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Figure 1: Gene Ontology standardized ROC curves for 1.38 million pairs of PDB
chains with< 25% sequence identity. The FDOD function based method is most
sensitive among all methods tested.

From Fig.1, we also can see that the method based on FDOD function has the
best performance, while the method based on Euclidean distance has the worst per-
formance. This fact shows that FDOD function is more suited for measuring the dif-
ference between contact vectors than Cross Entropy and Euclidean distance to some
extent. The two information-based measures outperform Euclidean distance, thereby
indicating that they can detect the difference of distribution in a more subtle way.
The improvement FDOD over Cross Entropy reveals that the specific mathematical
properties such as non-negative, symmetric, continuous, identical and recursive con-
ditions lead to a more reasonable measurement on protein similarity. As a conclusion
we can apply the FDOD function to improve contact metric method.

The difference in the performance of function similarity detection also confirms
that the identical representation of protein structure combining with different distance
measures results in different structure comparison methods. In view of the results,
further attention should be paid to the selection of a proper distance measure for
comparing abstract representations of protein structures.

5 Future works
Nowadays, there are many abstract representations for protein structures, which

can be adopted for protein structure comparison by combining with a specific similar-
ity measurement or criterion. In order to evaluate the three distance measures more
objectively and extensively, our future work will focus on applying distance mea-
sures to a variety of representations, and further conducting extensive application
experiments. Besides, Kolmogorov-Smirnov test and contingency table analysis also
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have been applied to measure some representations of protein structure. The evalua-
tion of Euclidean distance, cross entropy, FDOD function, Kolmogorov-Smirnov test
and contingency table analysis in the framework of protein structure comparison is
another future work.
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