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Abstract This paper presents a new evolutionary method, namely, a Two Phase evolutionary algo-
rithm for multiple sequence alignments. This method is composed of different types of evolutionary
algorithms, that is, an evolutionary progressive multiple sequence alignment method (abbreviated
to ET) and Sequence Alignment by Genetic Algorithm (abbreviated to SAGA). The former is em-
ployed to obtain efficiently good quality of multiple alignments and the latter to improve them
much better. The basic idea was obtained from analysis of the characteristics of the two evolution-
ary methods, that is, the ET and SAGA can compensate each other’s weak points. Experimental
evaluation shows that the proposed Two Phase method can generate good quality of multiple align-
ments.

1 Introduction
The multiple alignment of nucleotide or amino acid sequences is an essential

problem since multiple alignments are used to detect homology between new se-
quences and existing sequences [1]. The rate of appearance of new sequence data is
continuously increasing. Therefore, the development of efficient and accurate meth-
ods for multiple alignments is always required. The majority of multiple alignment
algorithms is based on the ’progressive’ approach of Feng and Doolittle [2] or its
variations [3–5].

One major well known problem with the progressive approach is trapping at lo-
cal minimums. This problem is due to the ’greedy’ nature in constructing the guide
tree. There is no guarantee that good quality of solutions will always be found. That
is, any wrong choice made at early stage in the alignment process cannot be corrected
later. The only way to correct this is to use an iterative or stochastic procedure [6-
8]. SAGA (Sequence Alignment by Genetic Algorithm) [9] is one of the stochastic
procedure, which is developed based on GAs [10] and it is capable of finding good
multiple alignment. And it needs high computation time to get good results. We have
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developed another evolutionary approach, called evolutionary tree-base method (ET).
Computer Experiment was performed for some datasets obtained from BALiBASE
(Benchmark Alignment dataBASE) [11] and showed that our ET method was supe-
rior to well-known methods such as SAGA, T-Coffee [12], MUSCLE [13], MAFFT
[14], and ProbCons [15].

The objective of this research is to improve furthermore the accuracy of the
ET method. To achieve this goal, we need to overcome the weak points of the ET
method. That is, in the ET there is no one-one correspondence between the genotype
and phenotype. Therefore, lots of alignments (phenotype) can not be generated from
any chromosome (genotype). The other weak point is its fast convergence at local
minimum solutions.

By overcoming the weak points, in this paper, we propose a Two Phase evolu-
tionary multiple alignment based on the ET and SAGA in which the application of
SAGA as the second phase searching redeems the weak points of the ET method used
in the first phase. Experimental evaluation shows our achievement by comparing with
SAGA, T-Coffee, MUSCLE, MAFFT, ProbCons and the ET.

2 Evolutionary Multiple Alignments
Here we explain two kinds of evolutionary multiple alignment approaches used

in the new method; SAGA (Sequence Alignment by using Genetic Algorithm) and
the ET (Evolutionary Tree-base) method. The former was developed in [9] and it is
the frontier research of evolutionary computation for the multiple alignment prob-
lems. In SAGA, chromosomes represent directly multiple alignments and the ge-
netic operators are performed directly on the alignments. That is, the phenotype and
genotype are the same, the one-one correspondence. Therefore, flexible searching
of alignments is possible since all the alignments can be represented as a chromo-
some, however, it is not so efficient to find good quality solutions. On the other
hand, in the ET, chromosomes correspond to guide trees which are transformed into
multiple alignments by progressive alignment and genetic operators are carried out
on guide trees. That is, there is no one-one correspondence between the phenotype
and genotype. Lots of multiple alignments can not be generated from a chromosome
(guide tree). However, the ET can find very efficiently good quality of alignments
since the searching space is drastically reduced by the guide tree representation of
the genotype.

2.1 Sequence Alignment by using Genetic Algorithm (SAGA)
SAGA, which is developed based on the simple genetic algorithm, is starting

from completely unaligned sequences. In SAGA, the initial population is randomly
generated. In order to generate new population, evaluation, selection and genetic
operators (crossover or a mutation) are used.
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Genetic Operators
Two types of operators are used in SAGA, one is crossover and the other is

mutation. Two types of crossover are also implemented in SAGA: one-point and
uniform crossover.

(i) One point crossover: Figure 1 shows the one point crossover between two
selected parents [9]. In Fig.1, the arrow position on Parent Alignment 1 is randomly
selected, which is cut at that position. The left part of the cut position has four
residues. Parent Alignment 2 is cut such that the left part of the cut position must
have four residues. Before connecting the discarded parts of both parents, the left
and right parts of Parent Alignment 2 are made equal length by inserting null signs.
After that the right part of Parent Alignment 1 and the left part of Parent Alignment
2 are combined to generate Child Alignment 1. Child Alignment 2 is produced by
combining the left part of Parent 1 and the right part of Parent 2. According to the
fitness, only one of the two generated children is selected for the next generation.

Figure 6: One point crossover between two parent alignments [9]
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Figure 1: One point crossover between two parent alignments [9]

(ii) Uniform crossover: Figure 2 shows the uniform crossover process [9]. In
this figure “*” mark indicates the common residues between two selected parents.
Child Alignment from these two parents is generated by swapping blocks between
them where each block is randomly chosen (or selected based on the best score).

Mutation (Gap insert): In this case, one parent is randomly selected. In order to
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generate a child, the sequences of the parent are split into two groups. The sequence
numbers of each group are randomly selected. The length of the gaps and the posi-
tions of each group where gaps will be inserted are randomly selected. In each group
the same length of gaps will be inserted in the same position of all sequences.

The genetic operators of this method are primitive in which the operators can
change small parts of parents and all possible solutions can be probabilistically ob-
tained. Though SAGA is not so efficient to find good quality of solutions but the
one-one correspondence and the primitiveness of the genetic operators are important
characteristic.

2.2 Evolutionary Tree-base Method
The progressive alignment algorithm utilizes the pair-wise alignment algorithm

of Needleman and Wunsch [16] iteratively in order to obtain a multiple sequence
alignment and to construct a guide tree to depict the relationship between sequences.
The major problem of the progressive approach is trapping at local minimums and a
way to overcome this problem is to use iterative procedure with progressive approach.

In order to make the tree-base method as iterative process, GA is introduced to
find good guide trees. For this purpose, guide trees are represented by chromosomes
in the ET method. And then the initial chromosomes from the same sequences are
generated by using Dynamic Programming (DP) with random selection. The random
selection mechanism is used for generating various chromosomes (guide trees). Note
that the DP generates only one guide tree in the conventional tree-base method. That
is, a number of chromosomes can be generated by using the DP with the random
selection. After generating initial chromosomes, evaluations, selection and operators
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(crossover and mutation) are iteratively performed to generate new populations. The
algorithm of this process is shown in Fig. 3.

Generate initial chromosomes
(using DP and random selection)

Using operators, generate new 
chromosomes from selected chromosomes 
and continue until no change occurred.

Selection (Select higher fitness chromosomes)Evaluation (fitness function)

Figure 3: Evolutionary Tree-base algorithm

Generate initial chromosomes
(using DP and random selection)

Using operators, generate new 
chromosomes from selected chromosomes 
and continue until no change occurred.

Selection (Select higher fitness chromosomes)Evaluation (fitness function)

Figure 3: Evolutionary Tree-base algorithm

Fitness Evaluation
In order to evaluate the fitness value of a chromosome, the multiple alignment

is constructed from the chromosome. For example, Figure 4 shows the process of
generating the multiple alignment for the following five sequences. G1 corresponds
to the alignment between Seq 2 and Seq 3, G2 between Seq 1 and Seq 4, and G3
between Seq 5 and the result of G1. Finally the multiple alignment is obtained by
aligning the results of G3 and G2. The order of consecutive pair-wise alignments is
determined by the guide tree shown at the left side of the figure.

Seq 1: NFS; Seq 2: NYLS; Seq 3: NKYLS;
Seq 4: NFLS; Seq 5: NKLS
The fitness of the chromosome is measured by the following SPM (Sum of pair)

method.

Figure 4:  Multiple alignment of guide tree (chromosome)
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Figure 4:  Multiple alignment of guide tree (chromosome)
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Sum of Pair Method (SPM)
By using the SPM the fitness of a chromosome can be determined by using (1),

(2) and (2c).

S =
L

∑
l=1

Sl (1)
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where,

Sl =
N−1

∑
i=1

N

∑
j=i+1

cos t(AiA j) (2)

Here, S is the cost of the multiple alignment. L is the length (columns) of alignment;
Sl is the cost of l-th column of L length. N is the number of sequences, Ai (A j) the
aligned sequence i( j) and cost(Ai,A j) is the alignment score between the two aligned
sequencesAi and A j. When Ai 6= ‘-’ and A j 6=‘-’ then cost(Ai,A j)is calculated from
PAM250[17], mutation probability matrix. The cost function includes the sum of the
substitution costs of the insertion/deletions using a model with affine gap penalties
shown in (2c).

G= g+nx (2c)
Here, G is gap penalty, g is the cost of opening a gap, x is the cost of extending

gaps by one and n is the length of the gap. By this way, the fitness of a chromosome
is calculated. This scoring method is applied on all chromosomes and determines
their scores. All the chromosomes are ranked according to their fitness.

Selection
To select chromosomes for the next generation, the roulette wheel method is

used. The number of occurrences of a chromosome is proportional to its fitness.

Genetic Operators
Crossover: In order to generate new chromosomes by using crossover, two chro-

mosomes are randomly selected. In the evolutionary tree-base method, there are two
ways to do crossover between selected chromosomes.

(i) Subtree selection method: A subtree is randomly selected from one parent
chromosome. The sequences included in the subtree are removed from the other
parent chromosome and a rooted tree is reconstructed by connecting the remaining
parts according to the relation in the original tree. That is, the nearest nodes are
always connected to be a rooted tree. Then the reconstructed tree from the second
parent and the selected subtree from the first parent are connected together to make a
new guide tree. Note that all the sequences should be always in the new guide tree.
This process is shown in Fig. 5. In this figure, (a) and (b) show two selected parents,
(c) shows subtree which is selected from (a) {1 0}, here “1” means the right branch
of (a) and “0” means the left side of the right branch of (a), (d) shows the remaining
tree after the sequences of the subtree are discarded from (b), and (e) shows new
chromosome after adding (c) and (d).

(ii) Tree uniform order method: In this crossover, firstly some sequences are
randomly selected from one parent. The selected sequences are connected according
to the relation in the original tree to construct a rooted tree. The selected sequences
are removed from the other parent and a rooted tree is reconstructed by connecting
the remaining parts according to the relation in the original tree. That is, the nearest
nodes are always connected. Then the reconstructed tree from the second parent and
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Figure 5: Subtree selection method

the selected subtree from the first parent are connected together to make a new guide
tree. Note also that all the sequences should be always in the new guide tree. This
process is shown in Fig. 6. In this figure, (a) and (b) show two selected parents, (c)
shows the new tree which is randomly selected sequences from (a) according to the
randomly selected mask pattern {0 1 1 0 1 1 0 0 }, (d) shows the remaining tree after
the sequences of the subtree are removed from (b), (e) shows a new chromosome
after adding (c) and (d).

Mutation: In the mutation, one parent is randomly selected. Then the two se-
quences of the selected parent are randomly selected and exchange their position,
and then a new chromosome is generated. Figure 7 is an example of the mutation:
(a) shows the selected parent in which P1 and P2 show the randomly selected two
sequences. (b) shows a new chromosome generated by exchanging the positions of
these two sequences.

The steps of the ET method are repeated iteratively, generation after genera-
tion. During these generation cycles, new pieces of alignment appear because of the
operators. The selection makes sure that the good pieces survive and the dynamic
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Figure 7: Mutation
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setting of the operators helps the chromosomes to be improved by creating the chil-
dren it needs. This process will continue until the fitness value of the chromosome
per generation is reached to the saturation. Though the ET method reaches to the
local minimum very quickly, however, the solution at the local minimum is better
than the final solution of other methods. The ET method is capable of finding better
quality solutions within small number of generations than other methods. This is an
important characteristic of the ET method.

3 Two Phase Evolutionary Multiple Alignments
3.1 Reinforcement of Evolutionary Tree-base Method

The authors developed the evolutionary tree-base method. As explained in the
previous section, the ET can efficiently obtain good quality of multiple alignments.
Table 3.1 shows some results of experimental evaluation. We can observe that the ET
can search better quality of multiple alignments comparing with well-known meth-
ods. However, the ET can be easily trapped at local minimums comparing with
SAGA. Figure 8 shows the solution curves of the ET and SAGA. The ET can im-
prove very quickly solutions but has converged at early stage, while SAGA is slow
to improve solutions but the convergence is also slow. From the enlarged view of
Fig. 8, we observed that the ET has converged after 200 generations and SAGA has
converged after 500 generations. The convergent point of the ET is quite earlier than
SAGA. Therefore, the ET and SAGA may compensate for each other’s weak points
if we combine both evolutionary approaches.
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Table 3.1. Summary of  BAliBASE Test results

3.2 Two Phase Approach
In this paper, we propose a Two Phase evolutionary method. The first phase is

to search efficiently and quickly a set of good solutions with the ET and the second
phase with SAGA is to improve the searched solutions. This combination is quite
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Figure 8: The solution curves of the ET and SAGA
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Figure 8: The solution curves of the ET and SAGA

reasonable since the ET is good at searching good quality solutions but its conver-
gence is fast relatively while SAGA is slow to find good solutions but its convergence
is also slow.

Our proposed Two Phase method starts from completely unaligned sequences.
At first a number of guide trees (chromosomes) are generated by the DP and random
selection and the ET starts searching from the initial population and continues un-
til the new generation is failed to update the highest fitness chromosomes for long
time. That is, the ET method is converged at some local minimums. The multiple
alignments found by this convergence should be good quality but we need more ac-
curate solutions. And then the second phase starts from the multiple alignments with
SAGA. The multiple alignments generated in the first phase are transferred into the
initial generation of the second phase. Note that a chromosome in SAGA represents
a multiple alignment itself. The second phase should be stopped when the evolution
in SAGA is saturated.

4 Experimental Evaluation
In order to evaluate our proposed method, we did experiments for input datasets

obtained from two resources; BAliBASE and the NCBI database [18]. For compar-
ison, we employed softwares such as SAGA, T-Coffee, MUSCLE, MAFFT, Prob-
Cons, and the ET. Among these softwares, source programs of only SAGA and the
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ET are available to the authors and the remaining ones are utilized through the online
services [19]. On using the online softwares, we got the final multiple alignment re-
sults corresponding to each input sequence set and the multiple sequence alignment
was evaluated by the same objective function (SPM).

We experimented for five sequence sets from BAliBASE. The results are shown
in Table 4.1. The rows Ref.1, Ref.2, ..., Ref.5 represent the input sequence sets and
the columns correspond to the methods. Therefore, each cell shows the SPM score
of the method specified by the column for the input data of the row. From Table 4.1,
we observed that our proposed Two Phase method obtains better quality of solutions
than the others. Except for the Two Phase method, our ET was superior to the others.
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Table 4.1. Summary of Test results of BAliBASE Datasets

We carried out the experiments for ten sequence sets with different lengths taken
from the NCBI database. The score values of the experiments were also calculated
by the SPM, and are summarized in Table 4.2. From the comparisons of the exper-
imental results, we observed that the Two Phase approach has the best performance
for the accuracy of solutions. Except for the Two Phase method, the ET could obtain
better solutions than any other methods for each experiment.

Computation Time
The computation time of our proposed Two Phase method is quite longer than

the other methods. However, practically we can relax the problem of the computa-
tion time. Figure 9 represents an example of increasing highest fitness value (score)
in searching with the ET. We can see that the final highest fitness could be obtained
much earlier than the time the searching stopped. We can see in Table 4.3 that the
computation time in the case of 2,054 generations was 4,690.05 seconds but the high-
est score was obtained at generation 1,054, which is observed in the enlarged view of
the graph in Fig. 9. In such case, the computation time to reach the highest score was
about 2406.94 seconds. Moreover, such a situation can be seen in the first phase. In
the Two Phase method, the ET method can obtain much earlier the final fitness value
of the first phase. For example, the computation time of the ET method for 1,015
generations was 2004.00 (CPU time) seconds, but the highest score was obtained at
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Table 4.2. Summary of Test results of NCBI Datasets

generation 15. Therefore, the ET needed only 30.06 seconds to reach the final solu-
tions of the first phase. Table 4.3 shows the computation time of SAGA, T-Coffee, the
ET, and the Two Phase method when we execute them for the NCBI dataset shown in
Table 4.3. In the experiment, we used Windows XP environment on Pentium M pro-
cessor with 1.40 GHz. The programs for SAGA, the ET, and the Two Phase method
were developed with C language. The computation time of T-Coffee was provided
from the server. We could not measure the computation time for MUSCLE, MAFFT,
and ProbCons.
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The number of generations required to obtain the highest score value can not be
determined before searching. However, searching programs may judge the situation
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Table 4.3. Summary of Computation Time of Second Group Test Results

of the convergence. For example, we can set the condition of the convergence: the
searching program can judge its convergence if the predetermined number of genera-
tions has passed since the last update of the best fitness. So, if we introduce a proper
predetermined number for judging of the convergence, we can reduce drastically the
computation time of the Two Phase method.

Actually, the main goal of the Two Phase method is to find out a better qual-
ity of multiple alignments, which is verified through the experimental evaluation.
However, the computation time of the Two Phase method is quite longer than others
even though we can reduce drastically the computation time by setting the condi-
tion of the convergence. The time problem may be solved by parallelizing the Two
Phase method though this issue is beyond the scope of this paper. There are lots of
researches on parallel processing of evolutionary computation.

An example of an alignment obtained by proposed Two Phase method is shown
in Fig. 10. This figure shows the multiple alignment for 1aboA_ref2 from BAl-
iBASE, Reference 2. The score of this alignment according to SPM is 10,133.

5 Conclusions
This paper proposed a new evolutionary method, namely, a Two Phase evo-

lutionary algorithm for multiple sequence alignments. This method is composed
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Figure 10: An example of multiple alignment by Two Phase methodFigure 10: An example of multiple alignment by Two Phase method

of different types of evolutionary algorithms: an evolutionary progressive multiple
sequence alignment method (ET) and Sequence Alignment by Genetic Algorithm
(SAGA). The former is employed to obtain efficiently good quality of multiple align-
ments and the latter to improve them much better. Experimental evaluation showed
that the proposed Two Phase method can generate good quality of multiple align-
ments.

As future works, we need to reduce the computation time by tuning genetic
parameters such as population size, crossover rates, and by investigating a proper
condition and its implementation for switching the phases. Moreover, parallel pro-
cessing of the Two Phase method should be also effective.
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