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Abstract A unidimensional nonnegative scaling model is used to construct linkage disequilib-
rium (LD) maps for human genome. The proposed constrained scaling model can be solved effi-
ciently by transforming it to an unconstrained model. A LD map based on Hapmap data of 50000
SNPs is constructed by the proposed method using PC Clusters.
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1 Introduction
Genetic linkage maps have long been invaluable tools for gene localization.

These maps have been useful and successful for positional cloning of many disease
genes. Genetic maps are to provide locations for genetic polymorphisms on the re-
combination and the corresponding map distances reflect recombination intensity.
However, linkage maps have not performed well for the common diseases because
of poor reproducibility and low power (Collins et al., 2004). Many researchers have
studied allelic association or linkage disequilibrium (LD) rather than linkage. Here
we note that linkage disequilibrium is often termed "allelic association." When alle-
les at two distinctive loci occur in gametes more frequently than expected given the
known allele frequencies and recombination fraction between the two loci, the alleles
are said to be in linkage disequilibrium. Evidence for linkage disequilibrium can be
helpful in mapping disease genes since it suggests that the two may be very close to
one another.

Linkage disequilibrium (LD) analysis offers the prospect of fine scale local-
ization of genetic polymorphisms of medical importance, particularly when single
nucleotide polymorphisms (SNPs) are densely typed in a candidate region. The role
of LD is to identify and then narrow a candidate region. Because of the complex ob-
served patterns, the modeling of the relationship between SNP markers and disease
phenotypes is required (Sham, 1998). Maniatis et al. (2002) developed a metric LD
map with additive distances in LD units based on the Malecot model. The application
of LD maps to association mapping and positional cloning was also studied (Maniatis
et al., 2004).
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Consider two diallelic SNPs, where the rarest allele has frequency p, and is
positively associated with an allele at the other SNP, which has frequency q. The
haplotype frequencies of the 2 SNPs can then be represented in a 2-by-2 table as
follows:

Allele B Allele b
Allele A pq+d p(1−q)−d p
Allele a (1− p)q−d (1− p)(1−q)+d 1− p

q 1−q 1

The parameter d is defined as the linkage disequilibrium (LD) between the two
SNPs. Because of the above rare allele assignment for p and q, we have p <= 1/2,
p ≤ q, p ≤ 1−q and d ≥ 0. The scaled measure of linkage disequilibrium between
the two SNPs is given by

d′ =
d

p(1−q)
.

It is obvious that d′ = 1 if d = p(1− q). Since d′ decays by a factor of 1− θ per
generation where θ is the recombination fraction, the function − lnd′2 has the prop-
erty that it is proportional to − ln(1−θ). Note that for small values of θ , − lnd′2 is
approximately proportional to θ , and therefore to genetic map distance measured in
units of Morgan.

The LD distance between the ith SNP and the jth SNP is given by− lnd′2i j . For a
set of n SNPs, their inter-marker LD distances can be represented in an n-by-n matrix
[− lnd′2i j ]i, j=1,2,··· ,n. We require a 1-dimensional representation of the SNPs, preserving
the order of the SNPs on the chromosome, such that the distances between SNPs
along this dimension are close to the distances in the n-by-n LD distance matrix.

The scaled distances is the basis for constructing linkage disequilibrium maps
which illuminate differences and similarities in linkage disequilibrium patterns be-
tween populations and chromosome regions. The role of recombination in defining
linkage disequilibrium patterns and the focus on association mapping prompts the de-
velopment of a genetic map. This genetic map is derived from linkage disequilibrium
data and is analogous to the linkage map but differs substantially by accommodating
recombination events that have accumulated (Jeffreys et al., 2001). Here the scaled
distances in the proposed method are defined a genetic map distance in each SNP in-
tervals in terms of linkage disequilibrium units. For SNPs separated by large scaled
distances there is no useful LD and so these pairs are uninformative. The location
of the recombination intense regions correspond closely to the steeper segments on
the linkage disequilibrium unit map, whereas recombination cool areas are repre-
sented as high fairly flat lands, see the figures in the next subsection. Combining the
characterization of linkage disequilibrium patterns with inferences of recombination
will facilitate the search of signatures of recent selective sweeps across the human
genome, i.e., regions that show more extensive linkage disequilibrium than predicted
by the underlying recombination rate and which exhibit unusually low nucleotide
diversity (Przeworski, 2002).
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The main aim of this paper is to propose and develop a unidimensional nonneg-
ative scaling model to construct linkage disequilibrium (LD) maps. The proposed
constrained scaling model can be efficiently solved by transforming it to an uncon-
strained model. A LD map based on Hapmap data of 50000 SNPs is constructed by
the proposed method using PC Clusters.

The outline of this paper is as follows. In Section 2, we develop the unidimen-
sional nonnegative scaling model. In Section 3, an example is presented. Finally,
some concluding remarks are given in Section 4.

2 The Unidimensional Nonnegative Scaling Model
The classical metric unidimensional scaling problem is to place n objects on the

real line, so that the interpoint distances best approximate the observed dissimilarities
between pairs of objects. Formally, the problem is to minimize the objective function:

F(x1,x2, · · · ,xn) = ∑
i> j

(di j−|xi− x j|)2, (1)

where xi is the coordinate of the ith object and di j is the observed dissimilarity be-
tween the ith object and the jth object. We assume that the dissimilarity matrix (di j)
is symmetric with nonnegative elements for all i 6= j and dii = 0 for i = 1,2, · · · ,n.
We note that if xi > x j (or xi < x j), the error is [di j− (xi− x j)]2 (or [di j− (x j− xi)]2).
Therefore the minimization of F is equivalent to minimizing the sum of the minimum
between [di j − (xi− x j)]2 and [di j − (x j − xi)]2. It can be written as a nonlinear inte-
ger programming model and this problem is equivalent to an NP-hard combinatorial
problem (Lau et al., 1998). Therefore the problem can only be solved for small n, and
various heuristic algorithms have been proposed to solve this combinatorial problem,
see for instance Hubert and Arabie (1986, 1988) and de Leeuw and Heiser (1977 and
1980). Recently, Lau, Leung and Tse (1998) formulated this unidimensional scaling
problem as a nonlinear programming problem and solved it by optimization algo-
rithms. Hubert, Arabie and Meulman (2002) further studied and compared different
optimization algorithms for solving this problem.

In this paper, we consider constrained unidimensional scaling problems. The
problem is to place n objects in a given order on the real line, so that the interpoint
distances best approximate the observed dissimilarities between pairs of objects. In
the literature, researchers have been interested in constrained multidimensional scal-
ing problems. Bentler and Weeks (1978) used least squares scaling with the configu-
ration in a Euclidean space and simply incorporated the required equality constraints
in the least squares loss function. Lee (1984) used least squares scaling to allow not
only for equality constraints but also inequality constraints.

In our unidimensional nonnegative scaling problem, the objects are required to
place in a given order. For simplicity, we assume that the order of the objects is
given as follows: 1st, 2nd, 3rd, · · · , nth. This is the requirement for the objects in
linkage disequilibrium maps. Therefore, the key issue is to determine the nonnegative
interpoint distances among the ordered objects that best approximate the observed
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dissimilarities between pairs of objects. Mathematically, the problem is to minimize
the objective function:

J(z1,z2, · · · ,zn−1) = ∑
i> j

wi j

(
di j−

i−1

∑
k= j

zk

)2

, (2)

subject to
zk ≥ 0, k = 1,2, · · · ,n−1,

where zk is the scaled distance between the kth object and the (k + 1)th object and
wi j is a positive weighting parameter that reflects the accuracy of the dissimilarity di j.
We assume these parameters wi j are fixed and known. In our application to genomics,
these parameters wi j are the inverses of the length of the confidence interval of di j.
When the length is long, the weighting is small and therefore the importance is less.

In the model, we consider ∑ j−1
k=i zk to be the scaled distance between the ith object

and the ( j− 1)th object (i < j); this distance should be close to the dissimilarity
between the ith object and the ( j−1)th object. It is clear that the objective function
value in (2) is equal to zero and z1 = d12,z2 = d23, · · · ,zn−1 = dn−1n iff

di j =
j−1

∑
k=i

dkk+1,

for all i < j. We see that the objects preserve their original positions iff the objective
function value is equal to zero.

The solution of (2) can be formulated as the solution of a least squares problem
with nonnegativity:

min
z≥0

‖WAz−Wd‖2
2, (3)

where

W = diag(w21,w31, · · · ,wn1,w32,w42, · · · ,wnn−1), A =




A1

A2
...

An−1


 ,

Ai is an (n− i)-by-(n− 1) matrix given by [0i|Ti], 0i is an (n− i)-by-(i− 1) zero
matrix, Ti is an (n− i)-by-(n− i) Toeplitz matrix with its first column [1,1, · · · ,1]T

and its first row [1,0, · · · ,0],

z = (z1,z2, · · · ,zn−1)T and d = (d21,d31, · · · ,dn1,d32,d42, · · · ,dnn−1)T .

We consider the parameterization z = ey, i.e., zi = eyi . With this parameterization,
we can transform the constrained minimization problems into unconstrained prob-
lems, which are convex in y. The transformed problems are then minimized by using
efficient optimization techniques. For instance, we note in (3) that the matrix A is
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structured and W is a diagonal matrix. We can use an approximate Hessian and solve
each linear subproblem with a variant of the conjugate gradient methods. In each
iteration we need to evaluate the matrices A and AT , which can be done efficiently,
and hence A need never be formed explicitly.

3 An Example
We have developed a parallel MATLAB program to solve the unconstrained

optimization problem in the last section. The parallel program is run in a PC Clus-
ter located in the High Performance Cluster Computing Centre at Hong Kong Bap-
tist University. The program takes a file of d′ values produced, for example, by
HAPLOVIEW (Barrett et al., 2004). The weighting parameter wi j in (2) or (3) is de-
fined as: wi j = 1/(− lnCIL2

i j + lnCIH2
i j). The variables CILi j and CIHi j are from the

outputs of genetics program HAPLOVIEW, and represent the lower 95% confidence
interval and upper 95% confidence interval of d′i j. We note that if the length is large,
the weighting parameter is small and therefore the importance of such d′ contributes
to the scaled distance is small.

A LD map based on Hapmap data of chromosome 22 is constructed by the
proposed method. There are 54254 SNPs, but some of them are filtered out by
HAPLOVIEW. The number of SNPs for the construction of LD map is 34556. We
know that when a physical distance between two SNPs is larger than 500kb, the cor-
responding LD can be ignored (see Figure 1). Therefore, we apply this strategy to
reduce the computer memory requirement in a PC Cluster for the LD distance ma-
trix. We note that this is the default setting in HAPLOVIEW. We use steepest descent
method to compute the solution of the unconstrained optimization problem for (3).
The results are shown in Figure 2. Figure 2 (right) is the scaled LD map for chromo-
some 22. It takes about 10 hours using 20 CPUs in a PC Cluster in order to obtain
the results.

4 Concluding Remarks
As a summary, we have formulated and studied constrained unidimensional

scaling models, where the objects are required to place in a given order on the real
line. Numerical results are presented to demonstrate the model for the application in
linkage disequilibrium maps. In the future work, we plan to generate a genome-wide
LD map for the whole human genome. It is expected that a more efficient parallel
program should be designed and developed since the number of SNPs to be handled
would be more than a million.
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