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Abstract Missing values often exist in the data of gene expression microarray experiments. A
number of methods such as the Row Average (RA) method, KNNimpute algorithm and SVDimpute
algorithm have been proposed to estimate the missing values. Recently, Kim et al. proposed a
Local Least Squares Imputation (LLSI) method for estimating the missing values. In this paper, we
propose a Weighted Local Least Square Imputation (WLLSI) method for missing values estimation.
WLLSI allows training on the weighting and therefore can take advantage of both the LLSI method
and the RA method. Numerical results on both synthetic data and real microarray data are given to
demonstrate the effectiveness of our proposed method. The imputation methods are then applied to
a breast cancer dataset.
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1 Introduction
Microarray data analysis is a successful method in genomic research. Many

clustering techniques and classification methods for analyzing the microarray data
such as Support Vector Machines (SVMs) [15], Principal Component Analysis (PCA)
[3, 16], Singular Value Decomposition (SVD) [2] require a complete data set. How-
ever, very often gene expression data sets contain missing values, due to various
reasons such as insufficient resolution, image corruption, dust or scratches on the
slides or experimental errors [9]. Therefore the treatment of missing values is an
important step in the preprocessing of the data. It is expensive and also time consum-
ing to repeat the experiment. Therefore a number of imputation methods have been
developed for estimating the missing values. For example, the SVD based method
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(SVDimpute) and the weighted k-Nearest Neighbors Imputation (KNNimpute) have
been introduced by Troyanskaya et al. [14].

The KNN-based method actually chooses genes with expression profiles simi-
lar to the gene having missing value. Suppose that Gene 1 has one missing value in
Experiment 1, this method will find k other genes having no missing values in Ex-
periment 1 and their expressions are most similar (in the sense of Pearson correlation
coefficient) to Gene 1 in the rest of the experiments. Then a weighted average of val-
ues in Experiment 1 from the k selected genes is used as an estimate for the missing
value in Gene 1, see for instance [14]. In the SVDimpute method, SVD is employed
to obtain a set of mutually orthogonal expression patterns that can be linearly com-
bined to approximate the expression of all genes in the data set. These patterns are
referred to as eigengenes [1]. The k most significant eigengenes are then identified
by sorting the eigengenes based on their corresponding singular values. The missing
values can then be obtained by first regressing the corresponding gene against the k
eigengenes and then using the coefficients of the regression to reconstruct the missing
value from a linear combination of the k eigengenes [14]. It is known that KNNim-
pute method gives better results on noisy time series data and SVDimpute method
performs well on time series data with low noise levels. Nevertheless, estimating
unknown values in a given data set has many potential applications in the other fields
such as survey sampling [6].

The remainder of the paper is organized as follows. In Section two, we briefly
describe the Local Least Squares Imputation (LLSI) method proposed by Kim et al.
[4]. In Section three, we present our proposed Weighted Local Least Squares Im-
putation (WLLSI) method. In Section four, numerical results on both synthetic data
and real gene expression microarray data are given to demonstrate the effectiveness
of our proposed method when compared with LLSI method and the RA method. We
then apply the imputation methods to a breast cancer dataset and interesting results
are obtained. Finally, concluding remarks are given in Section five to address further
research issues.

2 Local Least Square Imputation Method
In this section, we briefly describe the LLSI method proposed by Kim et al. [4].

We will use the matrix G∈Rm×n to denote a gene expression data matrix with m genes
and n experiments. Very often, m is much bigger than n, i.e, n << m and we assume
this in our discussion. We adopt the notations in [4]. In the matrix G, a row gi

T ∈R1×n

represents the expressions of the ith gene in the n experiments. For simplicity of
discussion, we assume that there is a missing value in the first experiment of the first
gene, i.e., G(1,1) = g1(1) = α . There are two steps in the LLSI method. The first
step is to choose k genes by the L2-norm or by Pearson correlation coefficients [11].
The second step is to conduct a regression analysis and estimation. To recover a
missing value in the first location g1(1) of g1 in the matrix G ∈ Rm×n, the k-nearest
neighbor gene vectors for g1, gT

si
∈ R1×n, 1≤ i≤ k are found for LLSimpute based

on the L2-norm. Here the first component of each gene is ignored as g1(1) is missing.
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The LLSimpute based on the Pearson correlation coefficient takes the advantage of
the coherent genes. When there is a missing value in the first location of g1, the
Pearson correlation coefficient between two genes (both with first entries removed) is
computed. We remark that the components of g1 corresponding to the missing values
are not considered in computing the coefficients. All Pearson correlation coefficients
between g1 and the other genes are computed. To recover a missing value in the first
location of the gene g1, G(1,1) = g1(1) = α , the k genes gs1 , . . . ,gsk with the largest
Pearson correlation coefficients in magnitude are found.

Now if the missing value is to be estimated by the k similar genes, the matrix A,
and vectors b and w can be constructed as follows:




gT
1

gT
s1
...

gT
sk


 =




α w1 w2 · · · wn−1

b1 A1,1 A1,2 · · · A1,n−1
...

...
...

...
...

bk Ak,1 Ak,2 · · · Ak,n−1




where α is the missing value and gT
s1
, . . . ,gT

sk
are genes similar to gT

1 . We then solve
the following minimization problem:

min
x
||AT x−w||2 (1)

to get x. It is well known that the least squares solution x to Problem (1) is given by
x = (AT)†w where A† is the pseudo-inverse of A. Since we assume that (w1,w2, . . . ,
wn−1) ≈ ∑k

i=1 xi(Ai,1,Ai,2, . . . ,Ai,n−1), then the missing value α can be estimated as
follows: α = ∑k

i=1 xibi = bT x = bT (AT )†w. Finally we remark that the method can
be easily extended to the case of multiple missing values as discussed in [4].

3 Weighted Local Least Squares Imputation
In this section, we present our Weighted Local Least Squares Imputation (WLLSI)

method for missing value estimation. We assume that there are p missing values
a∈ Rp×1 in the first gene of the data. The motivation of our proposed WLLSI method
is the following. We observe that the RA method can be efficient when the gene
expression data follows certain probability distribution, while LLSI method can be
efficient and outperforms the other methods [4] when the rows of the data are strongly
correlated. Thus it is natural to consider a method which can take advantage of the
two methods. Before proposing our method, we first give some assumptions. In the
following, we assume that there are p missing entries in the first p positions of the
gene gT

1 in the matrix G ∈ Rm×n. The k genes most similar to g1 in the sense of Pear-
son correlation coefficient or L2-norm are gT

si
∈ R1×n,1 ≤ i ≤ k. Then we construct

the matrices A and B,and the vectors a and w as follows:



gT
1

gT
s1
...

gT
sk


 =

(
aT wT

B A

)
=




α1 · · · αp w1 · · · wn−p

B1,1 · · · B1,p A1,1 · · · A1,n−p
...

...
...

...
Bk,1 · · · Bk,p Ak,1 · · · Ak,n−p


 .
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Here A is a k× (n− p) matrix, B is a k× p matrix, a is a p×1 column vector and w
is an (n− p)×1 column vector.

To implement our idea above, we combine the RA method and the LLSI method
by the following objective function:

min
y∈R(n−p)×p

{
λ‖yT w− efT w

n− p
‖2

2 +(1−λ )‖Ay−B‖2
2

}
, (2)

where e = (1,1, . . . ,1)T is a p-dimensional column vector and f = (1,1, . . . ,1)T is
the (n− p)-dimensional column vector of all ones. The parameter λ ∈ [0,1] is the
weighting factor which can be obtained by training on the known data. The first term
of the function (2) corresponds to the objective function (to be minimized) of the RA
method and the second term corresponds to the objective function of the LLSI method
(compare (1) and (2)). For simplicity, we define the column vector c = efT w

n−p ∈ Rp×1,
then the problem can be formulated as follows:

min
y

{
λ‖yT w− c‖2

2 +(1−λ )‖Ay−B‖2
2

}
. (3)

To solve the minimization problem (3), we begin with the following proposition.

Proposition 1.
If Ã = λwwT + (1− λ )AT A is positive definite, then the optimal solution y∗ of the
above minimization problem (3) is given by y∗ = Ã†B̃ where A† is the pseudo-inverse
of A and B̃ = λwcT +(1−λ )AT B.

Proof. We note that

f (y) = λ‖yT w− c‖2
2 +(1−λ )‖Ay−B‖2

2
= λ (wT yyT w−2cT yT w+ cT c)+(1−λ )(yT AT Ay−2yT AT B

+BT B).

Then we can easily get

1
2 ∇y f = λ (wwT y−wcT )+(1−λ )(AT Ay−AT B)

= (λwwT +(1−λ )AT A)y− (λwcT +(1−λ )AT B) = Ãy− B̃.

Since Ã is positive definite, the optimal solution of the original problem is given by
y∗ = Ã†B̃.

We remark that if A is a matrix with full column rank, then AT A is positive
definite. The matrix Ã is a rank one perturbation of the positive definite matrix (1−
λ )AT A. We note that for z 6= 0 and λ ∈ [0,1), we have

zT Ãz = λ (zT w)2 +(1−λ )zT AT Az≥ (1−λ )zT AT Az > 0.

Thus Ã is positive definite for λ ∈ [0,1). If we fix the parameter λ , then we can
obtain the optimal solution of the minimization problem. Then the p missing values
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a ∈ Rp×1 in the Gene g1 can be estimated by a = y∗T w. If there are missing values in
other genes, we can estimate them one by one.

Before giving a method for choosing the parameter λ , we first introduce the
Normalized Root Mean Squared Error (NRMSE). NRMSE is used to evaluate the
performance of the estimation methods for missing values, see for instance [10]. The
NRMSE is defined as follows:

NRMSE =

√
mean(aguess−aans)

std(aans)

where aguess and aans are vectors containing the estimated values and the true values
for all missing entries respectively. The mean and the standard deviation are then
calculated over missing entries in the entire matrix. For a given gene expression data
with missing values, the smaller the value of NRMSE, the better the method will be.

The model parameter λ remains to be determined. In our experiments, the fol-
lowing heuristic grid search algorithm is used to obtained the best parameter λ ∗. We
divide the interval [0,1] into N (say N = 100) sub-intervals. Then we get N + 1 val-
ues of λ as follows: λ j = j

N , for j = 0,1, . . . ,N. If there are missing values in
the Gene gi, then we pretend one or two existing values in this gene to be missing.
Then for different λ j, j = 0,1, . . . ,N, we use our WLLSI method to estimate these
pretended missing values, thereby calculate the NRMSEs over the entire matrix. Fi-
nally we choose the optimal λ ∗ corresponding to the smallest NRMSE as the best
weighting for our model. We then use this model to estimate the missing values. In
Proposition 1, we have described our proposed method by formulating the model and
giving a feasible solution to it. In the following section we will give some numerical
experiments to illustrate the effectiveness of our proposed method.

4 Numerical Results
In this section, we compare our proposed WLLSI method with the Row Average

method and LLSI method in both synthetic data and real data. For the synthetic data,
it is generated by combining a matrix with entries following the uniform distribution
U(0,1), and another matrix having strongly linear dependent rows. The real data
set comes from the yeast gene expression data [16]. We then consider a breast can-
cer dataset. Interesting results are obtained in the clustering analysis when different
imputation methods are used in recovering the missing values in the dataset.

For the synthetic data, we generate data in the form of G = (1−w)P+wQ where
w∈ [0,1]. Here P is a 474×15 matrix such that its ith row is given by the (i mod 15)th
row of the matrix M = (I− zzT ) ∈ R15×15 where z = (−1/7,−1/6, . . . ,−1,0,1, . . . ,
1/6,1/7)T and Q is a random matrix whose entries follow the uniform distribution
U(0,1). Here a mod b is the remainder when a is divided by b. We then randomly
pick 0.2% of the entries of G and assume they are missing. Then we apply the Row
Average method, the LLSI method and our WLLSI method to estimate these missing
entries and the results of their NRMSEs are reported in Tables I. We observe that our
WLLSI method is robust and has the best performance in general.
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Table 1: NRMSE when the number of missing values is 132 (0.2%)

w RA Method LLSI Method WLLSI Method λ ∗

1.0 1.01 1.03 1.01 0.98
0.9 0.98 1.03 0.99 0.94
0.8 0.98 1.03 0.98 0.94
0.7 0.98 1.03 0.99 0.92
0.6 0.98 1.02 0.98 0.92
0.5 0.98 1.02 0.99 0.89
0.4 0.98 1.01 0.98 0.90
0.3 0.98 1.00 0.98 0.80
0.2 1.00 0.98 0.98 0.45
0.1 1.05 0.75 0.75 0.00
0.0 1.10 0.00 0.00 0.00

Table 2: NRMSE of different methods

Number of Missing Values 65 (0.1%) 33 (0.05%) 8 (0.02%)
RA Method 0.66 0.38 0.52
LLSI Method 0.47 0.40 0.15
WLLSI Method 0.47 0.33 0.08
optimal λ ∗ 0.00 0.03 0.45

For the real data example, we use a practical data set taken from yeast data set
(Yeung and Ruzzo [16]). The raw matrix is available at http://hkumath.hku.hk/∼wkc/
yeast.xls. The gene expression data is a 384×17 matrix. We randomly pick 0.1%,
0.05%,0.02% of the entries of the matrix and assume that they are missing. We then
use the three different methods to estimate the missing values. Table II reports the
results of NRMSEs, and our WLLSI method is the best.

We then apply the imputation methods to a published breast cancer gene ex-
pression dataset (Sortlie et al., [12]) to recover the missing data. In general, there
are more genes being identified after the missing data analysis. Using the original
data, we have identified 89 differentially expressed genes between normal and breast
cancer sample. With the aid of missing data analysis, 9 additional genes were iden-
tified. Among them, 3 genes (PPAP2N, CD01, CDKN1C) are common among all
missing value estimation methods, whereas LLSI method or WLLSI method and RA
method specifically identify 1 (CCNA2) and 5 (PTPN1, LEPROTL1, CCNF, CCL7
and C21orf45) additional genes, respectively.

We remark that some of the genes that are identified after data preprocessing
by using our imputation methods do have pathological significance. In fact,it is well
known that cell division cycle is tightly controlled by activation and inactivation of
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cyclin-dependent kinases (CDKs), which trigger the transition to subsequent phases
of the cycle. CDKs are small serine/threonine protein kinases that require associ-
ation with a cyclin subunit for their activation. CDK inhibitors (CKIs) can prevent
cell cycle progression by negatively regulating cyclin-CDK complexes ([8] and [13]).
Interestingly, many of the differential expressed genes, such as CCNA2 (cyclin A2),
CCNF (cyclin F), and CDKN1C (p57 Kip2), as well as those from the original data
(CDC2, CDKN2C, p18 CDK4) are known to regulate cell cycle progression, in par-
ticular G1-S and G2-M transitions.

5 Concluding Remarks
In this paper, we proposed the WLLSI method for missing value estimation. The

WLLSI method is a combination of the Row Average method and the LLSI method.
The method allows the model parameter λ to be trained. Numerical results based on
synthetic data and real yeast data show that our method is more effective and robust in
general. We remark that WLLSI can be easily extended to the case when we consider
the combination of “Column Average method” and LLSI method.

We observe that when the number of missing entries in the matrix are relatively
too large (e.g. more than 10%), the information which can be used in the genes with
missing values is very limited, so hence making it difficult to obtain a good model
parameter λ through training. The success of our WLLSI method also relies on the
process of choosing the k most similar genes. Therefore we need a good measurement
to measure the similarity of two genes. We will further develop our method so as to
cope with the above two difficulties.
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