
Solving Large Double Digestion Problems for
DNA Restriction Mapping by Using
Branch-and-Bound Integer Linear

Programming

Zhijun Wu1 Yin Zhang2

1 Department of Mathematics, Iowa State University, Ames, Iowa, U.S.A.
2 Department of Computational and Applied Mathematics, Rice University,
Houston, Texas, U.S.A.

Abstract The double digestion problem for DNA restriction mapping has been proved to be NP-
complete, and is intractable if the numbers of the DNA fragments generated by the two restriction
enzymes are large. Several approaches to the problem have been used, including exhaustive search
and simulated annealing, and have proved to be effective only for small problems, as the problem
size or in other words, the size of the search space for the problem grows as a factorial function
(n!)(m!) of the numbers n and m of the DNA fragments generated by the two restriction enzymes,
respectively. In this paper, we formulate the double digestion problem as a mixed-integer linear
program by following Waterman 1995 in a sightly different form. We show that with this formu-
lation and by using some state-of-the-art integer programming techniques, we can actually solve
double digestion problems for fairly large sizes. In particular, we can solve a set of randomly gen-
erated problems of sizes up to (242!)(250!), which are many magnitude increases from previously
reported (16!)(16!) testing sizes.

1 Introduction
A DNA sequence can be broken down (digested) into a set of small fragments

by using some special proteins called restriction enzymes. The sequences of the
fragments usually become easier to determine and the lengths of the fragments can
also be measured by using, for example, the electrophoretic gel. Once determined,
the fragments can be put back in the original order to obtain the whole sequence.
The latter process is called the DNA restriction mapping and is an important step in
genomic sequencing [14]. A critical part of DNA restriction mapping is to find the
right order of the fragments given only the lengths of the fragments. This problem
is called the digestion problem and in particular, the double digestion problem if two
different restriction enzymes are used in the experiments [17].

Let the two restriction enzymes be denoted by A and B. Let a = {a1,a2, . . . ,an}∈
Zn be the lengths of the fragments obtained after applying enzyme A to a given se-
quence, and b = {b1,b2, . . . ,bm} ∈ Zm the lengths of the fragments obtained after

The First International Symposium on Optimization and Systems Biology (OSB’07)
Beijing, China, August 8–10, 2007
Copyright © 2007 ORSC & APORC§pp. 267–279

applying enzyme B, where the lengths are measured in numbers of DNA base pairs.
Let c = {c1,c2, . . . ,cl} ∈ Zl be the lengths of the fragments obtained after first ap-
plying enzyme A and then enzyme B to the same sequence. The fragments in a, b,
and c are given in arbitrary orders. However, as shown in Figure 1, if we can put
the fragments in a and b in their original orders, we can immediately obtain all the
fragments in c by simply combining all the restriction sites in a and b as if they were
digested by a single enzyme. On the other hand, if we put a and b in other orders,
we will in general obtain a set of fragments different from c. The double digestion
problem is to find the orders for a and b, given c as the result of the sequence being
digested by A and B combined.

1 3 12 3

2 4 6 3 3 1

1 1 2 2 6 3 1 2 1

A

B

C

Figure 1: Double digestion A sequence of 19 base pairs is digested by a restriction
enzyme A at sites 1, 4, 16, and is cut into 4 fragments of lengths 1, 3, 12, 3, and by B
at sites 2, 6, 12, 15, 18, and is cut into 6 fragments of lengths 2, 4, 6, 3, 3, 1. If both
A and B are applied, the sequence will be digested at both A and B sites, and is cut
into 9 fragments of lengths 1, 1, 2, 2, 6, 3, 1, 2, 1 in C.

The double digestion problem is solved routinely in molecular biology labs for
constructing the restriction maps for newly cloned DNA sequences [17]. The solution
of a generalized version of the problem may also be applied to protein determination
in proteomics using mass spectrometry [11]. The problem can be difficult to solve,
however, if the numbers of the generated fragments are large. In general, it is in-
tractable as shown in Goldstein and Waterman 1987 [4]. Several approaches to the
problem have been proposed, such as exhaustive search [12, 15], simulated annealing
[4, 5, 18], and fragment matching [3, 8, 16], but they all have proved to be effective
only for small problems, as the problem size or in other words, the size of the search
space for the problem, grows as a factorial function (|a|!)(|b|!) of |a| and |b|, the
numbers of the fragments in a and b [4].

In this paper, we formulate the double digestion problem as a mixed-integer
linear program by following Waterman 1995 [17] in a sightly different form. We

268 The First International Symposium on Optimization and Systems Biology

show that with this formulation and by using some state-of-the-art integer program-
ming techniques, we can actually solve double digestion problems for fairly large
sizes. In particular, we can solve a set of randomly generated problems of sizes
up to (242!)(250!), which are many magnitude increases from previously reported
(16!)(16!) testing sizes [4].

More specifically, the double digestion problem can be solved in two steps.
First, based only on their lengths, find the fragments in c that can fit in each of
the fragments in a and b (like solving some one-dimensional puzzles). This is called
the fragment matching. Second, based on the obtained matching relationships of
a and b with c, find the orders of the fragments in a and b. The first step is the
computationally most difficult part of the problem, because the second step can be
accomplished easily in order of |a|+ |b| time (Chapter 2 in [17]). We therefore focus
on fragment matching and formulate the problem as a mixed-integer linear program
that minimizes the matching errors in either l1 or l∞ norm. We then use the CPLEX
mixed-integer linear programming software [7] to solve the problem. In this way, we
have been able to solve a set of randomly generated test problems with the numbers
of the generated fragments in a and b ranging from 18 to 242 and 20 to 250, respec-
tively. Since the total number of possible orderings for c is proportional to (|a|!)(|b|!)
[4], assuming most elements in a (and b) are different, the problem sizes or the search
spaces for our test problems are proportional to (18!)(20!) to (242!)(250!).

We describe the mixed-integer linear programming formulation in greater detail
in Section 2 and introduce the CPLEX mixed-integer linear programming software
in Section 3. Computational results are presented and discussed in Section 4. Com-
ments and remarks are given in Section 5.

2 MIP Formulation
Let A and B be two restriction enzymes. Let a = {a1,a2, . . . ,an} ∈ Zn be the

lengths of the fragments obtained after applying enzyme A to a given DNA sequence
and b = {b1,b2, . . . ,bm} ∈ Zm the lengths of the fragments obtained after applying
enzyme B. Let c = {c1,c2, . . . ,cl} ∈ Zl be the lengths of the fragments obtained after
applying enzyme A followed by enzyme B, or in the other way around, applying
enzyme B followed by enzyme A. In order to find correct orders for a and b, we need
to find for every element in c the element in a it comes from, and the same thing in
b. We call this problem the fragment matching problem. It is an important part of
the double digestion problem. Once this problem is solved, a solution to the double
digestion problem can be constructed easily using for example a fragment ordering
algorithm as described in Chapter 2 of Waterman 1995 [17].

Let X be a n× l matrix and xi, j the i, j-element of X , and

xi, j =
{

1, sequence o f c j ⊂ sequence o f ai,
0, otherwise.

Solving Large Double Digestion Problems for DNA Restriction Mapping 269

Let Y be a m× l matrix and yi, j the i, j-element of Y , and

yi, j =
{

1, sequence o f c j ⊂ sequence o f bi,
0, otherwise.

Since the elements c j in c that come from the ith fragment of a add to ai and that
from the ith fragment of b add to bi,

ai =
l

∑
j=1

xi, jc j, i = 1, . . . ,n,

and similarly,

bi =
l

∑
j=1

yi, jc j, i = 1, . . . ,m.

In matrix form the equations are equivalent to

a = Xc, b = Y c.

Note that each element in c may come from only one element in a or b. Therefore,

∑n
i=1 xi, j = 1, j = 1, . . . , l,

∑m
i=1 yi, j = 1, j = 1, . . . , l.

Clearly the fragment matching problem for a triple sets a, b, and c is basically to
find X and Y so that the above equations hold. As stated in Waterman 1995 [17], the
problem can be formulated as a linear integer program,

minα,β ,X ,Y α +β

sub ject to α ≥
l

∑
j=1

xi, jc j−ai ≥−α, i = 1, . . . ,n

β ≥
l

∑
j=1

yi, jc j−bi ≥−β , i = 1, . . . ,m

n

∑
i=1

xi, j = 1, j = 1, . . . , l

m

∑
i=1

yi, j = 1, j = 1, . . . , l

xi, j, yi, j ∈ {0,1}.

Here, we recognize that the program is separable and equivalent to two separate sub-

270 The First International Symposium on Optimization and Systems Biology

programs,

minα,X α

sub ject to α ≥
l

∑
j=1

xi, jc j−ai ≥−α, i = 1, . . . ,n

n

∑
i=1

xi, j = 1, j = 1, . . . , l

xi, j ∈ {0,1}.

and

minβ ,Y β

sub ject to β ≥
l

∑
j=1

yi, jc j−bi ≥−β , i = 1, . . . ,m

m

∑
i=1

yi, j = 1, j = 1, . . . , l

yi, j ∈ {0,1}.

The two sub-programs have the same mathematical structure. It suffices to consider
only one of them. We put it in the following general form,

(P∞) mint,X t

sub ject to t ≥
l

∑
j

xi, jc j−ai ≥−t, i = 1, . . . ,n

n

∑
i

xi, j = 1, j = 1, . . . , l

xi, j ∈ {0,1}.

This program is to find an appropriate assignment matrix X such that the errors for
the equations

ai =
l

∑
j

xi, jc j, i = 1, . . . ,n

are minimized in l∞ norm. We therefore name the problem P∞. Of course, the errors

Solving Large Double Digestion Problems for DNA Restriction Mapping 271

can also be minimized in l1 norm, and the program then becomes

(P1) mint,X

n

∑
i

ti

sub ject to ti ≥
l

∑
j

xi, jc j−ai ≥−ti, i = 1, . . . ,n

n

∑
i

xi, j = 1, j = 1, . . . , l

xi, j ∈ {0,1}.

Here we name the problem P1. Minimizing l1 or l∞ norm may have different effects
on the solution to the problem. If the errors are not equal to zero at the solution,
minimizing l1 norm reduces total errors even if there are a few big errors, while
minimizing l∞ norm keeps the biggest error as small as possible. If an exact solution
is found where the errors are all equal to zero, there are no differences in the solution
qualities with l1 or l∞ norms. However, the solutions may still be different if there are
multiple solutions, and the algorithm may perform quite differently as well. In the
following sections, we show how the problems P1 and P∞ can be solved by using the
CPLEX mixed-integer linear programming software.

3 CPLEX MIP Solver
CPLEX is a widely-used software package for solving integer, linear and quadratic

programming problems. It was originally developed by Bixby [2] and later commer-
cialized.

A linear programming problem usually is referred to as an optimization problem
with a linear objective function and linear constraints. The following is a typical
linear program:

minx1,x2,...,xn c1x1 + c2x2 · · ·+ cnxn

sub ject to a11x1 +a12x2 + · · ·+a1nxn ≥ b1

a21x1 +a22x2 + · · ·+a2nxn ≥ b2

· · ·
am1x1 +am2x2 + · · ·+amnxn ≥ bm

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

. . .

ln ≤ xn ≤ un

where x1,x2, . . . ,xn are continuous variables in general. The problem becomes a
mixed-integer linear program if some variables are required to be integers. CPLEX

272 The First International Symposium on Optimization and Systems Biology

has solvers for linear programs and in particular, a mixed-integer solver for mixed-
integer linear programs (MIP). Linear programming problems with continuous vari-
ables (LP) can be solved in polynomial time, while mixed-integer linear programs
can be hard, including many NP-complete problems. The CPLEX MIP solver is built
upon its LP solvers and uses a branch-and-bound strategy, with the aid of cutting
plane techniques, to find integer solutions. Two types of cuts, based on maximal
cliques and minimal covers, are generated when necessary to cut off non-integral
solutions.

In the branch-and-bound algorithm for solving a MIP problem, a series of LP
sub-problems is solved. A tree of subproblems is generated with each subproblem
being a node of the tree. The root node is the LP relaxation of the original MIP. If
the solution to the relaxation has integer variables taking fractional values, then one
of such variables is chosen for branching, and two new subproblems are generated,
each with more restrictive bounds for the branching variable. For example, for binary
variables, one node will have the variable fixed at zero, and the other at one. The
subproblem can result in an all-integer solution, an infeasible problem, or another
fractional solution. If the solution is fractional, the process is repeated. A node is
“cut off” when the objective function value of the subproblem associated with the
node becomes higher than a known upper bound on the optimal value of the original
MIP. Note that every all-integer solution gives such an upper bound. Also note that
the node is “cut off” because further branching from the node will always generate
subproblems with the same or even higher objective function values, and therefore,
the whole branch can be removed. For more detailed descriptions on the branch-and-
bound algorithm, the readers are referred to [9].

The branch-and-bound algorithm searches for an integer solution for the MIP
problem in the subproblem tree. In the worst case, it may need to examine the entire
tree, which can be computationally prohibitive since there are exponentially many
nodes in the tree with respect to the integer variables. In practice, the performance
of the algorithm depends on specific search strategies such as how to select nodes
for branching, how to obtain tighter bounds, etc. The CPLEX MIP solver provides
several ways for users to choose among best possible search strategies. Readers are
referred to the CPLEX Users’ Manual [7] for more detailed descriptions.

For mixed-integer programming, in addition to branch-and-bound, cutting plane
is another important solution technique. It is often used in combining with branch-
and-bound. A cutting plane, or a cut, is an inequality added to a problem that re-
stricts or cuts off non-integral solutions. Adding cuts usually reduces the number of
branches that are needed to solve a mixed-integer program. The CPLEX MIP solver
generates two types of cuts derived from maximal cliques and minimal covers:

Clique inequalities are generated by looking at the relationships between binary
variables before optimization starts. The relationships are given in the all-binary
inequalities of the original problem. A graph representing the relationships is con-
structed, and maximal cliques are found. At most one variable from each clique can
be positive in a feasible solution. Inequalities that describe these restrictions are gen-

Solving Large Double Digestion Problems for DNA Restriction Mapping 273

erated. If the solution to a subproblem violates one of these clique inequalities, the
inequality is added to the problem.

Cover inequalities are derived by looking at each all-binary inequality with non-
unit coefficients. For a constraint with all-negative coefficients, a minimal cover is
a subset of the variables in the inequality such that if all variables were set to 1, the
inequality would be violated, but if any variable were excluded, the inequality would
be satisfied. If a cover inequality is violated by the solution to the current subproblem,
it is added to the problem. For more detailed descriptions on clique and cover cuts
for linear integer programming, the readers are referred to [6].

4 Computational Results
We used the CPLEX MIP solver (CPLEX 6.5.2) to obtain the solutions for prob-

lems P1 and P∞. The program was run on a multi-processor SGI Origin 2000 com-
puter with sixteen 300MHZ R12000 processors and 10GB main memory. However,
only one processor was used at a time. In order to see how double digestion prob-
lems can be solved by our approach, we generated a set of random test problems by
following a procedure suggested by Goldstein and Waterman in [4]. We assumed
a set of DNA sequences of 100, 200, 300, 400, and 500 units. The unit here may
correspond to one or more than one base pairs. It does not matter what the actual
unit is since the difficulty of the problem is correlated to the numbers and lengths of
the fragments, which is independent of the size of the unit. For each sequence, we
simulate the first enzyme restriction by cutting the sequence at every unit with a prob-
ability p1, and the second enzyme restriction with a probability p2. After combining
the two, we obtain a triple set of fragments a, b, and c. In order to cover certain
amount of possibilities, we generated different sets of problems with p1 = p2 = 0.2,
p1 = p2 = 0.3, p1 = p2 = 0.4, and p1 = p2 = 0.5. Obviously, more fragments are
generated with increasing probabilities p1 and p2, and the difficulties of the problems
may vary. We list the sizes of the fragment sets for all generated problems in Ta-
ble 1. Note that since the orders of the fragments in a and b determine the order of
the fragments in c and there are total (|a|!)(|b|!) possible orderings for a and b, the
problem size, or the search space, for the double digestion problem is proportional
to (|a|!)(|b|!). Since the sizes of the generated fragment sets range from |a|= 18 and
|b|= 20 to |a|= 242 and |b|= 250, the search spaces for the generated problems can
be as large as (242!)(250!), which are many magnitude increases from previously
reported (16!)(16!) testing sizes using simulated annealing [4]. Note also that if the
fragments in c is to be matched to those in a, the corresponding integer program has
n× l binary variables, where n is the number of fragments in a and l the number of
fragments in c. In our test problems, the number of fragments in a or b ranges from
18 to 250, while that in c from 35 to 376. This implies that the corresponding integer
programming problems can have up to 94,000 binary variables. An integer program
with this many binary variables is often considered too large to be solvable even on
powerful computers. However, as we can see in Table 2 to 5, the integer programs
for our test problems have been solved very well by using the CPLEX MIP solver.

274 The First International Symposium on Optimization and Systems Biology

Table 1: Randomly Generated Problems
units p1 = p2 = 0.2 p1 = p2 = 0.3 p1 = p2 = 0.4 p1 = p2 = 0.5

|a|= 18 |a|= 27 |a|= 36 |a|= 48
100: |b|= 22 |b|= 33 |b|= 42 |b|= 55

|c|= 35 |c|= 49 |c|= 62 |c|= 75
|a|= 33 |a|= 45 |a|= 66 |a|= 96

200: |b|= 39 |b|= 59 |b|= 77 |b|= 102
|c|= 61 |c|= 86 |c|= 115 |c|= 146
|a|= 55 |a|= 79 |a|= 109 |a|= 145

300: |b|= 58 |b|= 89 |b|= 114 |b|= 149
|c|= 104 |c|= 148 |c|= 181 |c|= 227
|a|= 71 |a|= 103 |a|= 142 |a|= 192

400: |b|= 84 |b|= 124 |b|= 157 |b|= 197
|c|= 137 |c|= 191 |c|= 241 |c|= 298
|a|= 90 |a|= 135 |a|= 184 |a|= 242

500: |b|= 115 |b|= 165 |b|= 211 |b|= 250
|c|= 189 |c|= 256 |c|= 319 |c|= 376

Tables 2 to 5 contain the results obtained from using the CPLEX MIP solver
on the test problems we have generated in Table 1. Note that for every triple sets
a, b, and c, there are two integer programs to solve, one for matching c to a and
another for c to b. We denote the two programs by c → a and c → b. For each of
these problems, we list in the tables the number of branch-and-bound nodes used in
the CPLEX MIP solver and the time to obtain a solution to the problem. Table 2
contains the results for the problems solved as P1 type programs. Table 3 contains
the results for the problems solved as P∞ type programs. These two sets of results
were obtained with the given fragment sets in the original orders. However, we have
also tested the problems with the given fragment sets sorted in an ascending order.
The results are listed in Tables 4 and 5.

From Tables 2 to 5 we can see that the CPLEX MIP solver solved the problems
very well although many of their corresponding integer programs have large numbers
of integer variables. The problems were solved within reasonable amount of time
except for one that took about 10 hours. Comparing the results for P1 and P∞ types
problems, the timings are comparable. The choice between solving P1 or P∞ should
depend on practical needs. On the other hand, the results for problems with or without
sorting the fragment data seem quite different. Most of the problems were solved
faster when the fragment sets were sorted except for a couple of cases.

In general, the more nodes are there in the branch-and-bound procedure, the
longer time the program will run. However, as we can see in Tables 2 to 5, the
number of branch-and-bound nodes does not always correlate with the running time.
Some problems required fewer nodes but longer time. The reason is that the cost of
solving linear programs corresponding to different nodes can vary greatly.

Solving Large Double Digestion Problems for DNA Restriction Mapping 275

Table 2: Test Results for P1 Type Problems
units program p1 = p2 = 0.2 p1 = p2 = 0.3 p1 = p2 = 0.4 p1 = p2 = 0.5

100 c→ a 45/1s 23/1s 21/2s 21/2s
c→ b 88/1s 33/1s 38/2s 20/3s

200 c→ a 430/8s 206/11s 73/13s 145/28s
c→ b 718/12s 762/27s 191/31s 76/24s

300 c→ a 529/32s 400/1m10s 463/2m5s 193/2m35s
c→ b 4156/2m4s 602/1m56s 2369/7m0s 65/1m9s

400 c→ a 2390/3m13s 1097/6m23s 541/6m49s 160/5m7s
c→ b 2669/3m36s 1228/6m24s 845/9m49s 324/9m19s

500 c→ a 1235/3m33s 7648/46m36s 662/15m47s 144/7m43s
c→ b 6616/17m14s 18862/1h30m42s 14661/1h43m13s 1238/38m5s

Table 3: Test Results for P∞ Type Problems
units program p1 = p2 = 0.2 p1 = p2 = 0.3 p1 = p2 = 0.4 p1 = p2 = 0.5

100 c→ a 11/1s 43/1s 28/2s 21/2s
c→ b 97/2s 50/1s 37/2s 21/3s

200 c→ a 226/4s 225/9s 182/37s 87/35s
c→ b 4070/38s 1086/39s 148/44s 81/33s

300 c→ a 545/25s 177/1m20s 138/1m16s 97/1m50s
c→ b 198/18s 237/2m4s 391/4m17s 78/1m16s

400 c→ a 2293/2m27s 269/2m42s 268/5m1s 280/18m35s
c→ b 3751/4m13s 1727/24m6s 1071/19m36s 324/11m34s

500 c→ a 208/53s 334/10m13s 401/40m31s 144/10m46s
c→ b 2193/12m10s 1520/1h24m42s 414/17m11s 821/2h44m25s

5 Concluding Remarks
In this paper, we have considered a mixed-integer linear programming formu-

lation for the double digestion problem and showed that with this formulation, the
problem can be solved efficiently by using state-of-the-art mixed-integer program-
ming techniques. In particular, we used the CPLEX mixed-integer linear program-
ming software and obtained the exact solutions for a set of randomly-generated test
problems.

We have focused on the problem of matching the double-digested fragments
to the single-digested ones. The problem is formulated as a mixed-integer linear
program minimizing the matching errors in either l1 or l∞ norm. The program is
separated into two sub-programs. We have used the CPLEX MIP solver to solve
both l1 and l∞ types of problems. The test problems were generated randomly to
cover possible sizes of problems, lengths of fragments, and distributions of random
fragments. We have tested problems with hundreds of fragments and hence tens of
thousands of binary variables in the corresponding integer programs. Many of the

276 The First International Symposium on Optimization and Systems Biology

Table 4: Test Results for P1 Type Problems with Sorted Fragments
units program p1 = p2 = 0.2 p1 = p2 = 0.3 p1 = p2 = 0.4 p1 = p2 = 0.5

100 c→ a 232/2s 52/1s 26/2s 33/3s
c→ b 1198/5s 33/1s 41/3s 19/2s

200 c→ a 446/7s 380/15s 196/30s 42/20s
c→ b 198/5s 461/21s 162/25s 21/18s

300 c→ a 668/37s 169/50s 83/58s 57/1m12s
c→ b 1251/1m5s 1115/2m58s 104/1m5s 91/1m40

400 c→ a 1462316/9h59m31s 1345/6m28s 415/5m13s 94/4m14s
c→ b 4000/4m57s 2341/15m48s 437/5m50s 199/7m0s

500 c→ a 1120/4m8s 1694/1m21s 159/5m24s 119/7m19s
c→ b 992/4m10s 846/13m32s 342/10m18s 289/15m9s

Table 5: Test Results for P∞ Type Problems with Sorted Fragments
units program p1 = p2 = 0.2 p1 = p2 = 0.3 p1 = p2 = 0.4 p1 = p2 = 0.5

100 c→ a 25/1s 51/1s 21/2s 21/2s
c→ b 102/1s 77/2s 41/2s 27/3s

200 c→ a 76/2s 191/8s 87/18s 54/19s
c→ b 152/4s 584/29s 52/13s 50/21s

300 c→ a 212/12s 154/33s 83/51s 70/1m14s
c→ b 453/27s 254/1m27s 107/51s 106/1m27s

400 c→ a 308/40s 572/5m15s 193/5m39s 69/4m8s
c→ b 741/1m36s 198/2m47s 175/6m13s 133/6m42s

500 c→ a 222/1m16s 321/11m56s 197/13m33s 124/13m5s
c→ b 1342/6m32s 261/15m42s 182/9m4s 131/17m8s

problems were solved in only a few minutes on a single SGI R12000 processor. In
terms of the sizes or the search spaces of the problems, they range from (18!)(20!) to
(242!)(250!) possible orderings, which are many magnitudes larger than previously
reported (16!)(16!) testing sizes.

The reason for such an advancement in solving an NP-hard problem like the
double digestion problem is not just because of the improvement on the computer
speed over the past ten or twenty years, but is rather because of the development of
many new integer programming techniques such as the cutting plane methods and
the improved linear programming solvers as implemented in modern software like
CPLEX that can exploit the problem structures more effectively. Similar results were
obtained for other types of NP-hard problems as well. For instance, in 1987, Padberg
and Rinaldi solved a traveling salesman problem with 532 American cities [10], while
in 1998, by introducing various integer programming techniques, Applegate et al.
were able to solve a problem of same type with 13509 American cities [1], which
was considered as a major advance in modern computer science other than just a

Solving Large Double Digestion Problems for DNA Restriction Mapping 277

simple celebration on the computer hardware improvement.
Several issues yet to be resolved in future work. One of them is the handling of

the errors in the experimental data. If the measured lengths for the fragments are still
integers, the mixed-integer programs will essentially be at the same level of difficulty
as those we have tested. If the lengths are real numbers, however, the solutions to
the mixed-integer programs may take longer time to find. We plan to conduct more
computational experiments to study this issue.

Another issue is the multiple solutions to the mixed-integer programs and hence
the double digestion problem. As discussed in the literature, this problem cannot be
solved unless additional knowledge of the sequence is given. In any case, the solu-
tions to the two sub-programs for fragment matching show only how the single and
double-digested fragments match but not how they should be ordered. The fragments
need to be examined together and put into sensible orders. Fortunately, this can be
done in an efficient and systematic fashion [17].

When using the CPLEX MIP solver for the test problems, we have so far not
taken advantages that CPLEX provides for improving the performance of the solver,
such as using user-supplied initial solutions, heuristic upper bounds, and better node
selection orders, etc. We have only used default settings for our test. It is highly
probable that by taking these advantages, one should be able to exploit the problem
structure more effectively and achieve even better computational results than what
we have just observed.

References
[1] D. A. Applegate, R. E. Bixby, V. Chvtal, and W. Cook, On the Solution of

Traveling Salesman Problems Documenta Mathematica Journal der Deutschen
Mathematiker-Vereinigung, International Congress of Mathematicians, 1998,
645-656.

[2] R. E. Bixby, Implementing the Simplex Method: The Initial Basis, Technical
Report TR90-32, Department of Computational and Applied Mathematics, Rice
University, Houston, TX, 1990.

[3] W. M. Fitch, T. F. Smith, and W. W. Ralph, Mapping the Order of DNA Restric-
tion Fragments, Gene, 22, 1983, pp. 19-29.

[4] L. Goldstein and M. S. Waterman, Mapping DNA by Stochastic Relaxation,
Adv. Appl. Math., 8, 1987, pp. 194-207.

[5] A. V. Grigorjev and A. A. Mironov, Mapping DNA by Stochastic Relaxation: A
New Approach to Fragment Sizes, Applic. Biosci., , pp. 107-111.

[6] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithm and Combina-
torial Optimization, Springer, 1987.

[7] ILOG Inc., Using the CPLEX Callable Library, ILOG Inc., 1997.

[8] M. Krawczak, Algorithms for the Restriction-Site Mapping of DNA Molecules,
Proc. Natl. Acad. Sci. USA, 85, 1988, pp. 7298-7301.

278 The First International Symposium on Optimization and Systems Biology

[9] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,
John Wiley & Sons, Inc., 1988.

[10] M. Padberg and G Rinaldi, Optimization of a 532-City Symmetric Traveling
Salesman Problem by Branch and Cut, Operations Research Letters, 6, 1987,
1-7.

[11] C. Pandurangan and H. Ramesh, The Restriction Mapping Problem Revisited,
Department of Computer Science, Brown University, Providence, RI, 2002.

[12] W. R. Pearson, Automatic Construction of Restriction Site Maps, Nucleic Acids
Res., 10, 1984, 217-227.

[13] W. Schmitt and M. S. Waterman, Multiple Solutions of DNA Restriction Map-
ping Problems, Adv. Appl. Math., 12, 1991, pp. 412-427.

[14] D. P. Snustad and M. J. Simmons, Principles of Genetics, John Willey & Sons,
Inc., 2003.

[15] M. Stefik, Inferring DNA Structures from Segmentation Data, Artif. Intell., 11,
1978, pp. 85-114.

[16] P. Tuffery, P. Dessen, C. Mugnier, and S. Hazout, Restriction Map Construction
Using Complete Sentences Compatibility Algorithm, Comput. Applic. Biosci.,
4, pp. 103-110.

[17] M. S. Waterman, Introduction to Computational Biology: Sequences, Maps,
and Genomes, Chapman Hall, 1995.

[18] L. W. Wright, J. B. Lichter, J. Reinitz, M. A. Shifman, K. K. Kidd, and P.
L. Miller, Computer-Assisted Restriction Mapping: An Integrated Approach to
Handling Experimental Uncertainty, CABIOS, Vol. 10, No. 4, 1994, pp. 443-
450.

Solving Large Double Digestion Problems for DNA Restriction Mapping 279

