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1 Introduction
In molecular systems biology study, the dynamical properties of metabolic and

signal transduction pathways are usually modelled by a set of nonlinear ordinary
differential equations (ODEs) following mass balance principles and under the “well
stirred” assumption [1]. During the modelling process, both the model structure and
the parameters must be determined and even though the structure of some pathways
are reliably established; parameter estimation still remains the limiting step due to a
lack of quantitative measurement data sets covering all state variables involved. As
performing time-series experiments to obtain rich data is usually expensive and time-
consuming, how to select a subset of overall possible measurement data in order to
estimate unknown parameters with the best statistical quality is particular important.
For this purpose, experimental design [2] techniques should be incorporated with the
parameter estimation procedure.

Experimental design is the process of designing experimental procedure in order
to maximise the information gathered about the quantity under investigation. There
are many aspects can be considered for biochemical pathway experimental design,
such as initial molecular concentrations, external cellular signals, sampling time,
measurement set, etc. In this paper we primarily concerned with the problem of
selecting the most informative set of states to measure. As for many systems biology
pathway problems, only a small subset of all states can be measured. Experimen-
tal design is typically represented as an optimization problem [3], relative to the
model hypothesis space. In literature traditional optimal design criterion is generally
a function of the model’s Jacobian/sensitivity derivative which in turn depends on the
estimated parameter values for non-linear models. However, in practice as these are
only approximately known information about model parameter priori, some form of
sequential or robust [4] process must be used.
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Sequential experimental design involves iterating between the experiment de-
sign and parameter identification processes. Whereas this iterates usually towards a
locally optimal solution, and costs associated with actually performing the experi-
ments often limit the number of iterations. Robust experimental design is concerned
with producing a design that is optimal for all parameters within a specified range
around the nominal value. The region of uncertainty is hypothesized to contain the
optimal values, so the calculated design will be sufficiently identifiable for the true,
unknown parameter values. Min/max approaches have mainly been used where the
aim is to calculate a design which bounds the least identifiable parameters within the
specified uncertainty region.

Aiming at the problem of output measurement selection, this paper mainly in-
vestigates and compares two robust experimental design methods. One is regulariza-
tion based design approach, which incorporates additive uncertainty with paramet-
ric sensitivity matrix, and transfers the uncertainty based design into a robust semi-
definite programming problem with the uncertainty bound as a regularization param-
eter. Another proposed robust design strategy is the Taguchi robust design method,
in this approach uncertainties are directly considered subject to model parameters to
form a two or three-level design, incorporating with Taguchi’s design technique, an
orthogonal factorial type design strategy is formed. Finally, these two robust design
approaches are comparatively studied based on a simplified IκBα−NF−κB signal
transduction pathway model.

2 Biochemical Pathway Modelling
In this section, dynamic pathway modelling, parameter estimation and paramet-

ric sensitivity analysis are discussed. The local sensitivity derivatives produce a lower
bound for the parametric uncertainty matrix, which is also the centre information ma-
trix to be minimized in experimental design schemes.

2.1 Model Representation
In this paper, pathway dynamics can be modelled by the following ODEs:

ẋ(t) = f (x(t),u(t),θ), x(t0) = x0

y(t) = g(x(t))+w(t) (1)

where x ∈ Rm, u ∈ Rp, and θ ∈ Rn are the state, input and parameter column vectors,
andx0 is the initial states vector. From biochemical modeling viewpoint, x, u, and θ
represent molecular concentrations, external cellular signals and reaction rates. f (·)
is a set of nonlinear transition functions describing pathway dynamics. g(·) here is
the measurement function which determines which states can be measured and w(t)
is a zero mean, Gaussian measurement noise term. This generalised representation
includes many of the biochemical pathway models that have been developed in the
literature. For instance, the Michaelis-Menten enzyme kinetics, JAK-STAT, RKIP-
ERK, T NFα −NF − κB and IκB−NF − κB pathway, etc, and most of them are
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bilinear or nonlinear in the states. It should be noted that using ODEs to model bio-
chemical reactions assumes that the system is well-stirred in a homogeneous medium,
spatial effects are irrelevant [1].

2.2 Parameter Estimation and Local Sensitivity Analysis
To estimate the parameters of the state space model (1) requires performing

experiments where the discrete time exemplar data, {u(tk),y(tk)}, is collected. Then
parameter estimation is achieved by minimizing the sum of residual square between
measurement data and model outputŷi:

θ̂ = argmin
θ

m

∑
i=1

l

∑
k=1

(yi(tk)− ŷi(tk,θ))2 (2)

This is, in general, a non-quadratic function of the parameters θ so iterative schemes
must be used to estimate the optimal parameter values, θ̂ . The summation operator
is being performed over both the l discrete time and m measurable states. As the
cost function (2) is not quadratic, optimization of parameters is actually a nonlinear
programming (NLP) problem. In the literature, parameter estimation of pathway
ODEs is usually reduced into solving nonlinear boundary value problem by using
multiple shooting method.

Dynamic sensitivity analysis plays an important role in parameter estimation,
selection and uncertainty analysis for system identification procedure [1]. The first-
order local sensitivity coefficient Si, j is defined as the partial derivative of ith state to
jth parameter: Si, j(t) = ∂xi(t)

/
∂θ j. On the other hand, the Fisher Information Matrix

(FIM) is a key measure of the estimated parameters’ quality and is given by:

F = ∑i

(
dŷi

dθ

)T (
dŷi

dθ

)
= ∑i

ST
i Si = ST S (3)

where S = dy/dθ is the m×n× l local sensitivity matrix. The inverse FIM is a lower
bound on the parameter covariance matrix. This is a key measure of parametric iden-
tifiability which determines how easily the parameter values can be reliably estimated
from the data, or alternatively, how many experiments would need to be performed
in order to estimate the parameters to a pre-defined level of confidence. The model
local sensitivity derivative can be directly computed by differentiating model ODEs
(1) together with parameter sensitivity equations:

Ṡ = JS +P (4)

where J = d f /dx and P = d f /dθ are the Jacobian and parameter Jacobian matrix.

3 Pathway Experimental Design
The aim of the experimental design process is to select a subset of the m states

which are the most informative for system identification process. Parametric covari-
ance matrix is used as the measure of identifiability and the design aim is therefore
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to minimize this matrix, then state selection process can be represented as:

min∑ = σ 2(∑m
i=0 λiST

i Si)−1

s.t. λi ∈ {0,1}; 1T λ = m (5)

where 1 is a column vector of ones. As each state is related to one weighting termλi,
the state measurement selection problem is then to select λi that with the value of 1.
This discrete programming problem is generally transformed into a continuous form:

min (∑m
i=0 λiST

i Si)−1

s.t. λiÂ0, ∀i; 1T λ = 1 (6)

Treating λ as a continuous variable means that the optimal solution will be a lower
bound for the original discrete problem. In this paper, the aim is to produce a single,
robust design, hence the weighting parameters with the largest values are selected as
being the most identifiable sub-set of states to measure.

3.1 Optimal Experimental Design
The vector optimization problem described in (6) does not provide a total or-

dering of the solutions, since it is not always possible to compare two experimental
designs by stating that ∑1−∑2 < 0. Therefore, most experimental design procedures
consider a scalarized criterion such as: A-optimal design (min Tr(∑) = E(‖e‖2

2)),
D-optimal design (min logdet(∑)), E-optimal design (min λmax(∑)), and modified
E-optimal design (min λmax(∑)/λmin(∑)). The relationship between these various
criteria has been well studied [2]. As noted in [3], all four scalarization criteria result
in convex optimization problems when the FIM is an appropriate function of the ex-
perimental design parameters. For instance, the A-optimal design, which minimizes
the trace of ∑ which in turn minimizes the expected parametric uncertainty, can be
cast as a semi-definite programme (SDP):

min 1T t

s.t.
[

∑m
i=1 λiST

i Si ek

eT
k tk

]
Â0, k = 1, . . . ,n

λiÂ0, ∀i; 1T λ = 1

(7)

where t ∈ Rn,λ ∈ Rm, ek denotes the kth column of identity matrix In. A-optimal
design minimizes the overall dimensions of joint parametric confidence region. Sim-
ilarly, E-optimal design, can also be cast as a SDP:

min −t
s.t ∑m

i=1 λiST
i SiÂtI

λiÂ0, ∀i; 1T λ = 1
(8)

As minimises the largest eigenvalue of covariance matrix, it thus minimises the size
of the major axis of the joint parametric confidence region.
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3.2 Robust Experimental Design
Optimal experimental design criteria in Sec 3.1 make the explicit assumption

that both model structure and parameters are known. However, in practice model pa-
rameters can only be known to some extent or subject to external perturbations. Thus,
a key part of robust experimental design is to generate a design which is appropriate
for a range of models by taking account of uncertainty in parameters.

3.2.1 Regularization Based Robust Experimental Design
As sensitivity coefficients is a function of model parameters, taking account of

model uncertainty in parameters is equivalent to consider uncertainty with respect
to sensitivity coefficients. When each of the sensitivity matrices Si is subject to a
random, additive uncertainty ui, the parameter covariance matrix is given by:

∑ ∝
(
∑m

i=1
λi(ST

i Si +uT
i ui)

)−1
(9)

subject to the simplex constraints on λ . It will be assumed that the additive uncer-
tainty is common so that uT

i ui = mu = Ui, where Ui is a n×n matrix for i = 1, . . . ,m.
The magnitude of uncertainty is bounded by: ‖blkdiag(U1, . . . ,Um)‖ ≤ ρ . This un-
certainty representation can be combined with optimal design criteria (7)-(8) and
recaset as the SDPs. For E-optimal design, when considering uncertainty the optimal
design problem can be transferred into a minimax problem:

min max ‖U‖ ≤ ρ−t

s.t ∑m
i=1 λi(ST

i Si +Ui)ÂtI
U = blkdiag(U1, . . . ,Um)
λiÂ0, ∀i; 1T λ = 1

(10)

Then by employing linear fractional representation and assuming U1 = · · ·= Um. We
can transfer the minimax SDP (10) into a regularized optimization problem [4]:

min −t
s.t. ∑m

i=1 λiST
i Si−ρ

√
m‖λ‖2ÂtIn

λÂ0; 1T λ = 1
(11)

Similarly, a robust A-optimal design SDP can be developed based on criteria (7),

min 1T t
s.t. ∑m

i=1 λiST
i Si−ρ

√
m‖λ‖2Â 1

tk
ekeT

k , k = 1, . . . ,n
λÂ0; 1T λ = 1

(12)

Thus, design of experiments with uncertainty can be deduced into the regularized
optimization problem, with uncertainty bound ρ as regularization parameter.

3.2.2 Taguchi Robust Experimental Design
Instead of considering the additive uncertainty with respect to sensitivity matrix,

an alternative way for robust experimental design can be based on directly consider-
ing uncertainty to parameters. For each parameter, the additive /multiplicative uncer-
tainties can be regarded as two (+/-) or three-level (+, 0, -) design. Thus a factorial
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type design can be considered. For each combination of parameter to their levels, it
can be regarded as one design model. Then the aim of robust experimental design is
to select most informative measurement set which is appropriate for all these models.
However, a full factorial type design would be computational costly if a large num-
ber of parameters involved. In order to reduce the number of factorial design test,
Taguchi design strategy [6] should be considered which employs orthogonal arrays
to select a subset of full factorial design. Thus the number of design experiments
can be largely reduced, while the key experimental information can still be kept. The
proposed Taguchi robust measurement selection algorithm can be implemented as
follows:

1. Define parameter uncertainty. In a factorial design frame, uncertainties can
be added (subtracted) or multiplied to the nominal parameter values to form a
two-level or three-level design. Taking additive three-level design for instance,
for the jth parameter θ j, Level 1 is θ j−∆ j, Level 2 is θ j, and Level 3 is θ j +∆ j.
Here, ∆ jdenotes the uncertainty with respect to the jth parameter.

2. According the number of parameters, construct the corresponding two or three-
level orthogonal array table. The orthogonal array tables can be constructed or
found in literature [6]. Considering a simple case with three parameters and
three-level design, the orthogonal array can be build up as in Table I. If using
full factorial design, there would be 3×3×3 = 27 combinations of parameters
to their levels to be tested; here orthogonal design only requires 9 trials.

Table 1: Orthogonal array, L9
Trial 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

P1 Level 1 Level 1 Level 1 Level 2 Level 2 Level 2 Level 3 Level 3 Level 3
P2 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3
P3 Level 1 Level 2 Level 3 Level 2 Level 3 Level 1 Level 3 Level 1 Level 2
Result S1 S2 S3 S4 S5 S6 S7 S8 S9

3. Calculate the result which is the sensitivity matrix for each trial/model. Each
combination of parameters is one design model.

4. Construct the total sensitivity matrix with uncertainty information. After all
the sensitivity matrices with respect to all the combination of parameters are
calculated in Step 3, a compromised overall sensitivity matrix can be deduced.
An easy way can be the mean or sum of all the sensitivity matrices calculated.

5. Based on the overall sensitivity matrix developed in Step 4, optimal design
criteria (7)-(8) can be implemented to realize measurement selection.

Compared with regularization based robust design, instead of transforming para-
metric uncertainty into a single regularized parameter in optimization process, pro-
posed Taguchi design method incorporates uncertainty into a series of orthogonal
factorial design and further into a summarized sensitivity matrix.
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4 Simulation Results
In this section, we demonstrate two robust experimental design strategies dis-

cussed in Sec 3.2 based on a simplified IκBα activated NF−κB signal transduction
pathway model. This reduced model contains 10 reaction species which participate
24 reactions. The model reaction mechanisms, model ODEs, parameter values and
other model information is discussed in [5] in detail. The objective of experimental
design is then selecting the best N state variables from the 10 state candidates for
time-series measurement. For demonstration, we firstly only investigate E-optimal
design. By solving the SDP (8) using SeDuMi 1.1, the E-optimal state measurement
selection result can be get:

Table 2: E-optimal Measurement Set Selection
weight λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
value 0.1027 0.1364 0.0577 0.1477 0.1104 0.1492 0.0069 0.0052 0.1086 0.1752

The values of weighing terms show that x10,x6,x4,x2 are the top four state mea-
surement sets should be selected according to E-optimal criteria.

For the regularization based robust design process, when considering magnitude
change of perturbations, it is equivalent to change regularization parameter ρ , Here,
E-robust design criteria (11) is applied for the state measurement selection.

(a) (b)

Figure 1: (a) Regularization based E-robust design, (b) Taguchi E-Robust design

Figure 1a shows that when ρ is small, experimental weights are close to the
E-optimal design result in Table II. As ρ increase, the design weights converge to a
uniform value 0.1. This indicates as parametric uncertainties increase, the contribu-
tion of different state measurements to modelling design tends to be the same and
experimental design is most robust to parameter uncertainty.

For Taguchi based robust design, we firstly define parametric uncertainty is mul-
tiplicative to parameters with 2 levels. For simplicity, we take ∆1 = · · · = ∆24 = ∆.
According to Taguchi’s book [6], a P24,L28 2-Level orthogonal array can then be con-
structed for our case. By implementing Taguchi design algorithm discussed in Sec
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3.2.2, and employing E-optimal criteria, we can get the robust design results shown
in Fig. 1b. As uncertainty increase, design weighting term λ tend to converge to
an average value 0.1 although not as equally distributed as shown in Fig. 1a. This
result clear indicates that when parametric uncertainty increase to a comparatively
large scale, for both Taguchi and regularization based robust design, all the state
measurement set are inclined to be equally selected.

5 Conclusion
In this work, we study the time-series experimental design problem of biochem-

ical pathway modelling, and especially focus on robust state measurement set selec-
tion when parametric uncertainty is considered. Based on the extension of traditional
optimal experimental design criteria, two robust experimental design methods are de-
veloped and comparatively studied. The regularization based robust design approach
is more computational efficient, however, it needs to assume additive uncertainties
with respect to all the parameters are identical. The Taguchi based design strategy
is more flexible and practice tractable. Whereas, it would be computational costly,
as corresponding parametric orthogonal array would be large in scale and difficult to
construct for a complex biochemical pathway system. By implementing these two
design approaches to a simplified IκBα−NF−κB signalling pathway system, their
design advantages and drawbacks are clearly specified. When large parametric un-
certainty presents, two robust design methods all tend to provide a similar uniform
design result.
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