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Abstract In this paper, we develop a new feature extraction method, called discriminate multidi-
mensional mapping (DMM), which is especially effective for small sample database. The algorithm
takes advantages of MDS and LDA, meanwhile avoids their disadvantages. We give theoretical
analysis of this algorithm, and demonstrate with examples that DMM is effective in practical use.

1 Introduction
In many classification problems, such as face recognition and gene expression

analysis, the data set is small but the dimension of sample is high, so feature ex-
traction is essential before classification. There are a number of known dimension-
ality reduction techniques: principal component analysis (PCA) and multidimen-
sional scaling (MDS)[1] are linear methods; the examples of nonlinear method are
Locally linear embedding (LLE)[2], isometric feature mapping (Isomap)[3], Lapla-
cian eigenmap[4], self-organizing mapping (SOM)[5] and kernel principal compo-
nent analysis (KPCA)[6].

The above are all unsupervised methods, which are effective in finding compact
representations and useful for data interpolation and visualization. But they are sub-
optimal from classification viewpoint because the information carried by class labels
is lost. On the other hand, supervised methods such as linear discriminant analysis
(LDA)[7] have shown their successes in pattern classification.

But compared with unsupervised methods MDS, LDA is prone to overfitting
when the training data set is small and the dimension is large, which is often the case
in face recognition and gene expression analysis.

To take advantages of MDS and LDA, meanwhile to avoid their disadvantages,
we develop a new method called discriminant multidimensional mapping(DMM).
The rest of this paper is organized as follows. In section 2, classical MDS and
LDA are introduced. Discriminant multidimensional mapping(DMM) is discussed
in detail in section 3. Experimental results are presented in section 4, followed by
conclusions in section 5.
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2 Introduction of classical MDS and LDA
2.1 Classical MDS [8][9]

Given suitable information (such as similarity or dissimilarity measure) about
a collection of N objects, the task of MDS is to embed the objects as points in a
low-dimensional Euclidean space , while preserving the geometry as faithfully as
possible. If the dissimilarity measure is Euclidean distance, it is classical MDS.

Consider a set of N points {xi}N
i=1，xi ∈ Rm. We can proceed as follows: without

loss of generality, assume that the points are centered, i.e. X =
N
∑
i=1

xi = 0. The squared

pairwise Euclidean distance

d2(xi,x j) =‖ xi− x j ‖2
2= xT

i xi−2xT
i x j + xT

j x j (1)

Let the N-dimensional vector ψ = [xT
1 x1, · · · ,xT

NxN ]T . Then the squared-distance ma-
trix 4= [d2(xi,x j)]Ni, j=1can be written as

4= ψeT −2XT X + eψT (2)

where X = [x1, · · · ,xN ]m×N , and J = I− eeT /N, e = [1, · · · ,1]2. Then it follows that

H ≡−J4J/2 = XT X (3)

Compute the eigenvalues of H together with an orthonormal set of eigenvectors.
Write λi for the i-th largest positive eigenvalue and vi for the corresponding eigen-
vector (written as a column vector).

H = Udiag(λ1, · · · ,λN)UT λ1 ≥ ·· · ≥ λN (4)

Then the required p-dimensional embedding vectors {yi}N
i=1，yi ∈ Rp are given by the

columns of the following matrix:

Y = [y1, · · · ,yN ] = diag(λ 1/2
1 , · · · ,λ 1/2

p )U∗T
U∗ = [v1,v2, · · · ,vp] (5)

Classical MDS has many appealing features. When the given metric on the
input data points truly has a low-dimensional Euclidean structure, classical MDS
is guaranteed to find a Euclidean embedding which exactly preserves metric. The
required storing space is O(N2) and the computational complexity is O(N3 + pN2).

2.2 Linear Discriminant analysis (LDA)
LDA is a well-known supervised technique for dealing classification problems.

It is a derivative of Fisher’s Linear Discriminant (FLD) which maximizes the ratio of
between-class scatter to that of within-class scatter.

Given a set of N points {xi}N
i=1，xi ∈ Rm and each point belongs to one of the c

class {zi}c
i=1. The between-class and within-class scatter matrixes are defined as

SB =
c

∑
i=1

Ni

N

c

∑
j=1

(µi−µ j)(µi−µ j)T (6)
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SW =
1
N

c

∑
i=1

Ni

∑
j=1

(xi
j−µi)(xi

j−µi)T (7)

where µ is the mean of all points, µi is the mean of class zi, xi
j denote the j-th sample

in the i-th class.
Let us consider a linear transformation mapping the original m-dimensional

space into a p-dimensional feature space, where p < m. The new feature vector
yk ∈ Rp is defined by the following linear transformation:

yk = W T xk k = 1,2, · · · ,N (8)

where W ∈ Rm×p is a matrix with orthonormal columns. Then after applying the
linear transformation W , the scatter of the {yi}N

i=1 is W T SBW and W T SWW . The
optimal projection W ∗ is chosen as:

J(W ∗) = argm
W

ax
|W T SBW |
|W T SWW | = [w∗

1,w
∗
2, · · · ,w∗

p] (9)

where {w∗
i }p

i=1 is the set of generalized eigenvectors of S−1
W SB, corresponding to the

p largest generalized eigenvalues {λi}p
i=1. The rank of SB is c− 1 or less because it

is the sum of c matrixes of rank one or less. Thus, there are at most c− 1 nonzero
eigenvectors [10].

The computational complexity and memory requirement of LDA are dominated
by the calculation of S−1

W SB, so LDA requires O(m2) space and O(Nm2 +m3) opera-
tions.

3 Discriminant Multidimensional Mapping (DMM)
LDA is developed based on classification principle, but is too expensive in prac-

tice for high-dimensional database as it’s computation is determined by the number
of dimension. Classical MDS’ computation is determined by the number of samples,
but it’s object is to preserve the distances of the embedded points as faithfully as
possible which is less appropriate for classification. The advantages and disadvan-
tages of both lead us to think: we can first run classical MDS to embed the original
points in a low-dimensional Euclidean space RN , then map the points in RN to a less-
dimensional space by LDA.

Inspired by the opinion, we develop a new method called discriminant multidi-
mensional mapping (DMM). Before introducing DMM, we first give two theorems.
Theorem 1: Given a set of N points which we wish to embed in the Euclidean space
Rk. δ j denotes the vector of squared distances from the point x j to xi, i = 1, · · · ,N，and
δµ = (δ1 +δ2 + · · ·+δN)/N. L = [vT

1 /
√

λ1 vT
2 /
√

λ2 · · · vT
m/
√

λm]T , where vi,λi

are defined as (4). Then the embedding vector y j(5) get by classical MDS can also
be given by the formula:

y j =−1
2

L(δ j−δµ) (10)
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Proof. Let 4= (δ1, · · · ,δN),J = I− eeT /N. Note that δ j−δµ is the j-th column of
4J, thus what we have to prove is − 1

2 L4J = Y .
Because J2 = J, Hvi = λivi and H ≡−J4J/2, HJvi = λivi. So we get Jvi = vi,

this is LJ = J. Now we have to prove is − 1
2 LJ4J = Y , this is LH = Y . For each

eigenvector vT
i of H we have

vT
i H√
λi

=
λivT

i√
λi

=
√

λivT
i (11)

so the i-th row of LH equals the i-th Y . This completes the proof.

Theorem 2: Let X = [x1, · · · ,xN ], Y = [y1, · · · ,yN ], and they have the relation Y =
W T

1 X . applying LDA to X and Y respectively, get optimal projections W2 and W3.
Then

W2 = W1W3 (12)

Proof. The between-class and within-class scatter matrixes of X are S1
B and S1

W . S2
B

and S2
W are those of Y . Using (6) and (7), it is easy to know:

S2
B = W T

1 S1
BW1 S2

B = W T
1 S1

WW1 (13)

W2,W3 are defined as follows:

W2 = argm
W

ax
|W T S1

BW |
|W T S1

WW | W3 = argm
W

ax
|W T S2

BW |
|W T S2

WW | (14)

Using (13), W3 can be written as:

W3 = argm
W

ax
| (W1W )T S1

B(W1W ) |
| (W1W )T S1

W (W1W ) | (15)

Compare (14) and (15), it is obvious that W2 = W1W3.

Based on the above theorems, we develop the DMM algorithm. Consider a data
set {xi}N

i=1, xi ∈ Rm and N ¿ m, the number of class is c. The embedding vectors
{zi}N

i=1，zi ∈ R(c−1) is we wish to get. Applying classical MDS to {xi}N
i=1, based on

theorem 1, we first have:

yi =−1
2

L(δi−δµ) (16)

where δi and δµ are defined as in theorem 1. Let − 1
2 L = W T

1 , then yi = W T
1 (δi−δµ),

yi ∈ RN . By applying LDA to {yi}N
i=1, we get the embedding vectors zi = W T

2 yi,zi ∈
Rc−1，where W2 is obtained by optimal objection(9). Concluding the above, we get

zi = W T
2 W T

1 (δi−δµ) (17)

Let W ∗ = W1W2

zi = W ∗T (δi−δµ) (18)
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Base on theorem 2 we can see

J(W ∗) = argm
W

ax
|W T S∗BW |
|W T S∗WW | (19)

Where S∗B and S∗W are the between-class and within-class scatter matrixes of {δi −
δµ}N

i=1.
The DMM algorithm is summarized as follow:

1. Compute the squared distance matrix 4 = (δ1, · · · ,δN), δi denotes the vector
of squared distances from the i-th point to the others. Let δµ = (δ1 +δ2 + · · ·+
δN)/N。

2. Compute the within-class and between-class scatter matrixes SW and SB of {δi−
δµ}N

i=1. Eigendecompositing S−1
W SB, we get the eigenvalue λi(i = 1, · · · ,c− 1)

and the corresponding eigenvcetor vi.
3. Define W = [v1,v2, · · · ,vc−1], then the embedding vector zi can be obtained by

the formula:
zi = W T (δi−δµ) (20)

4 Numerical experiments
Two classical pattern classification problems, face recognition and gene expres-

sion analysis, are considered in order to evaluate the performance of DMM’s ability
for small-sample and high-dimensional database.

4.1 Face recognition
In this subsection, we test several dimensional reduction methods using the pub-

licly available AT&T and UMIST databases.
The AT&T (formerly Olivetti) face database contains 400 images of 40 people

(http:// www.uk.research.att.com/facedatabase.html). They contain facial contours
and vary in pose as well as scale. They original pixels are 112× 92 = 10304, but
for the complexity of Fisherface and PCA, we have to reduced to 23×28 = 644 for
experiments. Figure 1. shows images of a few subjects.

The experiments are performed using the “leave-one-out” strategy. The training
set are projected to a low-dimensional space and recognition is performed using a
nearest neighbor classifier. The parameters, such as the number of neighbor in LLE
and Isomap, the dimension of the embedding, are determined to achieve the low-
est error rate by each method. For Fisherface and DMM, the points are projected
automatically onto a c−1 space. The experimental results are shown in Table 1.

The UMIST Face Database consists of 575 images of 20 people (http://image
s.ee.umist.ac.uk/danny/database.html). Each covering a range of poses from profile
to frontal views. Subjects cover a range of race/sex/appearance. They original pixels
are 112×92 = 10304, but for the same reason in AT&T experiment, we have to re-
duce to 23× 28 = 644 for experiments. Some images of one people is published in
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Figure 1: Face images in the AT&T database

Table 1: Results with the AT&T database
method reduce space erro rate(%)
eigenface 40 1.75(7/400)
fisherface 39 2.75(11/400)
MDS 28 2.75(11/400)
Isomap(k=110) 30 2.0(8/400)
LLE(k=40) 70 1.75(7/400)
DMM 39 0.5(2/400)

Figure 2. The experiments are performed in the same way as in AT&T. The experi-
mental results are shown in Table 1. Figure 3. shows the samples of UMIST database
projected onto the first two eigenvectors by DMM.

4.2 Gene expression data classification
Array technologies have made it possible to simultaneously monitor expression

patterns of all genes in genome. The challenge now is to make sense of of such mas-
sive data sets. As the gene expression data are tens of thousands dimension in terms
of a small number samples, usually those traditional methods are less appropriate for
classifying this data.

Here we compared DMM with nonnegative matrix factorization (NMF) [12], a
well known method in patterns of gene expression, to classify three cancer data sets.
The experiments are performed using the “leave-one-out” strategy. DMM projects
training set to a low-dimensional space and recognition is performed using a nearest

Figure 2: Face images in UMIST database
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Table 2: Results with the UMIST database.
method reduce space erro rate(%)
eigenface 19 0.87(5/575)
fisherface 19 0.87(5/575)
MDS 40 0.70(4/575)
Isomap(k=70) 19 1.57(9/575)
LLE(k=40) 40 1.04(6/575)
DMM 19 0.35(2/575)

Figure 3: UMIST database projected onto the first two eigenvectors

neighbor classifier. NMF factors the training set to get the metagenes and testing set
are classified by the most highly expressed metagene.

The first is leukemia data set with 5000 genes , which contains 38 samples: 27
acute myelogenous(AML) and 11 acute lymphoblastic leukemia(ALL). This data set
has become a benchmark in the cancer classification community. It contains two ALL
samples that are consistently misclassified by most methods. The second experiment
is on a data set of 25 classic and 9 desmoplastic medulloblastoma tumors with 5893
genes. The third contains 7129 genes and 72 samples, and 25 of them are acute
lymphoid leukemia (ALL), 47 of them are acute myeloid leukemia (AML). The error
rates are shown in Table 3.

Table 3: Results on three gene data sets
data set Leukemia Medulloblastoma MIT
NMF 7.9%(3/38) 38.24%(13/34) 26.39%(19/72)
DMM 2.63%(1/38) 20.59%(7/34) 1.39%(1/72)
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5 Conclusion
Base on classical MDS and LDA, we develop a new feature extraction, called

discriminate multidimensional mapping (DMM), which is especially effective for
small sample database from the classification viewpoint. Compared with other di-
mensionality reduction techniques, DMM has several appealing features:

1. DMM do not need to select any parameters, while other methods perform dras-
tically different with the parameters vary.

2. In every experiments, MDD performs better than other methods even their pa-
rameters are selected by achieving the lowest error rates.

3. The computational complexity of MDD is determined by the number of points.
It is effective for small sample database in high-dimensional space.

4. It has a formula to embed a new sample to low-dimensional space, so it is
convenient for out-of-sample.

Our future work will focus on the follows: we will extend DMM for high-
dimensional and large-sample database by applying landmark, and generalize DMM
to non-linear manifolds in the similarly way as Isomap.
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