
Two Improvements of NMF Used for
Tumor Clustering∗

Zhong-Yuan Zhang† Xiang-Sun Zhang‡

Institute of Applied Mathematics, Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100080, China

Abstract Non-negative Matrix Factorization (NMF) is one of the promising methods used in
data mining, such as clustering human tumor samples into different types or subtypes based on
microarray technology. In this paper we briefly review this method, especially when it is used for
tumor clustering, and present two small but effective improvements.
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1 Introduction
It has been observed that tumors that have similar histopathological appearance

may follow significantly different clinical courses and show different responses to
therapy, so based primarily on morphological appearance one may make an erro-
neous diagnosis. Microarray technology, as a mark of the advent of the systems
biology, makes it possible to classify tumor samples based on gene expressions and
thus has been widely used in systems biology and iatrology. Many methods from
statistical and machine learning area have been applied for this purpose such as Hier-
archical Clustering (HC, [9], [3], [22]), Self-Organizing Mapping (SOM, [26], [12])
for clustering and k-Nearest Neighbor (k-NN), Support Vector Machine (SVM, [11])
for classification. But the characteristics of gene expression data have presented new
challenges for many traditional statistical and machine learning methods. First, gene
expression data have very high dimensionality in feature (gene) space. On the con-
trary, the dimensionality of observation (sample) space is very low. In short, the
abundant information we get is along ’the wrong dimension’. Finally, the high noise
level of the data requires more robust methodology. Non-negative matrix factor-
ization (NMF) is a rising methodologies to cope with these difficulties [29]. Many
studies have shown that it outperforms other methods. In fact the last ten years have
witnessed its boom in many fields such as bioinformatics ([5], [8], [10], [14]), physics
([25]), multimedia data ([6]), text mining ([20], [28]), etc. since it was first presented
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in [19][16]. One of the most interesting applications of NMF is to cluster data, i.e.
discovering patterns automatically from data. The NMF clustering property is stud-
ied in Ding et al. ([7]) who proved that NMF is equivalent to K-means clustering, one
of the most popular clustering method. In this paper we briefly review the method
from the nonlinear programming research point of view and present two small but
effective improvements.

2 Methods
2.1 A brief review of NMF

Mathematically, Non-negative Matrix Factorization (NMF) can be described as
follows: given an n×m matrix V composed of non-negative elements where nÀ m,
our task is to factorize V into a non-negative matrix W of size n× r and another
non-negative matrix H of size r×m such that V ≈WH. r is preassigned and should
satisfy the principle r < nm/(n+m). W and H can be explained variously in different
fields, for specific purposes or even by different persons.

In short, the derived algorithm of NMF is as follows:

Step 1: Randomize W and H with positive numbers in [0, 1].
Select a cost function to be minimized.

Step 2: With W fixed, update H, then update W for the updated H.
Iterate until the process converges.

The cost function is frequent D1(V,WH) = ||V −WH||2F or the generalized
Kullback- Leibler divergence D2(V,WH) = ∑

i, j
(Vi jlogVi j/(WH)i j −Vi j + (WH)i j).

When D1 is used, the update formulae of H and W are

Hau := Hau
(W TV )au

(W TWH)au
, (1)

Wia := Wia
(V HT )ia

(WHHT )ia
. (2)

Otherwise, if D2 is used, the corresponding formulae can be written as:

Hau := Hau

∑
i
(WiaViu)/(WH)iu

∑
k

Wka
, (3)

Wia := Wia

∑
u

HauViu/(WH)iu

∑
v

Hav
. (4)
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All these expressions are obtained via the gradient decent method in nonlin-
ear programming. We take (1) and (2) as an example to demonstrate the reasoning
process.

Firstly, the derivative of the cost function D1(V,WH) = ||V −WH||2F with re-
spect to H is:

∂
∂hau

D1(V,WH) =−∑
i
(Viu− (WH)iu)Wia.

Let the step size be αau = Hau/W T (WH))au, then

Hau = Hau−α
∂

∂hau
D1(V,WH) = Hau(

(W TV )au

(W TWH)au
).

By reversing the roles of the W and H, one can easily get (2) as the update rule of W .
Local minimum is guaranteed. People who are interested in the theoretical as-

pect of NMF can get more information from [17].
NMF has been widely used in bioinformatics, especially in clustering tumor

samples based on microarray experiments. Microarray is a new and developing tech-
nique and its data can be represented as a matrix A of size n×m whose rows contain
the expression levels of the genes across m samples (m time points or m conditions).
r is the class number of tumor samples, the cost function D2 is selected because it has
better numerical result than D1 has. W , H are obtained using (3) and (4). Each col-
umn of W is defined as a metagene, so in fact, metagenes are the linear combination
of the measured genes. The component of W denotes the weight of the correspond-
ing gene in the metagene. Each row of H is viewed as the expression level of the
metagene across different samples. The clustering method using NMF is based on a
hypothesis, that is:

Hypothesis: The metagenes should have similar expression patterns in the sam-
ples which belong to the same class.

Under this hypothesis, samples can be clustered according to metagenes expres-
sion patterns, in other words, sample j is clustered into class i if hi j is the largest
value of the column i of H. This means that the metagene i is the most active in
sample j. One can refer to [5] for more details.

2.2 Two improvements for NMF
As we can see, the step-size α is not selected through linear search, so it is not

necessarily the best one. We multiply α by a scalar β , where β ∈ (0,1], thus we can
have more choices. Then the corresponding update rules become:

Hau := Hau(1−β2 +
β2(W TV )au

(W TWH)au
), (1′)

Wia := Wia(1−β1 +
β1(V HT )ia

(WHHT )ia
). (2′)
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Hau := Hau(1−β2 +β2

∑
i
(WiaViu)/(WH)iu

∑
k

Wka
), (3′)

Wia := Wia(1−β1 +β1

∑
u

HauViu/(WH)iu

∑
v

Hav
). (4′)

Local minimum is guaranteed since the cost function D1(V,WH) and D2(V,WH), as
W ′s or H ′s, are convex, and the convergence in the case of β1 = 1,β2 = 1 has been
proved[17][15]. Later numerical result shows that β1 = .5,β2 = 1 is a good choice.

Another disadvantage of NMF is that it is time-consuming which is mainly
because of the high dimension of W . But as a matter of fact, in many compu-
tation cases we don’t need to know W at all and people can easily observe that
V TV = HTW TWH, in other words, K = HT SH where S = W TW,K = V TV . the
update rules for D1(K,HT SH) is [7]:

Sik := Sik(1−β3 +β3
(HKHT )ik

(HHT SHHT )ik
), (5)

Hik := Hik(1−β4 +β4
(SHK)ik

(SHHT SH)ik
). (6)

Its effectiveness, especially for relatively small dataset, will be shown in the next
section.

3 Application
3.1 Assess Standard

Purity has been widely used in data mining to assess the quality of clustering
result which can be defined as follows:

Definition: Purity=
K

∑
i=1

niP(Si)
n

where K is the number of clusters, n is the num-

ber of data points (samples), ni is the size of the i-th implanted class denoted by Si,

P(Si) =
1
ni

max j(n
j
i ) where n j

i is the number of samples of the i-th implanted class

that are assigned to the j-th computed cluster.
As one can see, if the clustering result matches the implanted class structures

exactly, the purity is one. In general, the purity measures the extent to which each
cluster contains the samples from one of the implanted class, the larger the purity, the
better the clustering result is.

3.2 Dataset
Six datasets are used to verify our improvements, the result shows that β1 =

.5,β2 = 1,β3 = .5,β4 = 1 is strongly recommended.
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ALL-AML
This dataset, as a golden standard in the cancer classification community, in-

cludes two types of human tumor-acute myelogenous leukemia (AML, 11 samples)
and acute lymphoblastic leukemia (ALL, 27 samples). Also ALL can be divided into
two subtypes-ALL-T (8 samples) and ALL-B (19 samples) [5].

Central Nervous System (CNS)
This dataset comes from [23] which consists of 34 samples: 10 classical medul-

loblastomas, 10 malignant, gliomas, 10 rhabdoids and 4 normals.

Lung cancer (LC)
This dataset, composed of 181 samples, is from [13] which is about malignant

pleural mesothelioma (MPM, 31 samples) and adenocarcinoma (ADCA, 150 sam-
ples) of the lung .

Subtypes of Acute Lymphoblastic Leukemia
This dataset is including six prognostically important eukemia subtypes: T-

ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL, hyperdiploid>50 chromosomes.
We select E2A-PBX1 (18 samples), MLL (14 samples), T-ALL (28 samples) as one
test dataset, and E2A-PBX1 (18 samples), Hyperdiploid>50 (42 samples), T-ALL
(28 samples), TEL-AML1 (52 samples) as another.

The original data contains about 12000 genes. In our experiment, the genes are
ranked according to their coefficient of variation (i.e., standard deviation divided by
the mean) and the top 8000 are selected.

All these data can be obtained directly from [4].

3.3 Result
The following six tables show the computational results, from which we can see

that β1 = .5,β2 = 1 is consistently better. Another six tables to illustrate β3,β4 are
omitted, where again β3 = .5,β4 = 1 is better, especially when the dataset is relatively
small.

W H purity (%)
β1 = 1 β2 = 1 94.12
β1 = .5 β2 = .5 94.12
β1 = .5 β2 = 1 97.06
β1 = 1 β2 = .5 94.12

Table 1: CNS

W H purity (%)
β1 = 1 β2 = 1 94.74
β1 = .5 β2 = .5 94.74
β1 = .5 β2 = 1 100
β1 = 1 β2 = .5 94.74

Table 2: AML/ALL, k=2

W H purity (%)
β1 = 1 β2 = 1 94.74
β1 = .5 β2 = .5 94.74
β1 = .5 β2 = 1 97.37
β1 = 1 β2 = .5 94.74

Table 3: AML/ALL, k=3
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W H purity (%)
β1 = 1 β2 = 1 93.92
β1 = .5 β2 = .5 92.62
β1 = .5 β2 = 1 95.03
β1 = 1 β2 = .5 90.61

Table 4: Lung Cancer

W H purity (%)
β1 = 1 β2 = 1 90
β1 = .5 β2 = .5 90
β1 = .5 β2 = 1 91.67
β1 = 1 β2 = .5 88.33

Table 5: subtypes, k=3

W H purity (%)
β1 = 1 β2 = 1 95.71
β1 = .5 β2 = .5 95.71
β1 = .5 β2 = 1 96.43
β1 = 1 β2 = .5 95.71

Table 6: subtypes,k=4

The reason why the result of β1 = 0.5,β2 = 1 is better than that of β1 = β2 = 1
is as follows: although the original NMF can maintain the positive property of W and
H, this doesn’t mean that the method can converge to the global optimal solution, in
fact, only the local minimum is guaranteed. From the numerical test, we can see that
β1 = 0.5,β2 = 1 is better.

As to the second improvement, we can explain it from the point of view of
computational complexity: in each step, the computational complexity of (5) is of
the order m2r +3r2m + r3 and that of (6) is of the order 2r2m +mr2, while the order
of equations (1’) and (2’) is mnr +nr2 + r2m where nÀ m.

4 Discussion
Obviously, some information of V has been lost when we factorize V TV to get

H, but this is not serious when the data size is small.
Furthermore K can be viewed as a kernel matrix or comparability matrix, then

we have extended NMF from the classification on the sample matrix to classification
on the distance matrix. Thus it can be used in many fields, for example, the detection
of community structure of network.
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