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Abstract Motivations. We present a supervised learning analysis of a cDNA microarray dataset
designed for prediction of response to chemoradiotherapy (CRT) in esophageal adenocarcinoma
(AC) patients. The dataset has unusual properties: the whole range of supervised learning tech-
niques generates predictive models which classify independent test samples systematically below
the accuracy of random guessing (hence the name anti-learning shortened to AL). As this is sys-
tematic and can be detected easily by additional cross-validation on the training data, even straight-
forward, ad hoc reversal of the classifier decision provides a good prediction of patient’s response.
The main question we tackle here is to what extent this unusual behaviour can be attributed to the
real biological processes rather than noise in the data.

Results. The label permutation test shows that the observed AL behaviour has significance
level above 99% for a whole range of t-test pre-filtered gene markers. Furthermore, the analysis
of multiple random data sets shows that although AL behaviour can be observed on randomly
generated data sets, the systematic AL behaviour displayed by AC dataset for a whole range of
subsets of pre-filtered gene markers has not been matched even once among one thousand generated
data sets. This points towards a specific AL signature in the AC data. We pursue this line further by
generating a synthetic dataset, based on a straightforward zero-sum game, matching closely the AL
characteristics of the AC dataset. This also makes a formal link to perfect AL studied theoretically
in previous publications.

Conclusions. We conclude that non-standard properties of the AC dataset are most likely a
signature of a hidden process which is observed indirectly on the level of gene expression. Al-
though this hypothetical mechanism is unknown, it seems possible to achieve our main objective:
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the generation of reliable predictors of important response to CRT using a number of supervised
learning techniques.

1 Introduction
The ability to detect esophageal cancer (EC) patients with poor response to

chemoradiotherapy (CRT) will save them from significant toxicity of the treatment
and potential complications with no obvious advantage. In a study evaluating a fea-
sibility of development of such a test using microarray technology, a cohort of forty-
six EC patients has been recruited (Greenawalt et al., 2007; Duong et al., 2007).
From each patient a tumour biopsy was taken prior to treatment, then profiled using
gene expression cDNA microarray with 10,500 probes. The patients were adminis-
tered the CRT treatment, then followed up and finally classified by experts as “good”
or “bad” responders. These cancer patients split into two histological subtypes: 21
squamous cell carcinoma (SCC) and 25 adenocarcinoma (AC). The initial analysis of
the dataset shows unequivocally that both histological subtypes display dramatically
different behaviour. While SCC dataset has allowed development of predictive mod-
els with performance up to 87% as measured by the popular Area under Receiver
Operating Characteristic (AROC) in cross validation tests, the models for AC data
performed systematically below the level of random guessing (Duong et al., 2007).

In this paper we exclusively concentrate on the analysis of this unusual be-
haviour of AC dataset. This dataset is linearly separable; perfect classification is
possible even with an appropriately selected single feature, so linear algorithms such
as SVM, ridge regression or shrunken centroid should have no problem with classi-
fying it. In fact, they seem to have no problem with classifying the training set for
a whole range of features selected using the standard t-test. However, the generated
models are significantly in error on the independent test set. This extends to a num-
ber of non-linear algorithms such as decision trees, multilayer neural, radial basis
SVM etc. (see Kowalczyk, 2007). For some of these algorithms, the departure below
random guessing level of performance is minimal, but for others such as SVM and
centroid it is significant. In the latter case the systematic predictions with high error
rates allow a reliable, although non-standard, determination of the right labels. An
ad-hoc solution is simply to reverse the decision for the classifier. However, more
principled methods can be used as well and will be presented elsewhere (Kowalczyk,
2007). Our main aim here is the presentation of an initial analysis and validation that
the observed AL properties of AC dataset are “real” rather than caused by noise.

Interestingly, in these experiments the significant AL is achieved for a significant
number of genes (≈1000) selected using the standard t-test. This seems to imply that
the signature of CRT response is distributed among many genes. This on its own
is not so unusual. For instance, the results of Ein-Dor et al. (2005) show that the
signature of survival in breast cancer dataset of van ’t Veer et al. (2002) is also
distributed and equivalent in performance predictors could be developed using many
subsets of genes.
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2 Materials and Methods
2.1 Adenocarcinoma Dataset

The dataset contains 25 patients, classified as 14 good and 11 bad responders
to CRT. It is a subset of data analysed in Greenawalt et al., 2007 and Duong et al.,
2007. The gene expressions were made using cDNA microarray with 10,500 probes
representing 9,389 unique cDNAs. Raw array data and protocols are available at
http://www.ebi.ac.uk/arrayexpress.

2.2 Supervised learning experiment setup
In this paper we use a standardised experimental setup of 5-fold cross validation

repeated 20 times, thus the reported averages are for 100 independent tests. We have
always used stratified splits of data into 5 folds, preserving the proportions of the
both classes in the fold as much as practical.

Throughout this paper for all classifiers excluding PAM (which includes feature
selection during training), we have used the t-test. Top scoring features were selected
in terms of the absolute value of the statistic (µ+−µ−)(s2

+/n+− s2
−/n−)−

1
2 where µy

and sy are the mean and variance of the feature, and ny is the number of instances for
the class label y. Feature selection was always applied only to the training set, and
repeated each time the training set was changed.

2.3 Performance metrics
We use the Area under ROC (AROC), the plot of the True Positive versus False

Negative error rates as our main performance metric. Additionally, we also use Ac-
curacy defined as the average of the True Positive and the True Negative rates. Both
metrics are insensitive to the class distribution in the test set. For both, the value of
0.5 represents the performance of trivial classifiers, such as random guessing or allo-
cation of all example to one class; value 1 will be allocated to the perfect classifier;
and value 0 to the perfectly wrong one.

2.4 Basic supervised learning algorithms
Our default algorithm is the centroid. This is a simple classification technique

which produces a linear classifier and requires no tuning parameters. It consists in
computation of the means of the two classes in the training set, and then classifying
data according to the value of the projection onto the direction of the vector set by
these means. Typically the additional additive constant (the bias) is set such that the
center of the segment between two means receives score 0. It has been shown to
perform very well on microarray datasets (van ’t Veer et al., 2002; Ein-Dor et al.,
2005) and is known to be the “high regularisation” limit of support vector machine
and ridge regression (Bedo et al., 2006). Thus it is indicative of the performance of
those classifiers under training involving heavy regularisation.

We have also extensively used k nearest neighbours (k-NN), always with Eu-
clidean distance in the appropriate feature space.

Large Validation of Anti-learnable Signature in Classification 215



10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

number of selected genes

A
R

O
C

A: Training 

Rand
cntr
5NN
SVM
PAM

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

number of selected genes

B: Test 

Figure 1: Selected results for AC datasets. We plot average of Area under ROC
(AROC) in function of number of features selected with standard deviations marked
as error bars. The 5-fold cross validation repeated 20 times was applied, so aver-
ages are over 100 trials, and in each trial 80% of data was used for training and the
remaining 20% for the independent test. We have used the following classifiers: Cen-
troid (Cntr), hard margin support vector machine (SVM), shrunken centroid (PAM)
and 5-nearest neighbours (5-NN). For all classifiers, excluding PAM, the genes were
selected using t-test applied to the training subset only. Note that PAM has built-in
feature selection.

For the shrunken centroid, which is a modified version of the centroid classifier
popular in analysis of microarray data, we have used public domain R implementa-
tion within the pamr package (Tibshirani et al., 2003).

Finally, the support vector machine (SVM) here means the hard margin case
(Vapnik, 1998). The soft margin SVMs have performed between two extremes, the
centroid and the hard margin case (data not shown).

3 Results
3.1 Classification of AC dataset

Figure 1 introduces the problem of AL as the systematic misclassification of the
independent test set. Note that with exception of 5-NN classifiers, the algorithms
have classified almost perfectly the training set, hence produced classifiers vastly in-
consistent between the training and test sets. The 5-NN classifiers, which requires no
training or adaptation to the training set other then indirectly, through the feature se-
lection, behave differently. For a larger number of features, when the bias introduced
by the selection of features “well” correlated with training set labels fades away, it
starts to perform on the training sets similarly as in the independent test.
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Figure 2: The label permutation test. The background distribution represented by
percentile lines was created from the results of classifying the AC dataset with labels
permuted 1000 times. Each dataset was evaluated by the centroid algorithm using
5 fold cross validation repeated 20 times. The solid “AC” line represents results of
such an analysis for the original AC dataset (un-permuted).

4 Permutation Tests
The results of a standard label permutation test are shown in Figure 2. We

observe that for larger numbers of features, the AL performance of AC dataset was
outside the 1% percentile (p < .01). However, even stronger result holds: none of the
randomly permuted datasets scored AROC and Accuracy systematically lower that
those for AC dataset.

Figure 3 shows results of a test of a null hypothesis that AC dataset contains no
signal and is just a product of noise. To test this we have generated 1000 datasets
of the same size as AC data using standard normal distribution. These datasets were
subsequently classified using the centroid algorithm combined with t-test feature se-
lection (our standard protocol). We observe that for the larger number of selected
features the AL in AC data is stronger than in 1% of the lowest values for the random
sets. As before, the performance of none of the generated dataset was systematically
lower than AC. This is even more pronounced for Figure 3B. However, this should be
taken with caution as the relatively low spread in accuracy for random datasets in the
range of larger number of features is due to the systematically inadequate bias of the
classifiers (to see this compare Figure 3A). We have also observed a similar pattern
of behaviour for other classifiers (e.g. SVM) and other sampling distributions (e.g.
uniform distribution).

Figures 2 & 3 provide strong indication that the AC dataset must contain a sys-
tematic anti-learnable signal and its strong AL properties are unlikely to be just a
result of noise.
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Figure 3: Classification of 1000 random datasets. The background distribution rep-
resented by percentile lines was created from the results of classification of 1000
datasets of the size of AC datasets but with measurements drawn from the standard
normal distribution. Each dataset was evaluated by the centroid algorithm using our
standard 5 fold cross validation repeated 20 times. The solid “AC” line represents
results of such an analysis for the “un-permuted” AC dataset.

5 Classification of synthetic dataset
In this section we show that the AL properties of the AC data set can be matched

by a synthetic dataset, one incorporating the “anti-learnable signal”. It shows that
AL can be a reflection of a simple phenomenon, such as a competition for limited
resources or mathematically a zero-sum game, which could be obscured in an indi-
rect observation. The model is an adaptation of the theoretical models of “perfect
AL” studied in Kowalczyk-Chappelle, 2005 and Kowalczyk-Smola, 2005. Here we
outline the gist of the model, leaving aside the formal details and formal analysis (see
Kowalczyk, 2007).

We constructed a model dataset in which a large number of species, N, share a
particular environment which can only support a fixed total number of them. Thus
if the numbers of any species increase (or decrease) beyond the normal level, the
number of other species must decrease (or increase) accordingly. We use the name
CS (for “Competing Species”) to refer to this dataset. Our model incorporates two
types of pathologies forming the two label classes: Class A, where numbers of one
particular species increase significantly and the remaining species adjust by a uni-
form decrease, and Class B, where a particular species decline significantly and all
remaining species uniformly increase their numbers. In the model these changes are
not observed directly, but via a pooled signature of all members of community, where
each species has its own multidimensional signature. For example, one might imag-
ine a scenario where there are N-species of bacteria living in a fermenter, and the
signature as mixed waste secreted to the common environment by the members of
the community and measured in the output from the fermenter. For our synthetic CS
dataset we have set the output dimensions to be 10,000 so as to closely match the
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dimension of the AC data. A formal implementation of this model follows.
The Formal Model: We denote by nβ the number of members of β s species,

β = 1, ...,N. A pathology described above with a particular change Dα in the size of
the αth species is defined by the equation

nβ := n∗β +∆nβ :=





n∗α +Dα , for β = α;
n∗β − Dα

N1−1 , for 1≤ β ≤ N1, β 6= α;
n∗β , otherwise,

(1)

where n∗1 . . . , ...,n∗N are “normal” or default state values and N1 is a number of sub-
species which are “coupled”, 1 < N1 < N (the remaining N−N1 species are unaf-
fected by any changes within this sub-community of N1 species). The pathologies of
Class A correspond to the sign y = sgn(∆α) = +1, while for Class B we have y =−1.
Note that the zero-sum game condition, ∑β ∆nβ = 0, holds.

As mentioned before, the sizes nβ cannot be observed directly (otherwise, ag-
gressive feature selection would produce a strongly learnable model, which is not
what was observed for the AC-data). Instead we observe a d-dimensional pooled
signature vector

~x =
N

∑
β=1

nβ

∑N
β ′=1 nβ ′

~sβ −
N

∑
β=1

n∗β
∑N

β ′=1 n∗β ′
~sβ +~ε (2)

= C1 +C2

N

∑
β=1

(~sβ −~s∗)∆nβ +~ε, (3)

where ~sβ is a d-dimensional signature vector of the β th species, ~s∗ := ∑N
β=1~sβ /N,~ε

is random noise and C1 & C2 are constants.
In our experiments we have used d = 10,000, N = 300, N1 = 200, ∆α = const =

1. We have generated 14 and 11 instances of Class A and B, respectively. The entries
of signature vectors~sβ were drawn from the normal distribution N(0,1) and the noise
~ε had normal distribution N(0,0.1); these parameters are not very critical. ¤

Figure 4 shows the results of classification on this synthetic dataset: note a strik-
ing similarity to the plots for the AC dataset in Figure 1.

6 Discussion
The model of competing species is studied more formally in forthcoming paper

(Kowalczyk, 2007). In particular, that paper shows formal result on anti-learning and
introduces some algorithms which can seamlessly classify both, the anti-learnable
and ordinary “learnable” datsets.

The size of the variance of the background distributions in Figure 3 comes as
a bit of a surprise. In particular, it implies that AL-datasets are relatively abundant.
What this research brings is evidence that it appears in natural datasets. It is rather
surprising that not much has been reported to date on the subject. Our guess is that
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Figure 4: Anti-learnable pattern in the classification of synthetic CS datasets with
t-test selected gene subsets. The settings of this experiment are as Figure 1; observe
that plots are very close to their counterparts in Figure 1.

AL datasets if encountered are misunderstood, perceived as abnormalities not worth
further investigation or reporting, and so are forgotten. At this stage we are aware
of the existence of a few other natural datasets with well pronounced anti-learning:
some in the area of cancer genomics, others in other areas of bio-medical research,
including heart ECG. These results will be reported elsewhere.

The symmetry of the distributions in Figure 2 are consistent with the so called
“no free lunch theorems” (see Wolpert, 1996), which roughly state that the averaged
test performance of any algorithm over all possible datasets is on the level of random
guessing. However, what is of prime interest in Figure 3 is not that their means are
≈ 0.5, but the size of the distribution tails in relation to the observed performance for
the AC dataset.

Our results show that the AL-signature in AC dataset is spread over hundreds
of genes. This makes it more challenging to design independent wet-lab experiments
for validation of our findings. Nevertheless, our bio-informatics driven investigation
of the AC data indicates that such an investigation is necessary. Coming to grips
with AL-behaviour is a pre-requisite for any efficient design of such follow-up ex-
periments. Further study of a range of synthetic models of anti-learning is required
in order to identify the potential biological mechanisms involved and in order to form
working hypothesis along which the wet-lab experiments could be designed.
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