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Abstract In this work, we propose a network-based approach to cluster the protein pockets into
similar groups in a database level. A pocket similarity network is constructed to describe structural
similarity relationships among the pockets from the systematic perspective, which possesses the
community structures and can can be utilized to develop a direct method to cluster the pockets by
partitioning the network to small communities, which correspond to pocket groups individually. As
a first step, we join the pockets into structurally similar pocket groups via a hierarchical process
guided by maximizing a widely used modularity measurement Q. Then we analyze the functional
similarity underlying every divided pocket groups. As a result most of the pockets in the same group
are identified to share similar functions. These results show that our clustering method is effective
and efficient to reveal biologically meaningful pocket groups regard to functional consistence.
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biology.

1 Introduction
It is well known that protein functions are mainly determined by its physical,

biochemical and geometric properties of structural surface [1]. These surface regions,
e.g. pockets or clefts, provide specialized environments for biological activity, thus
their underlying three-dimensional shapes and physicochemical textures are closely
related to protein functions [2, 3]. Grouping the structurally similar surface regions
is useful to extract functionally conserved spatial patterns during evolution. It can
also provide important insights into the biochemical relationships between functions

∗This work was supported by National Natural Science Foundation of China (NSFC) under Grant No. 10631070
and No. 60503004. Part of the authors are also supported by the 973 Program (Grant No. 2006CB503910) from the
Ministry of Science and Technology of China.

†Email: zpliu@amss.ac.cn.
‡Corresponding author. Email: lywu@amt.ac.cn.

The First International Symposium on Optimization and Systems Biology (OSB’07)
Beijing, China, August 8–10, 2007
Copyright © 2007 ORSC & APORC§pp. 204–212



and structural motifs, in particular based on the assumption: the similar structural
features imply similar functions.

A straightforward way to perform clustering is to introduce the concept of net-
work. Analyzing and using network properties can characterize both the whole sys-
tem and its individual components [4], hence such a strategy has been widely applied
in many disciplines. In particular, the network analysis has attracted much atten-
tion on the area of systems biology due to wide availability of high-throughput data,
such as the protein-protein interactions, the interactions among families of protein
domains, and the amino acid contacts within protein structures [5, 6, 7, 8, 9, 10]. One
important feature of these networks is their community structure, which is viewed as
the gathering of vertices in groups, within which the network connections are dense,
but between which the links are sparse. The community structure often relates to
valuable components of the network [11].

In this work, we aim to develop a direct classification procedure for clustering
the pockets into small groups based on a similarity network, which is introduced to
systematically describe the similarities among the pockets [12]. We found that the
pocket similarity network possesses the feature of community structure. The archi-
tecture of the similarity network implicates that the feature can be directly utilized as
a criterion in the clustering approach. After briefly reviewing the topological features
of the similarity network, we split the pockets in a recursion manner into small com-
ponents. Then the quality of clustering is assessed by an extensively used modularity
measurement and the functional relationships among the pockets in every detected
group. The experimental results provide an evidence that the proposed method is
effective to cluster the pockets, and the pocket groups are biologically meaningful.
Furthermore, our idea of the network model and the network partitioning method can
be easily extended to clefts or other protein structural motifs in bioinformatics.

2 Community structure of the pocket similarity network
Recently, we introduced the similarity network model to systematically describe

the structural similarity among protein pockets [12], and to detect the features of the
network comprehensively. Specifically, we use the proteins in PDB_SELECT25 to
remove the redundancy in PDB, in which the proteins have low sequence similarity
(less than 25%). This indicates that they come from different protein families. We
collect all the pockets of proteins in PDB_SELECT25 from CASTp [13] database
(78925 pockets). Each pocket is represented by a node. Two nodes are linked by
an edge if their structural similarity is larger than a given threshold. The similarities
among the pockets are derived from pvSOAR [14] database. When querying one
pocket in pvSOAR, it would hit some similar pockets satisfying the given threshold.
The pvSOAR database compares the pockets in CASTp [14] in an all-against-all way.
We use a threshold, structural cRMSD (coordinate root mean square distance) p-value
0.9, to choose the connections. As a result an edge in pocket similarity network links
two structurally similar pockets. The isolated nodes in the network are discarded, be-
cause they can not be used to find similar pockets in the whole pocket library. Figure
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1 gives an example of the constructed pocket similarity network. We found that the
similarity network possesses the community structure feature, i.e. the similar pockets
tend to cluster together and constitute many communities in the sparse network spon-
taneously (As shown in Figure 1). We also analyzed the other features such as the
small-world behavior and scale-free property underlying the network. The readers
can refer to [12] for the detailed analysis of the network properties. In the present
work, we utilize the network features to cluster the pockets into small groups.
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Figure 1: (a) A part of the pocket similarity network (b) The percentage of connected
components with different size in the pocket similarity network. The concrete num-
ber of the connected components is also shown on the top of each bar individually.

3 Clustering the pockets into small groups
The community structure of the pocket similarity network provides us a straight-

forward and simple way to cluster the pockets into small groups. Figure 2 shows the
framework and illustration of the process to partition the network. In fact it is a re-
cursion algorithm using a community structure detecting algorithm as a subprocess.

Our method to partition the network is based on a widely used concept of mod-
ularity measurement Q, which is a quality function to measure whether a particular
division is meaningful. Q is defined as Q = ∑i(eii− a2

i ), where ei j is the fraction of
edges in the network that connect vertices in community i to those in community j,
and ai = ∑ j ei j. Then Q is the fraction of edges that fall within communities, minus
the expected value of the same quantity of edges falling at random without regard to
the community structure. If a particular division gives no more within-community
edges than which would be expected by random chance, the value of Q would be 0.
The value of Q approaches 1, which is the maximum value, more closely indicates
more strong community structure. Generally, Q values for networks typically fall in
the range from about 0.3 to 0.7 [15]. Detecting the partition of groups that maxi-
mizes Q is believed to be a NP-hard problem, which makes a brute force exploration
impossible for large scale networks having dozens of vertices. However, there is a
fast algorithm to create the hierarchy in an agglomerative strategy to maximize the Q
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Figure 2: The hierarchical clustering process is designed to divide the network into
small communities. (a) The flow chart of the whole algorithm. (b) An illustration
graph of the recursion process. The big nodes mean the communities that can be
divided in a recursive way.

[15]. At first, the algorithm regards every single node as a cluster, then two clusters
are merged into one to maximize the the increment of modularity. The process is
repeated until only one cluster remains. Clearly, for a network of n vertices, there
would be n− 1 steps for such joining. The algorithm is very efficient and widely
used [16].

The main idea is to partition the network into small clusters, which correspond
to the pocket groups individually. If a community does not satisfy the stop criteria,
for example, the community is still rather large (contains many nodes) and/or pos-
sesses the obvious community structure underlying the cluster, we continue to divide
it to smaller components. We modify the fast algorithm of detecting the community
structure in a large complex network [15] to a subprocess to partition the similarity
network to small clusters. Firstly, we find out all the connected components in the
whole network. Then we use the fast algorithm to detect community structure in each
connected component respectively. In the connected component Ci, the subprocess is
used to find out the communities that maximize the Qi of the subnetwork. Finally, for
each community, if its size is below a given value and/or the modularity Q is below a
given threshold, the algorithm is stopped and the community is regarded as a pocket
group. Otherwise, we continue to partition the community into smaller communities.

The value of the modularity Q is use to measure our divisions. During the whole
process of dividing the network, we record the changing of Q. The bigger modularity
Q is, the more obviously we can divide the network into smaller communities. Thus
we choose the detecting value of Q as the stop criterion of our algorithm. Moreover,
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we also analyze the functional consistence in every group. The high modularity Q of
the clusters and the functional features underlying the groups show that the divided
groups are biologically meaningful.

4 The clusters of pocket group
The pocket similarity network have 5387 vertices and 4943 edges. From the

statistics of the similarity network shown in Figure 1, the network contains 880 con-
nected components. Most of the components contain a few nodes. The maximum
connected component of the similarity network contains 2190 vertices with 2548
edges. The second largest connected component contains 81 vertices with 83 edges.
Figure 1 also shows that the similar pockets are naturally clustered together. Noting
that small connected components may contain less information, in our numerical ex-
periments, we take 81 as the threshold of the size of pocket groups in the partition of
the two largest connected components.

Table 1: The number of the clusters of pockets when we choose 81 as the size thresh-
old for every group.

Connected component Vertex Edge Num of clusters Max size Min size Mean size Max Q
Largest 2190 2548 49 117 19 44.694 0.935

Second largest 81 83 8 13 4 10.125 0.776
The rest (self-clustered) 3116 2312 878 37 2 3.549 –

Table 1 records the statistics of the components after the first level clustering
procedure. In Table 1, the largest connected component of the network is partitioned
into 49 small communities after 2141 joining steps. The second largest connected
component is divided into 8 clusters after 73 steps. The modularity Q measures the
significance of the community structure of the partitioned network. Figure 3 records
the change of Q. The cut-off point of the joining steps with the maximum modularity
is also shown in Figure 3. Subfigures (a) and (b) correspond to the largest and the
second largest connected components respectively.

In the first level clusters of the largest connected component, there are two clus-
ters whose sizes are bigger than the given threshold, 81. We continue to run the
clustering procedure on the two clusters and the results are shown in Table 2.

Table 2: The smaller clusters by further partitioning the two first level clusters in the
largest connected component.

Cluster Vertex Edge Num of clusters Max size Min size Mean size Max Q
1 117 147 12 28 3 9.75 0.670
2 95 165 10 18 3 9.5 0.503

The maximum cluster in the first level communities after dividing the largest
connected component contains 117 nodes and 147 edges. We cut the hierarchy tree
of the partition when the modularity Q reaches the maximum 0.670. The cluster is
divided into 12 smaller clusters. Figure 4 (a) records the change of Q and the cut-off
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Figure 3: The changing modularity Q by joining of vertices to clusters. (a) The
largest connected component. (b) The second largest connected component.

point on the curve. In the similar way, the second largest cluster is divided into 10
smaller communities. Figure 4 (b) shows the results.
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Figure 4: The changing modularity Q by joining vertices to clusters. (a) Changing Q
of partitioning the largest cluster. (b) The results of the second largest cluster.

From the above two tables, we partition the pocket similarity network to (878+
47+8+12+10) = 955 clusters, which are regarded as pocket groups. Of course, we
can change the threshold of the maximal size of the clusters or combine the threshold
with the Q value of the potential division. The number of pocket groups will increase
if a smaller value is chosen. For instance, if we choose 37 as the threshold of the
maximal size of clusters, the similarity network would be divided into 1137 small
communities.

5 Functional similarity lies in the pocket groups
Based on the assumption that similar structures imply similar functions for pro-

teins, we investigate the functional similarity in these pocket groups by annotating
the GO functions of the protein in which the pocket are located. In the 955 pocket
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groups, there are 816 (85.45%) groups in which at least two pockets have GO terms,
i.e. there are more than two proteins containing the pockets in the groups have GO
annotations in GOA database [17]. We call the part of pockets with GO annotations
in every group as the GOA part. In the 816 pocket groups, there are 99 (12.13%)
groups which have at least one same GO term in their GOA part. There are also
191 (23.41%) pocket groups containing significant common (2/3) GO terms in their
GOA part, i.e. 2/3 of the annotated pockets of the GOA part in every pocket groups
have common GO terms. And there are 578 (70.83%) pocket groups with signif-
icant common (1/2) GO terms. Table 3 shows the functional similarity among the
pocket groups of the size from 2 to 6 (733 (89.83%) of the 816 groups, and the
full list is available upon request). The functional similarity among every pocket
groups provides more evidences: the similar pockets have similar functions, and the
pocket groups are functionally important structural motifs for proteins. Conversely,
the results also prove that the clustering method based on the community structure is
efficient to group the pockets.

Table 3: The functional similarity among the pocket groups. We annotate the pockets
by the GO terms of the proteins containing them. ‘-’ indicates the value that we need
not calculate.

Group size Number GOA status Common GO terms Percentage
(size of GOA part : number of groups) 6 5 4 3 2

2 455 2: 334 - - - - 56 16.77%
3 188 3: 130 - - - 16 52 44.25%

2: 44 - - - - 9
4 84 4: 53 - - 5 11 23 73.17%

3: 20 - - - 1 9
2: 9 - - - - 3

5 57 5: 34 - 4 2 9 16 66.67%
4: 16 - - 1 2 23
3: 4 - - - 0 3
2: 1 - - - - 1

6 33 6: 18 0 2 3 2 9 65.63%
5: 8 - 0 0 0 0
4: 6 - - 0 1 4
3: 0 - - - - -
2: 0 - - - - -

6 Discussion and Conclusion
Protein’s functions are carried out through interacting and binding other molecules

on its surface region. The surface always contains many pockets which have shown
high relevance to active sites. The classification of these patterns would provide
valuable insights to the relationship between protein surface and function. In this
work, we proposed a novel method to cluster the pockets to small groups based on
community structure feature of the similarity network directly. We also provided
measurements to the clustering scheme in terms of the modularity Q and revealed
the implications of functional similarity among the pockets in the same group, which
provides evidences that these pocket groups are the clusters with both structural and
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functional similarity.
The structural similarity features among the pockets in a database level have

been explored by topological properties of the pocket similarity network [12]. Our
clustering method is based on the attribution of the similarity among the pockets.
This is an entirely new clustering scheme which stresses importance on the structural
similarity among the pockets, although there are some other clustering methods, such
as K-means [18]. Directly using the traditional clustering methods may have risk in
the structural data of the pockets. When we calculate the means of RMSD difference
of several pockets, the risk is that we may lose the essential implications of the value
of structural difference. In the friable case, we just used the similarity relationship
among the pockets and used the community detecting algorithm, we can enucleate
the similar pocket groups. The method can easily extend to other objects in protein’s
universe. A direct comparison and measurement among these clustering methods is
a challenging task for us in the future. Moreover, these pocket groups would have
potentially important applications. One direction is to develop a library of structural
motifs using these pocket groups. When the concrete functions of a group are iden-
tified, the group is a functional template and might be used to function prediction,
drug design and other bioengineering. The physicochemical features of the pockets
are important for understanding the functional sites, and the evolutionary informa-
tion can also be derived from the multiple pocket sequence alignment, which are our
undergoing work.

In conclusion, we developed a novel clustering scheme to assign the pockets
into small groups in a database level. The method is based on the unique features of
the similarity network, which maps the structural relationships in a systematic way.
We modified the community structure detecting algorithm to partition the network to
small clusters. The high modularity Q of the division provides evidence that the parti-
tion considers the topology information of the similarity network efficiently. And the
functional similarity within the pocket groups shows that the groups are biologically
meaningful. The presented method can be extended to other problems or defini-
tions in structural systems biology, and the simulation results demonstrated that the
functionally important pocket groups can have important applications in functional
genomics.
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