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Abstract Computational identification of missing enzymes plays a significant role in reconstruc-
tion of metabolic network. For a metabolic reaction, given a set of candidate enzymes identified by
certain biological evidences, there is a need to develop a powerful mathematical model to predict
the actual enzyme(s) catalyzing the reaction. In this study, a regression model is proposed to solve
the problem, in which a reversible jump Markov-chain-Monte-Carlo learning technique is used to
estimate the model parameters. We evaluate the model using known reactions in Escherichia coli,
Mycobacterium tuberculosis, Vibrio cholerae, and Caulobacter cresentus. It is demonstrated that
the model obtains favorable results compared with several other approaches.

Keywords Metabolic network; missing enzymes identification; regression model; Markov chain
Monte Carlo.

1 Introduction
The study of genomic sequencing and high-throughput biotechnologies is mak-

ing metabolic network reconstruction possible [1]. Such reconstruction enables sys-
tematic comprehending of molecular mechanism of cellular metabolism [2]. Bio-
chemical experiments in past decades have revealed metabolic functions in various
organisms, which contribute considerably to the reconstruction of metabolic net-
works. Meantime, pathway inference methods have been developed to complement
metabolic network reconstruction [3, 4]. However, there are still many metabolic re-
actions with enzymes unknown even in well-studied organism [5, 6], which results in
partially reconstructed network. In addition to conventional biological experiments,
recent study in systems biology attempt to invent computational methods to address
the problem.

A number of computational strategies have been proposed. PathwayTools hole-
filler [7] exploited sequence homology and pathway-based evidences to identify a set
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of candidates and subsequently predict actual enzyme(s) from the candidates using
Bayesian model. Chen et al. [8] combined local structure of metabolic networks and
phylogenetic profiles to identify missing genes. Kharchenko et al. [9] incorporated
co-expressing properties of metabolic network, which is complementary to the se-
quence homology method. Recently, Kharchenko [10] proposed a novel approach
based on local structure of metabolic network, gene expression, protein fusion events
and other evidences. The common theme of the strategies is to determine the actual
enzymes from a group of candidates. Therefore, there is a need to develop a power-
ful mathematical model to predict from candidates the actual enzymes catalyzing the
metabolic reactions of interest.

Here we proposed a model consisting of a mixture of k radial basis functions
(RBFs) and a linear regression term to predict actual enzymes, in which a reversible
jump MCMC technique [11] is adopted to estimate model order and the parame-
ters. Owing to its capability of model order selection, the reversible jump MCMC
exhibits satisfactory predictive performance in our experimental results. Moreover,
we compare its predictive power with Bayesian network model, which is previously
used in [7] for missing enzyme identification, support vector regression (SVR) [12],
perceptron, and back-propagation (BP) neural network [13].

2 Datasets
A metabolic reaction is known as chemical changes in living cells by which

energy is provided for vital processes, involving substrates, products, and enzyme.
While there are reactions with enzymes ‘missing’, some others have enzymes as-
signed to them based on literature, genomic sequence, or databases. These are re-
ferred to as ‘known’ reactions. We adopt ‘known’ reactions rather than ‘missing’
reactions to evaluate the proposed model. Two datasets are used in our study, that
is, ‘known’ reactions in Escherichia coli (E.coli) and three other bacteria: Mycobac-
terium tuberculosis (Mtu), Vibrio cholerae (Vch), and Caulobacter cresentus (Ccr).

Escherichia coli. For the sake of explanation, we arbitrarily choose 100 known
reactions (can use more) in E.coli. The reactions and enzyme information in E.coli
are available on the website of System Biology Research Group at UCSD, EcoCyc
[14], and Kyoto Encyclopedia of Genes and Genomes (KEGG) database [15]. We
use 100 reactions that can be found at all the three information resources.

Three other bacteria. We utilize mixed 60 known reactions (20 for each organ-
ism) taking placing in Mycobacterium tuberculosis (Mtu), Vibrio cholerae (Vch), and
Caulobacter cresentus (Ccr). The reaction information can be found at both KEGG
and MetaCyc database [16].

For each reaction in our datasets, first, a group of candidate proteins are identi-
fied. Second, a feature vector is calculated for each candidate. Third, the proposed
model is used to predict whether the candidates are actual enzymes catalyzing the re-
actions. Finally, we compare prediction results with prior knowledge of reactions and
their enzymes. It is noted that a few reactions fail to obtain any candidates by the can-
didate identification method adopted, due to low E-value resulting from insufficient
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sequence homology. In this case, we do not include them into our datasets.

3 Identification of candidate enzymes
The approach used by pathway-hole filler module in PathwayTools software

[17] is adopted to identify candidate enzymes. We define the protein catalyzing a
particular reaction in our dataset as has-function enzyme and otherwise no-function
enzyme.

For each metabolic reaction, the procedure of candidate identification proceeds
in the following manner. First, query from KEGG database other organisms, in which
the reaction is present. We retrieve the desired organisms from 497 organisms that
KEGG provides. Then both organism names and KEGG entry IDs of the genes en-
coding the actual enzymes are obtained. While in most cases one gene encodes one
enzyme, sometimes there are more than one gene encoding one enzyme in certain or-
ganisms. Second, retrieve from KEGG protein sequences corresponding to the genes
obtained from the previous step. Here we also use ‘isozymes’ to refer to those pro-
teins with the same function in a variety of organisms as [7]. Third, search the whole
target genome for sequences homologous to the query isozymes. BLAST [18, 19]
is employed to do the homology search. Generally, the more frequent a candidate
sequence is a hit; the more credible it is actual enzyme catalyzing the reaction. Fi-
nally, consolidate all BLAST hits into a final set of candidate proteins. A parameter
vector is then calculated from the consolidation result for each candidate as its fea-
ture used for downstream prediction. The vector has d = 7 elements, composed of
Shotgun-score, best E-value, average rank, average fraction aligned, pathway direc-
tion, adjacent-reactions, and average BLAST score, among which the definition and
calculation of the first six parameters are described in detail in [7]. Since BLAST
score is a direct measurement of sequence similarity and larger BLAST score usually
indicates higher homology, therefore the average BLAST score is also introduced as
one feature of each candidate.

4 Prediction Method
4.1 Problem formulation

Assume we have M known reactions. The reaction rm has q(m) enzymes can-
didates, m ∈ {1,2, ...,M}. Let the vector [xt,1 xt,2 ... xt,d]

∆= xt ∈ Rddenote the d-
dimension parameter vector of the t-th sample, t ∈ {1,2, ...,N}, then the overall data
becomes as below, in which the underlining candidates represent actual enzymes
catalyzing the reactions. The missing enzyme prediction is essentially a mapping
problem in the field of pattern recognition. The aim is to find a function f (xt) to
approximate the mapping formulated as following:

f (xt) =
{

1, if xt is actual enzyme
0, if xt is not actual enzyme (1)

We will use variable yt to denote the output values {0, 1} in the next subsection.
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4.2 Reversible jump MCMC learning of regression model
As stated in subsection 4.1, given a list of candidate enzymes identified accord-

ing to certain biological evidences, missing enzyme prediction is basically a mapping
formulated by equation (1). The mapping problem can be written in general notation
as f :x→ y. Suppose we have a group of N input-output observations (candidates):

O = {x1,x2, ...,xN ;y1,y2, ...,yN} (2)

We postulate the following multivariate-input, single-output mapping:

yt = f (xt)+nt (3)

Where xt ∈ Rddenotes a set of d-dimension input vectors, yt ∈ R is single variable
output, nt stands for noise, t ∈ {1,2, ...,N}. The purpose of the learning is to com-
pute an approximation to the function f and estimate the characteristics of the noise
process. We consider a mixture model M, consisting of a mixture of J RBFs and a
linear term [24], represented as:

M0 : yt = b+β T xt +nt , J = 0 (4)

MJ : yt =
J

∑
j=1

a jφ(||xt −µ j||)+b+β T xt +nt , 1≤ J ≤ Jmax (5)

where Jmax is the maximum number of basis functions (Jmax is set as 40), µ j ∈ Rd

denotes the j-th RBF center, a j ∈ R the amplitude of the j-th RBF, b ∈ R and β ∈ Rd

the linear regression parameters, and the noise nt ∈ N(0,σ 2) is assumed to be i.i.d.
Gaussian. ||.|| is the Euclidean distance metric. φ(ρ) = exp(−ρ2) is chosen as the
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basis function in our experiments. The space of the radial basis centers ΩJ is defined
as:

ΩJ
∆= {µ = [(µ1,1, · · · ,µ1,d); · · · ;(µJ,1, · · · ,µJ,d)]; µ j,i ∈ [minxl,i−0.1,maxxl,i +0.1],

j = 1, · · · ,J; i = 1, · · · ,d; l = 1, · · · ,N}
(6)

And defineΩ ∆= ∪Jmax
J=0{J}×ΩJ . For notational convenience, equations (4) and (5) can

be expressed in a vector-matrix fashion:




y1

y2

...

yN




=




1 x1,1 . . .x1,d φ(||x1−µ1||) · · ·φ(||x1−µJ||)
1 x2,1 . . .x2,d φ(||x2−µ1||) · · ·φ(||x2−µJ||)

...
...

...

1 xN,1 . . .xN,d φ(||xN−µ1||) · · ·φ(||xN−µJ||)







b
β1
...
βd

a1
...
aJ




+




n1

n2

...

nN




(7)
That is,

yN×1 = DN×(1+d+J).α(1+d+J)×1 +nN×1 (8)

We assume that the number J of RBFs and the parameters θJ
∆= {α,µ,σ 2} are un-

known. Given a set of observations O, our goal is to estimate J and θJ . Bayesian
inference is used to estimate the unknown parameters J and θJ . Hyper-parameter
Λ,δ 2 ∈ R+ are introduced and presumed to be independent of each other. More-
over, σ 2and δ 2 are assumed to have inverse-Gamma distribution, i.e.σ 2 ∼ IG(0,0),
δ 2 ∼ IG(2,10), and Λ has Gamma distribution, i.e. Λ ∼ Ga(0.5,0). According to
Bayes theorem, the joint posterior distribution can be formalized as:

p(J,α,µ,σ 2,Λ,δ 2|x,y) ∝ p(y|J,α,µ,σ 2,Λ,δ 2,x).p(J,α,µ,σ 2,Λ,δ 2) (9)

where p(y|J,α,µ,σ 2,Λ,δ 2,x) is the likelihood and p(J,α,µ,σ 2,Λ,δ 2) is the prior
distribution. The likelihood for model (8) is:

p(y|J,θJ,Λ,δ 2,x) = (2πσ 2)−N/2 exp(− 1
2σ 2 (y−D.α)′(y−D.α)) (10)

The prior distribution p(J,α,µ,σ 2,Λ,δ 2) is:

p(J,α,µ,σ 2,Λ,δ 2) =
p(α|J,µ,σ 2,Λ,δ 2).p(µ|J,σ 2).p(J|σ 2,Λ,δ 2).p(σ 2).p(Λ).p(δ 2) (11)

After standard probability marginalization and transformation, the joint posterior dis-
tribution (9) can be obtained as the following expression:

p
(
J,α,µ,σ 2,Λ,δ 2|x,y

)

∝
[
(2πσ 2)−N/2 exp

(− 1
2σ 2 (y−D.α)′ (y−D.α)

)][∣∣2πσ 2Σ
∣∣−1/2 exp

(− 1
2σ 2 α ′Σ−1α

)]

×(− 1
σ 2

)(− 1
Λ2

)[
IIΩ(J,µ)

ζ J

][
1

δ 2 exp(− 10
δ 2 )

][
ΛJ/J!

ΣJmax
j=0 Λ j/ j!

]

(12)
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Where Σ−1 = δ−2D′D and IIΩ = (J,µ) is the indicator function of the set Ω (1 if
(J,µ) ∈ Ω, 0 otherwise). One might select model order J by argmax p(J|x,y) with
J∈{0,. . . , Jmax}, and also can perform parameter estimation by computing the con-
ditional expectation E(θJ|J,x,y) based on (12). However, it is difficult to obtain
these quantities analytically, as it involves integrals of high-dimension of nonlinear
functions. Therefore, the reversible jump MCMC method was proposed to perform
necessary Bayesian computation in [20]. The principle of MCMC is to draw ran-
dom samples from an ergodic Markov chain (J(i),θ (i)

J ,Λ(i),δ 2(i))i∈N whose equilib-
rium distribution is the target posterior distribution. The initial values of µ1, ...,µJ

are randomly chosen according to (6) and initial value of J is Jmax. The Markov chain
generatesLÀ 1 sampling points, asymptotically convergent to the posterior distribu-
tion. We discard the points resulted from the initial steps, which is so-called in-birth
period, and keep the last P steps for the computation. Here we set L = 2000 and P =
1000. Given a test sample xN+1, yN+1 can be then evaluated by:

ŷN+1 = Ê(yN+1|x1, · · · ,xN+1,y1, · · · ,yN) =
T. 1

P ∑P
i=1 D(µ (i),xN+1).E(α|J(i),µ (i),σ 2(i)

J ,δ 2(i),x1, · · · ,xN ,y1, · · · ,yN)
(13)

where T is a threshold for determining whether ŷN+1 is nearer to 1 or 0. If |ŷN+1-
1| ≤ |ŷN+1|, the test sample is predicted as has-function enzyme. The reversible jump
MCMC sampler is able to sample directly from the joint distribution and jump be-
tween subspaces of different dimensions. A Metropolis-Hasting (MH) algorithm is
performed, in which candidates are proposed based on proposal distributions. The
candidates are randomly accepted according to an acceptance ratio that ensures re-
versibility and invariance of Markov chain with respect to the posterior distribution.

5 Results and Discussion
To evaluate the predictive power of the proposed model, we compare its perfor-

mance with several other models: SVR, Bayesian network model, perceptron, and BP
neural network, among which Bayesian network was previously adopted by Green et
al [7].

5.1 Candidate identification
For each reaction in the dataset, we performed the procedure depicted in sec-

tion 3. For the E.coli data, totally 3349 candidates are identified for 100 reactions
and 121 out of the 3349 actually catalyze corresponding reactions. For Vch, Mtu and
Ccr data, 2592 candidate proteins are identified for the overall 60 reactions and 72
out of the 2592 are actual. Note that the amount of no-function candidates is con-
siderably larger than that of has-function candidates. Table 1 shows an example of
candidate identification results. A group of seven sequences from the E.coli genome,
i.e., b1850, b1581, b2247, b2871, b3686, b4477, and b4478 are identified as candi-
date proteins possessing 2-dehydro-3-deoxy-6-phosphogalactonate aldolase activity
(E.C. 4.1.2.21), among which the one shown in bold (b4477) has been experimentally
identified [21].
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Table 1: Candidate identification result for 2-dehydro-3-deoxy-6-
phosphogalactonate aldolase

GeneID Shotgun
score

Best
E-value

Average
score

Average
Fraction
aligned

Average
rank

Pathway
direction

Adjacent
rxns

b1850 15 2e-14 63.18 0.27 2 0 0
b1581 4 1e-46 170.25 0.29 2 0 0
b2247 4 2e-20 87.83 0.28 3 0 0
b2871 4 0.65 28.3 0.27 3.25 0 0
b3686 1 0.29 29.6 0.41 3 0 0
b4477 15 5e-105 213.33 0.59 1 1 1
b4488 4 0 587.75 0.77 1 1 1

5.2 Cross validation
The cross validation herein is basically a binary classification test. For E.coli

data, we randomly partitioned all the candidates into five separate groups and five-
fold cross validation was then performed to evaluate the predictive power of five
different models, i.e. reversible jump MCMC, SVR, perceptron, BP neural network,
and Bayesian model. For Vch, Mtu and Ccr data, three-fold cross validation was
applied.

For a binary classification test, specificity and sensitivity are usually used for
performance assessments. Specificity indicates the ability to correctly predict neg-
ative cases, i.e. true negative (TN) or no-function enzymes. Ssensitivity indicates
the ability to correctly predict positive cases, i.e. true positive (TP) or has-function
enzymes. In our experiments, both specificity and sensitivity are measured. How-
ever, we consider that sensitivity is more important for missing enzyme identification
problem because the cost of a false positive is much less than the cost of a false
negative.

5.3 Performance comparison
We tuned model parameters and chose the best performance in cross validation.

The Fig. 1 shows the performance comparison of the five models. It can be observed
that reversible jump MCMC model outperforms the other four in both datasets. The
results are as expected because reversible jump MCMC contains both linear and non-
linear term, it can be seen as a model between perceptron and back-propagation neu-
ral network. Moreover, SVR also exhibits favorable prediction power and it can be
considered when model complexity is emphasized more than predictive performance.

Tables 2 shows the details of performance obtained from five models.
Moreover, we draw receiver operation characteristic (ROC) curves for reversible

jump MCMC, SVR and Bayesian models to compare their prediction capability.
Each ROC curve is created by plotting the number of TPs against that of FPs obtained
by 50 gradually increasing thresholds for classification of has-function or no-function
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(a) The E.coli data (b) The Mtu, Vch, and Ccr data

Figure 1: Performance comparison, gray bars represent specificity and black repre-
sents sensitivity.

Table 2: The performance of five prediction models in E.coli and three other bacteria
data.

Models
E.coli Three other bacteria
Specificity Sensitivity Specificity Sensitivity

Reversible jump
MCMC

0.9873 0.9456 0.9817 0.9841

SVR 0.9821 0.9422 0.9803 0.9441
Perceptron 0.9893 0.9183 0.9972 0.8518
BP neural network 0.9954 0.8946 0.9954 0.7947
Bayesian network 0.9975 0.8811 0.9945 0.7786

enzymes. The ROC comparison results of both datasets are shown in the Fig. 2.
Although the ROC curves indicate that Bayesian method performs better in

lower number of FPs, reversible jump MCMC and SVR outperform Bayesian at
higher number of FPs. As explained in section 5.2, we prefer a higher number of
TPs at the cost of relatively high number of FP in this problem due to the more ex-
pensive experimental cost of a FN than a FP.

6 Conclusion
Computational identification of missing enzymes is important in metabolic net-

work reconstruction. In this study, first, we adopted the approach of Green et al [7]
to identify a list of candidate enzymes for each reaction and a feature vector is cal-
culated for each candidate. Then, a regression model is proposed to predict whether
these candidates are actual or not, in which a reversible jump MCMC technique is
used to learn the model parameters. To evaluate the model, we applied it into known
reactions occurring in E.coli and three other bacteria. We compared the method with
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(a) The E.coli data

(b) The Mtu, Vch, and Ccr data

Figure 2: The ROC curves of reversible jump MCMC, SVR, and Bayesian model.

four comparable models: Bayesian network, SVR, perceptron, and BP neural net-
work. The results indicate that the proposed method performs favorable.
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