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Abstract The effects of an additive noise due to stochastic environmental fluctuations on robust
collective behaviors in a population of oscillators with dynamical coupling are investigated. We
show that an appropriate noise intensity may induce robust collective behaviors by compensating
the coupling inefficiency, reducing the coupling redundance, and eliminating the sensitive depen-
dence on initial conditions. The interplay between the noise and the coupling reduces the large
fluctuation on period, thereby enhancing its robustness. The comparison of synchronization proba-
bility for two interacting and noninteracting oscillators shows that the noise can play a more active
role in synchronizing interacting oscillators than noninteracting oscillators due to the combined
influences of the noise and coupling. The constructive roles of the noise are verified with a multi-
cellular system of coupled glycolytic oscillators.

1 Introduction
Cells are continuously subjected to conditions in the form of both intrinsic

rhythms generated by intracellular clocks and outside fluctuating environment [4,12].
The rhythm generators are composed of a lot of clock cells which manage to function
in a coherently oscillatory manner [2, 24]. Physiological functions derive from the
interactions of the cells not only with each other but also with extracellular medium
to generate rhythms essential for life [5]. It seems likely that many bodily activities
require synchronization of cellular activities such as circadian clocks residing at the
suprachiasmatic nuclei [6, 28]. Most previous works are performed to the case of
direct coupling, i.e. there is a physical contact between cells. It is probably more
realistic to consider an indirect coupling by taking into account substances which
may diffuse across the cellular membrane into the extracellular space and may enter
the cytoplasm of other cells [1, 18]. Recently, different mathematical models such as
coupled repressilators [4, 23, 24], relaxation oscillators [12], and glycolytic oscilla-
tors [26, 27] have been proposed to analyze collective behaviors in a population of
oscillators with indirect coupling.
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Oscillators are rarely strictly periodic but rather fluctuate irregularly over time.
The fluctuations arise from the combined influences of the fluctuating environment,
i.e. external noise due to the environmental perturbations or stochastic variations of
externally set parameters, intrinsically random nature of chemical reactions, i.e. in-
ternal noise due to random transitions among discrete chemical states, and biological
variance, i.e. small differences between cells [3,10,19,22]. The continual interaction
between the fluctuating environment and individual internal feedback mechanisms
makes the separation of dynamics impossible. In either case, additive, multiplicative
stochastic terms or random parameters are used to simulate the stochastic fluctuations
[8, 4]. Different from the introduction of a common noise in independent oscillators,
for a population of oscillators with indirect coupling, the fluctuating environment in-
duces fluctuations in the coupling substances, the dynamics of individual cells is thus
inevitably affected [2, 30].

It is not usually clear whether the stochastic fluctuations are essential to physio-
logical functions or whether physiological functions are carried out despite the fluctu-
ations. It has been found that the stochastic fluctuations may not only affect dynamics
of both individual cells and the entire multicellular system but may also be exploited
to actively facilitate certain functions such as synchronization [2, 30]. Some other
important roles in single cells such as being a switch or amplifier for gene expression
through additive and multiplicative external noise [8, 15] and enhancing sensitivity
of intracellular regulation [14] have been also found. For populations of oscillators,
some phenomena induced by stochastic fluctuations such as phase synchronization
of limit cycle oscillators [21], perfect synchronization of chaotic systems [20], and
coherence resonance [11] have been extensively studied. Although these significant
advances on elucidating noise-induced synchronization in recent years, active roles
of the stochastic fluctuations in collective behaviors and details of the roles are still
not precisely known although stochastic fluctuations are indeed ubiquitous through-
out biological systems.

The main purpose of this paper is to investigate the active roles of an additive
noise due to stochastic environmental fluctuations in collective behaviors of interact-
ing oscillators. Specifically, we show that the noise can induce collective behaviors
of the oscillators when the coupling strength is below or above the synchronization
threshold by compensating the coupling inefficiency or reducing the coupling redun-
dance. The large fluctuation in the period of the oscillations due to the variation of the
coupling strength in the noiseless case can be reduced by the interplay between the
noise and the coupling, therefore enhancing robustness of the period. Our analysis
focuses on a multicellular system of coupled glycolytic oscillators.

2 Multicellular networks with stochastic noise
In a cell, the processes that generate mass, energy, information transfer and

cell-fate speciation are seamlessly integrated through a complex network of cellular
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constituents and reactions. The network in a cell can be expressed as

dx(t)
dt

= f (x(t)), (1)

where x(t) = (x1(t), · · · ,xm(t)) is the concentrations of the components, e.g., mRNA,
proteins, enzymes, substrates or other chemical complexes, and m is the total number
of species in the cell.

Assume that there are N cells and the individual cells interact via the flux of sub-
stances which are produced in all cells and may permeate though the cell membrane.
Then, the multicellular system can be represented as

dx j(t)
dt

= f (x j(t))+κ(y(t)− x j(t)), j = 1, · · · ,N, (2)

where y(t) = (y1(t), ...,ym(t)), corresponding to intracellular x(t), is the concentra-
tions of the species in the extracellular environment that are assumed to be spatially
well mixed. The matrix κ = diag(κ1, · · · ,κm) is the coupling strength from the extra-
cellular environment to cell- j due to the flux of substances and defined by

κi =
APi

V
, i = 1, · · · ,m, (3)

where V is the volume of the individual cells, Pi is permeability of the membrane to
the substance yi, and A is the cell surface area.

Different from directly coupled networks such as interconnected neural net-
works [6], any two oscillators in (2) are not directly coupled but interacted indirectly
through a diffusive and mixing process with a dynamical extracellular environment
y(t). By assuming freely and quickly diffusive coupling between the individual os-
cillators and the environment so that y(t) becomes quickly homogenous to establish
an average level in the extracellular medium, as in [4,12,24,29], the dynamics of y(t)
in the extracellular medium is given by

dy(t)
dt

=
κϕ
N

(
N

∑
j=1

x j(t)−Ny(t)

)
, (4)

where ϕ is the ratio of cell volume and total extracellular volume. The collective
behaviors of Equations (2) and (4) are still a challenging problem although some
pioneering works have been achieved [25].

Living systems are inherently noisy and are optimized to function in the pres-
ence of stochastic fluctuations. Stochastic effects in biological systems have now
been recognized as a major physiological and evolutionarily important factor in the
development and function of any living organisms. Basically, three different types
of noise can be recognized in real biological systems: external noise, internal noise
and biological variance. External noise is the type of stochastic fluctuations intro-
duced by environment perturbations such as climate fluctuations, imperfect culture
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mixing or random fluctuations of externally set parameters. Internal noise is inher-
ent because of the intrinsically random nature of chemical reactions. Its magnitude
is proportional to inverse of the system size and its origin can be traced to random
transitions among discrete chemical states. Biological variation, which is not truly a
form of noise, is due to small differences in intrinsic properties between individuals.
A way of representing biological variation is to make biological units different from
each other. Obviously, multicellular systems are subject to all these types of noise
and possibly others, but the effects of these stochastic fluctuations can be studied
independently or as a group.

The latter types of noise, i.e. the internal noise and biological variation, and
the external noise may play different roles. The intracellular noise and the biologi-
cal variation play an independent role inside each cell and contribute mainly to the
differences of individual cells, therefore, they generally have a tendency to disturb
cooperative behaviors between individual cells. On the other hand, the external noise
is common to all cells because the fluctuating environment is shared by all cells. By
exerting the same stochastic fluctuations on each cell through coupling substances,
stochastic fluctuations in the environment may induce collective behaviors and pos-
sibly play other active roles. Therefore, by assuming large number of components or
large size of the system, we ignore the internal fluctuations and use Equation (1) as
an approximation of the concentrations of all components involved and just consider
effects of stochastic fluctuations in the environment.

To take the stochastic fluctuating environment into account and study its effect
on the collective behaviors, Equation (4) is augmented with an additive stochastic
term

dy(t)
dt

=
κϕ
N

(
N

∑
j=1

x j(t)−Ny(t)

)
+ση(t), (5)

where η(t) is a Guassian white noise with mean zero 〈η(t)〉= 0 and delta correlated
〈η(t)η(t ′)〉= δ (t− t ′). σ is the noise intensity.

The multicellular system described by Equations (2) and (5) is stochastic differ-
ential equations with combined effects of noise and coupling, which remain seldom
studied regardless of their ubiquitous nature. It is believed that the interplay between
the nonlinear dynamics of individual cells, noise, and coupling can play an important
role in the multicellular system, and often generate some interesting phenomena. For
example, an ensemble of independent neuronal oscillators may be synchronized by a
fluctuating input applied commonly to all of them, and common environment fluctu-
ations such as climate changes may synchronize different populations separated by a
large geographical distance. Some analytical and numerical studies of noise-induced
synchronization phenomena such as phase synchronization of limit cycle oscillators
[21], perfect synchronization of chaotic systems [20], and coherence resonance [11]
were also given. Although these significant advances on elucidating noise-induced
synchronization in a population of oscillators in recent years, active roles of the noise
in collective behaviors of the oscillators and details of the roles are still not precisely
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known although stochastic fluctuations are indeed ubiquitous throughout biological
systems.

Next, we show that the additive noise actually play active roles to induce collec-
tive behaviors. Our analysis focuses on a multicellular system of coupled glycolytic
oscillators.

3 The model
We investigate models for suspensions of interacting cells, in which the individ-

ual cells show metabolic oscillations. The dynamics of the metabolites is described
by kinetic equations which were proposed for the explanation of glycolytic oscilla-
tions [9, 16, 26]. The dynamics of the metabolites inside each cell is governed by
equations:

dx1

dt
= v− x1x2

2,

dx2

dt
= x1x2

2−βx2.

(6)

The equations describe a system where the compound x1 is supplied by a constant
input v and degraded by an autocatalytic reaction. The latter reaction produces the
compound x2.

We consider suspensions consisting of arbitrary number N interacting cells.
Each cell contains an oscillatory reaction system described by Equation (6). It is
supposed that the individual cells interact via the flux of metabolite x2, which is pro-
duced in all cells and may permeate through the cell membranes. Moreover, the
release of metabolite x2 is supposed to be fast enough so that it quickly becomes ho-
mogeneous to establish an average level or a mean field in the extracellular medium.
For the case of slow diffusion or inhomogeneity, diffusion-reaction equations or other
techniques are more appropriate to describe the spatially heterogeneous culture. To
handle inhomogeneity in a more accurate manner is important on studying cellular
dynamics, and we leave this for our future work.

Let y represent the concentration of x2 in the extracellular medium. The system
comprises N oscillators which are coupled by the transmembrane flux of the metabo-
lite x2. To take stochastic fluctuations in the extracellular medium into account, an
additive noise is used to simulate the situation where a population of oscillators are
subjected to the environmental fluctuation η(t)

dx1i

dt
= v− x1ix2

2i,

dx2i

dt
= x1ix2

2i−βx2i−κ(x2i− y),

dy
dt

=
κϕ
N

(
N

∑
j=1

x2 j−Ny)+ εη(t),

(7)

Noise-induced Robust Collective Behaviors in a Multicellular System 125



where η(t) is an independent white noise with intensity ε . In the noise-free case, i.e.
ε = 0, synchronous or asynchronous oscillations may occur for different parameter
regions [26].

The transmembrane flux of the metabolite provides a mechanism of intercellular
coupling. All cells interact with each other through a common fluctuating extracellu-
lar environment and stochastic fluctuations are indeed ubiquitous through biological
systems. Next, we will investigate the active roles of the common additive noise in
collective behaviors of interacting oscillators. Specifically, we will study the collec-
tive behaviors induced by the noise and the relationship between the coupling and the
noise, and compare the synchronization probability for two interacting and noninter-
acting oscillators.

4 Results
4.1 Synchronization of noisy oscillators by stochastic fluctuations

Since individual cells interact with each other among the fluctuating extracellu-
lar medium, the change of effective rate of transmembrane diffusion, disruption of the
oscillatory processes beyond normal bounds, and emergence of abnormal oscillations
are often associated with the loss of collective behaviors. Moreover, diseases can
also lead to alternations from normal collective behaviors to abnormal non-collective
ones. However, large fluctuations of the extracellular medium have long been con-
sidered to be associated with the loss of collective behaviors, i.e. exert a negative
influence on the precise temporal relationship between oscillators.

In the absence of the stochastic fluctuations, i.e. σ = 0, collective behaviors
may not occur due to coupling inefficiency or some other reasons. The population of
oscillators contain small differences in intrinsic properties between individual cells,
giving rise to a relatively broad distribution in the periods and amplitudes of the in-
dividual oscillators. We consider a system of 100 cells, where κ follows a Gaussian
distribution with a mean of κ = 1.8 and standard deviation ∆κ = 0.04 due to different
permeability. The temporal evolution of the component x1i concentrations for 10 ran-
domly chosen oscillators is plotted in Figure 1(a), showing that collective behaviors
can not be observed under these conditions.

Different from the generally used method, i.e. increasing the coupling strength
to compensate the coupling inefficiency, we try to investigate how to induce col-
lective behaviors by the stochastic fluctuations. Figure 1(b) shows that the stochastic
fluctuations can indeed induce collective behaviors although their natural periods and
amplitudes are broadly distributed. Thus, a transition from desynchronization to syn-
chronization exists for an appropriate noise intensity. The synchronized oscillators
are not strictly periodic due to the stochastic fluctuations. Actually, in natural envi-
ronment, oscillators are rarely strictly periodic. The approximate period is identical
for all oscillators. Because not all of the oscillators have the same individual period,
a perfect synchronization cannot be achieved and phase differences between some
oscillators still persist, as shown in Figure 1(b). Actually, perfect synchronization
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Figure 1: Noise-induced collective behaviors in a population of noisy oscillators at
β = 3.3, v = 3.0, and φ = 0.2. The coupling strength κ is chosen from a random
Gaussian distribution of mean κ = 1.8 and ∆κ = 0.04. (a) Asynchronous oscillations
of x1i for 10 randomly chosen oscillators in the absence of the stochastic fluctuations.
(b) Synchronous oscillations induced by the stochastic fluctuation at σ = 0.09.

can be easily induced by the stochastic fluctuations if all individual oscillators are
identical.

Notice that although the noise intensity required is large enough so as to induce
collective behaviors, the deterministic parts of the system still paly an important role
in the collective behaviors. In other words, the basic structure of the periodic os-
cillations remains present although there are some fluctuations in their amplitudes
and periods. Moreover, when collective behaviors occur in the noise-free case, they
can be also preserved for moderate levels of noise except some fluctuations in their
amplitudes.

4.2 Enlarging synchronization region
Understanding dynamics of the coupled nonlinear oscillators with an additive

noise is not straightforward. Therefore, it is useful to study a reduced system com-
prising only two identical coupled oscillators. The bifurcation diagram of the re-
duced system comprising two identical coupled oscillators is shown in Fig.2. Three
different regions in the β −κ parameter space, i.e. the regions of stable equilibria,
asynchronous oscillations, and synchronous oscillations, are found. In the blank re-
gion above the solid line, where Hopf bifurcation occurs, the equilibria are stable
and no oscillations occur. The oscillations in the regions indicated by solid and open
circles are synchronous and asynchronous, respectively. For β < β̄ ≈ 2.9, when the
coupling strength κ is below the solid line, asynchronous oscillations occur, while
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when the coupling strength κ is above the solid line, the system will converge to a
stable equilibrium. Therefore, collective but oscillatory behaviors never occur. In
other words, collective behaviors can not be achieved by just increasing the coupling
strength κ . While for β > β̄ , an appropriate coupling strength can induce collective
behaviors. Collective behaviors can be achieved by increasing the coupling strength
κ if it is insufficient to induce the collective behaviors. However, different from the
results in [6], where better synchrony can be obtained by increasing the coupling
strength, lose of the collective behaviors may occur if we further increase the cou-
pling strength, i.e. redundant coupling strength may induce desynchronization. To
get insight into the relative importance of the noise, we consider two cases: β > β̄
and β < β̄ .

Figure 2: Bifurcation diagram established as a function of β and κ for two coupled
oscillators at v = 3.0 and φ = 0.2. Shown are the regions of occurrence of stable
equilibria, synchronous (solid circles) and asynchronous (open circles) oscillations.

The time evolution of collective behaviors induced by the additive noise for the
first case, i.e. β > β̄ , is shown in Figure 3, where the coupling strength is chosen
from the regions below and above the synchronization region, respectively. The tra-
jectories starting with different initial conditions are asynchronous in the noise-free
case. However, they can be synchronized perfectly when moderate levels of the noise
are introduced. Therefore, when the coupling strength is below the synchronization
threshold and insufficient to induce collective behaviors in the noise-free case, the
stochastic fluctuations can be used to compensate the coupling inefficiency, as shown
in Figure 3(a). While when the coupling strength lies above the synchronization
threshold, the stochastic fluctuations can be also used to reduce the redundant cou-
pling strength so as to induce collective behaviors, as shown in Figure 3(b). Actually,
for any parameters chosen in the oscillatory region, an appropriate noise intensity can
always be found to induce collective behaviors, therefore enlarging the synchroniza-
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tion region in the parameter space.
Collective behaviors can not be achieved by just regulating the coupling strength

when β < β̄ . The stochastic fluctuations can still induce collective behaviors, as
shown in Figure 4(b). Different from the case β > β̄ , where collective behaviors can
be obtained by regulating the coupling strength or the noise intensity, when β < β̄ ,
only appropriate stochastic fluctuations can induce collective behaviors. Therefore,
the noise plays a more crucial role in inducing collective behaviors for such a case.
In the noise-free case, asynchronous oscillations emerge with a constant phase shift,
as shown in Figure 4(a), which was denoted by regular asynchronous oscillations or
anti-synchronous oscillations [26].
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Figure 3: Noise-induced collective behaviors at β = 3.3, v = 3.0, and φ = 0.2. (a)
κ = 1.9 and ε = 0.09. (b) κ = 2.35 and ε = 0.04.

4.3 Relationship between the coupling and noise
In the noise-free case, there is only a small region in the parameter space where

collective behaviors can be induced by the coupling, as shown in Figure 2. The
coupling, however, can still play an important role in the noise-induced collective
behaviors even when it lies outside the synchronization region. The synchronization
probability Ps = ns/n as a function of the coupling strength for different noise inten-
sity is shown in Figure 5, where n is the number of performances of the trial and ns

is the number of occurrence of synchronization in the course of the n performances.
The probability increases with the increasing of the coupling strength. When the cou-
pling strength and noise intensity are large enough, collective behaviors occur with
probability 1. Moreover, for the same coupling strength, the larger the noise intensity
is, the larger the synchronization probability becomes. The results show that the col-
lective behaviors are induced by both the coupling and the noise, rather than only by
the coupling or noise, although noise can also induce synchronization in a population
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Figure 4: Noise-induced collective behaviors at κ = 1.6 and β = 2.85. (a) Asyn-
chronous oscillations in the noise-free case. (b) Synchronous oscillations at ε = 0.08.

of noninteracting oscillators [21, 20].
The minimum noise intensity σmin required to induce collective behaviors with

probability 1 as a function of the coupling strength κ is shown in Figure 6. The
system can be easily synchronized by the stochastic fluctuations with probability 1
although collective behaviors never occur in the noise-free case at the chosen param-
eter β = 2.8. Furthermore, approximately, the smaller the coupling strength is, the
larger the noise intensity is required to induce collective behaviors. When sponta-
neous synchronization cannot occur just by adjusting the coupling strength under the
natural fluctuations, artificial noise or external input can be also adopted [2, 24]. The
results show that the stochastic fluctuations of the coupling substance in the extra-
cellular medium accelerate the transmembrane diffusion and finally induce collective
behaviors. Therefore, the coupled system with stochastic environmental fluctuations
can be more easily synchronized and has a less requirement to the system parameters.

4.4 Noise-improved robustness of period
In the noise-free case, a transition from asynchrony to synchrony or from syn-

chrony to asynchrony due to the variation of the coupling strength may also induce
fluctuations in the period or amplitude of the oscillations because of the dependence
of the system dynamics on the coupling. However, the fluctuations may be reduced
due to the combined influences of the coupling and the noise. The period as a func-
tion of the coupling strength κ for the cases of with and without noise is shown in
Fig.7. In the noise-free case, sudden changes in the period take place at κa ≈ 1.98
and κb ≈ 2.28, where transitions from asynchrony to synchrony and from synchrony
to asynchrony occur, as shown in Figure 2. When κ < κa or κ > κb, there is a phase
shift between the two oscillators and synchronization does not occur. Moreover, the
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Figure 5: The synchronization probability Ps as a function of the coupling strength
κ at β = 2.8.

external metabolite oscillates with the double frequency compared to the internal
substances. While when κa < κ < κb, synchronization occurs and the the external
metabolite oscillates with the same frequency as the internal substances. Such a case
can still occur for a high number cells [26].

However, when the stochastic fluctuations are taken into account, the sudden
change in period disappears. An appropriate noise not only reduces the fluctuations
in the period but also induces collective behaviors with an approximately constant
period despite the noise and the variation in the coupling strength. Moreover, when
collective behaviors occur in the noise-free case, i.e. when κa < κ < κb, the period
for the two cases of with and without noise is very close. In other words, the period
are very well conserved despite the noise, and only the amplitude undergoes small
variations.

The noise reduces the large fluctuations in the period and makes the change of
the period very smooth, therefore enhancing the robustness of the period against vari-
ations in the coupling strength. Generally, investigation of robustness for oscillators
focus on the period sensitivity to evaluate the precise time-keeping ability with re-
spect to noises or other parameters [17]. Our results show that noise may play more
constructive roles in robustness properties and makes living organisms harmoniously
organize their components and produce collective behaviors more easily. The results
may also help us to understand complex physiological rhythms such as circadian os-
cillators which keep a period of 24 hours despite alternation of light and darkness,
variation of climate, or some other environmental perturbations [6].
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Figure 6: The minimum noise intensity σmin required to induce collective behaviors
with probability 1 as a function of the coupling strength κ at β = 2.8.

5 Conclusion
In this paper we have investigated noise-induced cooperative behaviors in a cou-

pled system for microbial cells. The active roles played by stochastic fluctuations in
the extracellular medium have been obtained for a multicellular system of coupled
glycolytic oscillators. The relationship between the coupling and the noise was ex-
amined. We showed that both the noise and coupling play active roles in inducing
cooperative behaviors of the coupled system. The results enable us to predict, by
assessing parameter values including noise, whether or not the intercellular coupling
and the noise can induce collective behaviors in a population of cells so as to fulfill the
intercellular communication or attain concerted biological behaviors. Such dynami-
cal analysis can be also used to design robust collective behaviors with probability 1
despite stochastic fluctuations in the extracellular medium.

The effects of stochastic fluctuations on cooperative behaviors across a popula-
tion of coupled oscillators have not been extensively studied and roles of noise is not
well understood or still unclear. We show that a common noise and coupling can play
some active roles, which seems to contradict to our intuitive predictions based on a
’negative’ meaning of the word ’noise’. Our results suggest that perhaps just such
essential and constructive roles played by the noise and coupling may make living
organisms harmoniously organize their various apparatuses and actively accomplish
collective behaviors.
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