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Abstract Most gene products facilitate their functions within complex interconnected networks
by interacting with other biomolecules. Thus elucidating protein functional relationships from their
interacting neighbors is one of the challenging problems of the post-genomic era. High-throughput
experiments such as genome-wide protein-protein interaction networks are expected to be fertile
sources of information for deriving their functional relationships. However, a high rate of false
positives and the sheer volume of the data are making reliable interpretation of these experiments
difficult. In this work, we overcome these difficulties by using a network-based statistical signif-
icance analysis method that forms reliable functional associations between proteins. The basic
mechanism is if two proteins share similar neighbors globally than random, they have close func-
tional associations. Our method tries to establish a framework to explore the protein relationships
by analyzing statistical significance of sharing similar global partnerships for all protein pairs in
the interaction network. In this framework, many methods can be integrated to globally define
and construct protein neighborhood from protein interaction data. Furthermore our framework can
be applied directly to binary data, experimental strength data and integration data. Applying our
framework in yeast protein interaction datasets and the shortest path to form protein neighborhood,
our method is shown to be able to infer reliable functional linkages from experimental data which
are verified by GO functions.

Keywords Functional linkage map; protein-protein interaction; GO function; statistical signifi-
cance.

1 Introduction
Annotating protein functions is one of the most challenging problems of the

post-genomic era. Traditionally, functional annotation of proteins can be summarized
as sequence based approaches, structure-based approaches, motif-based approaches
and“guilt-by-association”based approaches. The basic idea of them is that if pro-
tein Pa has function X and protein Pb is often“associated”by possessing sequence
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similarity, structure similarity or common motifs with protein Pa, the protein Pb might
have a similar function related to X.

Generally, a biological function is facilitated not by the individual proteins but
by the interactions or a concerted effect of those proteins. Furthermore the possibil-
ity to access protein’s interaction patterns has attracted the attention from the study
of single proteins or small complexes to that of the entire proteome, which makes
it possible to annotate protein function by their neighbors in protein interaction net-
work [1, 2, 3], with nodes representing proteins and edges representing the detected
PPIs (protein-protein interactions). In this context, the research on reliable methods
for revealing proteins’ function relationships from experimental data is of uttermost
importance. The reason lies in that there are many new proteins whose biological
functions remain a mystery.

The framework of a ‘functional linkage network’ [4] is a promising step toward
obtaining a detailed understanding of the functional relationships between proteins.
In a typical functional-linkage network, each node corresponds to a protein, and an
edge connects two proteins if some experimental or computational procedure sug-
gests that these proteins might share the same function. Though such links reveal
the important clues to relate proteins by their function similarity, they usually do not
provide the detailed information on which specific functional annotation the proteins
share. The single function annotation can be achieved based on the local or global
neighbor information in functional linkage network [4, 5, 6, 7, 8].

Commonly there are two ways to form the functional linkage between proteins.
One way is to integrate various biological experimental data and then to extract the
information contributed to functional relationships. For instance two proteins might
be linked if they share similar sequence, structure or gene ontology, test positive in
a yeast two-hybrid screen, in the same protein complex or if their gene-expression
patterns are correlated in several experimental conditions [7]. The other way is dis-
covering reliable protein interactions from high-throughput experimental protein in-
teraction data using network topology. For example in [9] a network-based statisti-
cal algorithm allows us to derive functions of unannotated proteins from large-scale
interaction data. They hypothesize that if two proteins have significantly larger num-
bers of common interaction partners in the measured data set than what is expected
from a random network, it would suggest close functional links between them. But
in their method only local neighbors are considered thus it suffers from the highly
errorneous high-throughput experimental methods, such as yeast-two-hybrid or tan-
dem affinity purification, which have been reported high false positive rates. It will
lead to potentially costly spurious discoveries.

To utilize the global information in the protein interaction data to get reliable
functional relationships, many methods are proposed to redefine the reliable inter-
action relationship between two proteins, such as shortest path, alternative path or
diffusion kernel [2, 5]. They all show that global information in protein-protein inter-
action network is useful to discovering reliable protein interaction. But no statistical
significance analysis is preformed based on the interaction from global information.
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In this paper, we establish a unified framework to explore the protein relation-
ships by analyzing statistical significance of sharing similar global partnerships for
all protein pairs in the interaction network. In this framework, many methods to glob-
ally bridge protein pairs by protein interaction data can be integrated, such as shortest
path, domain level inference[10, 11] and diffusion kernel. Furthermore we deal with
the protein-protein interaction data as real numbers instead of binary values. It means
that the interaction relationship of two proteins are assessed by a probabilistic score.
The reason lies in that strength data have more information and it is more reasonable
to consider the noise in biological data.

2 Methods and materials
We represent the evidence from protein-protein functional relationships using

a graphical formalism called a functional linkage graph in which an edge or link
between two nodes (proteins) represents evidence that they might share the same
function. The translation of experimental data containing information of protein rela-
tionships into a functional linkage graph is straightforward based on the observation
that if two proteins share similar neighbors globally than random, they have close
functional associations. In this section we will introduce the shortest path method as
an example to form the global neighborhood for every protein by protein interaction
data and then describe the statistical significance analysis framework.

Mathematically, the functional linkage network is an undirected graph G =
(V,E), where the node set V = {P1,P2, · · · ,Pn} is all the proteins concerned. The
edge set is E = {ei j, i, j = 1,2, · · · ,n} and ei j denotes the strength of functional re-
lationship between proteins Pi and Pj. To construct such a functional linkage network,
our strategy is firstly to represent every protein (node of G) by a vector considering
all its neighbor relationships with other proteins, then a statistical method is applied
to derive the score to assess the strength of functional relationship between two pro-
teins.

As an example, we deal with protein interaction data to show how to build func-
tional linkage by utilizing global information. Similarly protein interaction network
is expressed by G = (V,Φ), here Φ = {ρi j, i, j = 1,2, · · · ,n} and ρi j denotes the
interaction strength of proteins Pi and Pj (ρi j = 0,1 for the binary data) [12]. Then
the key is the translation of protein-protein interaction data (real type or binary type)
into a functional linkage score for every protein pair.

2.1 Representing protein by its neighborhood information
With the protein interaction network G = (V,Φ), global information is extracted

from the network topology to represent protein by the relationships with other pro-
teins. Given an appointed protein, it is naturally to consider its neighbors to get
the functional information because proteins facilitate their functions by intercon-
nected macromolecules. The problem is how to define the neighborhood relation-
ship between proteins. Protein interaction network provides natural neighborhood
by its graph representation G = (V,Φ). In such a graph, a set of proteins connected
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to the appointed protein (physically interacting) are defined as ‘neighbors’. Previ-
ous methods for protein function prediction are almost based on this neighborhood
[7, 8, 13, 14]. Recently instead of using direct interaction neighbor, non-directly
interacting neighbors at different levels are also incorporated to give more clues of
functional linkage [2, 6, 15].

In this paper, we will focus on the transitive functional relationship by defin-
ing remote neighborhood. The reason is that the neighborhood in protein interaction
network is not so reliable due to many false positive data. As indicated by a rigor-
ous comparative analysis and performance assessment [12], common technologies
like yeast two-hybrid may experience high rates of false positive detection and it is
necessary to associate confidence scores with protein interactions. Also from view-
point of network topology, protein interaction network is sparse and found to be
small-world, scale-free and modular [1, 16]. Thus it is often hard to build long-range
relationships with other proteins and can only provide limited information to infer
function linkage. Therefore we define new neighborhood relationships from protein
interaction data by using the shortest path in this paper. In the same manner, other
methods like domain level inference and diffusion kernel can be easily incorporated
to provide extensive relationships between proteins and we will report these results
in another paper.

2.2 The shortest path analysis
In [5], the shortest path analysis is used to identify transitive genes between two

given genes from the same biological process. By computing shortest path (SP), not
only functionally related genes with correlated expression profiles were identified but
also those without.

We use the following Floyd-warshall algorithm to identify the SPs between a
source protein to all other proteins in the protein-protein interaction network. The
Floyd-warshall algorithm is an algorithm for solving the all-pairs shortest path prob-
lem on weighted, directed graphs in cubic time. i.e. the time complexity is O(n3)
where n is the node number of the network. A detailed introduction to Floyd-warshall
algorithm can be found in [17] and other algorithm textbooks. It should be noticed
that the SP model here is scalable to larger graphs. Because for a given graph, the
computation needs to be done only once and is easily distributed over multiple pro-
cessors for parallel implementation.

In our computation, Di j = 1/ρi j can be replaced by any decreasing function of
the protein interaction strength. For the negative score of protein-protein interaction
strength, we simply set them to zero in the shortest path computation. ∀(Pi,Pj) ∈
V (G)×V (G), the new similarity measure is 1/Di j,0 < Di j < 1. By computing the
shortest paths of all pairs of two proteins, we can represent a protein by its shortest
path neighborhood. For example, protein Pi is represented by a vector of its shortest
paths to other proteins in the network as Pi = (Di1,Di2, · · · ,Di,i−1,Di,i+1,Din).
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Algorithm 1 Floyd-warshall algorithm for PPI network
1: Di j = 1/ρi j (i, j) ∈ φ(G) n = |V (G)|
2: Di j = ∞ (i, j) ∈ (V (G)×V (G))\φ(G), i 6= j
3: Dii = 0 i = 1,2, · · ·n
4: for j = 1 to n do
5: for i = 1 to n do
6: if i 6= j then
7: for k = 1 to n do
8: if k 6= j then
9: if Dik > (Di j +D jk) then

10: Dik = (Di j +D jk)
11: end if
12: end if
13: end for
14: end if
15: end for
16: end for

2.3 Statistical significance analysis
In the traditional model, only direct interactions of proteins are considered. In

this study, we further incorporate all neighborhood information. The basic idea is to
understand a protein’s function based on information on all the neighbor proteins. As
the first step, we build the new global representation by the shortest path, diffusion
kernel, domain interaction or other methods. Thus every protein is denoted by a
vector in which every element is the relationship with other proteins. For a pair of
proteins (Pi,Pj) ∈V (G)×V (G), i < j, we have global representations

(pi,1, pi,2, · · · , pi,i−1, pi,i+1, pi, j−1, pi, j+1, pi,n, pi j)
(p j,1, p j,2, · · · , p j,i−1, p j,i+1, p j, j−1, p j, j+1, p j,n, pi j)

The similarity between two n dimensional vectors is computed by their inner
product as follows:

Si j =
n

∑
k=1,k 6=i, j

pik p jk

As stated by the central limit theorem, if X1,X2, · · · ,XN are a set of N indepen-
dent random variables and each Xi has an arbitrary probability distribution
p(x1,x2, · · · ,xN) with mean µi and a finite variance σ 2

i , then the normal form vari-
able

Xnorm = ∑N
i=1 Xi−∑N

i=1 µi√
∑N

i=1 σ 2
i

has a limiting cumulative distribution function which approaches a normal distribu-
tion when N is sufficiently large. Since protein interaction networks in living organ-
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isms are generally in large scale and involve a lot of proteins, for example, there are
about 6000 proteins in yeast database and 50000 proteins in human database. Fur-
thermore for the newly defined neighborhood, two neighbors of an appointed protein
can be assumed to be independent. Thus score Si j approximately obeys the normal
distribution (which will be shown by a real example with about 1507 proteins in Fig-
ure 1) and its mean and standard variance are µ and σ respectively. Therefor we can
define a Z-score for the assessment of statistical significance of function similarity
between two proteins by

Zi j =
Si j−µ

σ
where Zi j is the Z-score for protein Pi and protein Pj sharing the same function. Si j

is the score computed by 2.3. µ and σ are the average and standard deviation re-
spectively from the normal distribution obtained by central limit theorem. A negative
Z-score indicates that share of common function of a particular protein pair is less
possible than expected by random chance. A positive Z-score indicates that two pro-
teins are more likely to share similar function than expected at random. A score near
zero indicates that the possibility is at the level near that expected by random.

3 Experimental Results
We proposed to establish functional relationships of proteins from their neigh-

bors in the network of physical interactions considering their strengths, by assessing
the statistical significance of interacting proteins with similar functions. The function
similarity is based on a global scale and depends on the entire connectivity pattern
of the protein network. In this section, our method is applied to the yeast Saccha-
romices Cerevisiae protein-protein interaction network. Effectiveness and efficiency
have been tested in real biological dataset and the accuracy is assessed by showing
the correlation with GO function similarity and by discovering meaningful functional
module.

To benchmark our method, we use the recent protein interaction data [21] which
is the first genome-wide screen for complexes in a model organism, budding yeast,
using affinity purification and mass spectrometry. Their approaches explicitly avoided
to define protein relationships from binary interactions which are not deemed appro-
priate as these are not directly inferable from purifications. They derived a ‘socio-
affinity’ score that quantifies the propensity of proteins to form partnerships. It mea-
sures the log-odds of the number of times that two proteins are observed together,
relative to what would be expected from their frequency in the data set. Generally,
pairs with socio-affinity indices below 5 should be considered with caution and pro-
tein pairs with high socio-affinity indices are more likely to be in direct contact as
measured either by three-dimensional structures or the yeast two-hybrid system.

The Gavin’s core dataset has 1507 nodes and 70647 strength links. We estab-
lished functional linkages by our systematic method. If we set the Z-score threshold
as 1.65 which means that the P-value is 0.05, then there are 40419 functional links. If
the Z-score is 3.08 and the P-value is 0.01, we have 5909 links. To show the central
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Figure 1: The distribution of score Si j for Gavin’s core dataset

limit theorem is properly used, we present the distribution of the score Si j of Gavin’s
core dataset in Figure 1, which clearly verified the assumption of normal distribution
of the score Si j.

Next we show that the Z-score derived from Gavin’s protein interaction data
correlates well with GO function similarity and can aid to discover meaningful func-
tional modules.

3.1 Correlation with the GO function
The purpose of this paper is to establish the protein functional linkage network

by exploring the functional similarity of protein pairs by a statistical score. It is
straightforward to test if or not the defined Z-score can correlate well with the pro-
tein function similarity score. A particular gene product can be characterized with
different types of functions, including molecular function at the biochemical level
(e.g. cyclase or kinase, whose annotation is often more related to sequence sim-
ilarity and protein structure) and the biological process at the cellular level (e.g.
pyrimidine metabolism or signal transduction, which is often revealed in the high-
throughput data of protein interaction and gene expression profiles). In our study,
function annotation of protein is defined by the GO biological process. The GO bio-
logical process ontology which is widely used as function benchmark and is available
at http://www.geneontology.org. It has a hierarchical structure with mul-
tiple inheritances.

We use GO biological process classification, as of Oct. 2006, to assign function
to unannotated proteins in the study. There are several novel measures [18] that can
be used to assess the the similarity of two gene products based on the GO terms
describing them. In this paper we adopt a simple and easy method used successfully
in [7, 19].

When quantifying the similarity between two GO terms, it is desired that both
their commonality and individual specificities can be captured simultaneously. Let
Gs and Gt be the subgraphs induced from two GO terms Ts and Tt , and Rs and Rt be
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the set of GO items which form the paths of Gs and Gt , respectively. We define the
similarity of two GO terms s(Ts,Tt) as:

s(Ts,Tt)≡ max
Rs∈Gs,Rt∈Gt

|Rs∩Rt |
.

The score means that the higher the number of terms shared by Rs and Rt , the
more similar for the two GO terms to describe proteins. Since a protein may be
involved in more than one biological process, it may be assigned with multiple GO
terms. Let T (Pi) denote the set of all the GO terms assigned to a protein Pi. Thus
the functional similarity of two proteins are defined by the GO similarity for a pair
of proteins Pi and Pj as the maximum similarity of all possible combinations of T (Pi)
and T (Pj), i.e.

SGO(Pi,Pj)≡ max
Ts∈T (Pi),Tt∈T (Pj)

s(Ts,Tt)

.
To make the measurement of protein function similarity practical, we assign

the biological process functional annotation for the known proteins along by a GO
Identification (ID). we generated a numerical GO INDEX, which represents the hi-
erarchical structure of the classification. The more detailed level of the GO INDEX,
the more specific is the function assigned to a protein. The maximum level of GO
INDEX is 14. In general, the function similarity between proteins Px and Py is de-
fined by the maximum number of index levels from the top shared by Px and Py. The
smaller the value of function similarity, the broader is the functional category shared
by the two proteins.

In Figure 2 we show correlation relationship between our Z-score with the above
defined protein GO similarity score. To highlight the advantage of using global in-
teraction instead of local interaction information in the protein interaction network,
we also compute the correlation of Gavin’s socio-affinity score with the GO func-
tion similarity score for Gavin’s dataset and compare with our result. The tendency
is clearly that our score correlates better with functional similarity score in general.
Especially when our Z-score increases from -0.5 to 4.32, the GO functional sim-
ilarity score increases also from 8 to 14 linearly. On the other hand, the Gavin’s
socio-affinity score does not correlate well when it is higher than 5, which demon-
strates the effect of false positive data in high-throughput protein interaction data.
The detailed pearson correlation coefficient of Gavin’s socio-affinity score with GO
similarity is 0.541078 (1408 random samples). By using our statistical framework to
integrate the non-direct neighborhood information in protein interaction network, we
can improve the pearson correlation coefficient between Z-score and GO similarity
to 0.6696 (1000 random samples).

3.2 Identifying Functional Modules
A functional module is defined as a group of genes or their products which

are related by one or more genetic or cellular interactions, e.g. co-regulation, co-
expression or membership of a protein complex, of a metabolic or signaling pathway
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Figure 2: Correlation analysis. SubFig1: the correlation of Gavin’s socio-affinity
score with the GO function similarity score for Gavin’s dataset. The pearson corre-
lation coefficient is 0.541078 (1408 random samples). SubFig2: The correlation of
the Z-score with the GO function similarity score for Gavin’s dataset. The pearson
correlation coefficient is improved to 0.6696 (1000 random samples).

or of a cellular aggregate (e.g. chaperone, ribosome, protein transport facilitator,
etc.). An important property of a module is that its function is separable from other
modules and that its members have more relations among themselves than with mem-
bers of other modules, which is reflected in the network topology. The separability
may stem from, for example, cellular localization or special interaction of proteins or
special regulation of genes. Modules can be understood as a separated substructure of
a network or pathway, e.g. the complex of fatty acid synthetase subunits may serve
as an example of a module of the fatty acid biosynthesis pathway and the protein
complex is a module of a protein interaction network [20].

To find out the underlying modular structure in networks, i.e., structural subunits
(communities or clusters) characterized by highly interconnected nodes, the modu-
larity score Q has been introduced as a measure to assess the quality of clusterizations
[22]. Highly effective approach is proposed in [22] to optimize the quality of modu-
larity Q over all possible divisions of a network. We use this method to decompose
the constructed network into modules and reveal the patterns of the modularity in the
predicted functional linkage network.

As a result we found eight modules in the functional linkage network which
means groups of cellular components and their dense relationships that can be at-
tributed to a specific biological function. Two of them are shown in Figure 3, where
different protein functions are indicated by different vertex colors. The module
shown in the left subfigure contains 18 proteins with 69 functional links. All the
proteins are annotated by the protein biosynthesis function. On the other hand, the
module in the right subfigure contains 75 proteins with 255 functional links. The pro-
teins in this group are annotated mostly by transcription and DNA repair function.

Next we use the biological functional modules to predict or annotate the func-
tions of unknown proteins. With the detected modules, simple methods are usually
used for function prediction within the modules. For example, every function shared
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Figure 3: Two functional modules in the predicted functional linkage network re-
vealed by the statistical significance Z-score.

by the majority of the module’s genes is assigned to all the genes in the module. Al-
ternatively a hypergeometric enrichment P-value is computed for every function. The
functions enriched within the module (i.e. obtaining P-value below some threshold)
are then predicted for all the genes in the module. In the right subfigure of Figure 3,
the protein YDL115C is predicted to have the transcription function because it be-
longs to a 25-protein submodule and other group members within this submodule all
have transcription function. In the same manner, proteins YPL181W and YMR075W
are annotated by DNA repair function.

Here we stress that the established protein functional linkage network provides a
good and solid basis for functional annotation which is a fundamental problem in the
post-genomic era. The availability of functional linkage network instead of raw inter-
action network will spur on the development of computational methods to elucidate
protein functions in a more accurate way. Current computational approaches for the
task based on protein interaction network are able to include direct methods, which
propagate functional information through the network and module-assisted methods
and infer functional modules within the network and use those for the annotation
task.

4 Discussion
Many approaches aimed to deduce the unknown function of a class of proteins

have exploited sequence similarities or clustering of co-regulated genes, phylogenetic
profiles, protein-protein interactions and protein complexes. In this paper we estab-
lished protein functional relationships in a systematic way. We extract functional
information from the physical interactions between proteins from the viewpoint of
systems biology. Although most of the existing methods assume that protein-protein
interaction data are given as binary data (i.e. whether or not each protein pair in-
teraction is given), multiple experiments are performed for the same protein pairs in
practice and thus the ratio of the number of observed interactions to the number of
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experiments is available for each protein pair. For example, Ito et al [23] performed
multiple experiments for each of protein-protein pairs. But, the results are not always
the same for the same pair. Therefore, it is reasonable to use the ratio of the number
of observed interactions to the number of experiments as input data, where the ratio
is also referred to as the strength in this paper. Clearly in the procedure of convert-
ing strength data to binary data, certain information is lost in addition to man-made
noise.

Another source of the protein interaction comes from the integration of many
existing protein interaction datasets. It is well known that there are many kinds of
experimental methods for physical protein interactions. They overlap or conflict in
some cases. Also other high-throughput experimental data such as microarray and
ChIP-chip can provide genetic interaction relationships. To discover the true topol-
ogy of protein interaction network, these datasets are often integrated by all kinds
of methodologies in the systems biology framework. As a result every protein in-
teraction relationship is assigned with a probability score. These scores indicate the
reliability of the protein interactions and can be viewed as strength or ratio of inter-
action in our computation.

Functional associations that are derived from a genomic context do not neces-
sarily imply a direct physical interaction between two molecules. Proteins at opposite
ends of a single pathway or complex can give the same signal as those in tight, direct,
physical contact. Moreover, errors in the underlying genome or expression data can
also lead to false prediction or to interaction being missed. To overcome these prob-
lems, several groups are developing methods to combine several types of interaction
data quantitatively, which also consider the accuracy of each dataset. The result is
an overall confidence score for each interaction, and higher scores are more likely to
indicate direct physical contacts. We can incorporate the integrated confidence score
into our statistical framework to find more meaningful biological functional linkages.
The challenge for the future is how to incorporate more biological information from
such diverse data sources.

We also found that the newly established protein functional linkage map is
denser than raw protein interaction network. This result is quite reasonable. Ex-
cept the direct physical protein interaction, functional links can be formed by genetic
interaction or co-member relationship in the same protein complex. Furthermore we
found transitive phenomenon in the functional linkage network. Intuitively this refers
to situations where two proteins do not interact, but they carry out similar functions
in biological process. Deep exploration indicates that both proteins strongly interact
with the same set of other proteins. In this simplest case, proteins Pa and Pb strongly
interact as same as proteins Pb and Pc do. However proteins Pa and Pc do not have
strong interaction. Hence, for such a case, we say that proteins Pa and Pc transitively
interact and the protein Pb serves as the transitive protein. In such as way, this phe-
nomenon makes protein functional linkages more abundant than directly interaction.

In this paper, we use only experimental protein interaction data to reveal the
protein functional relationship. Our method can be easily extended to other kind

Establishing Protein Functional Linkage in a Systematic Way 85



of experimental data, such as sequence or structure similarity, ChIP-chip interaction
data, microarray gene expression data, protein subcellar localization data and inte-
gration of heterogeneous data sources. Since the emphasis of this paper is not data
integration, we only focus on the effectiveness and efficiency of the statistical frame-
work. Furthermore other neighborhood discovering methods such as domain level
inference[10, 11] and diffusion kernel can be utilized to provide remote neighbor-
hood information in the framework besides the shortest path, we will study this topic
in another paper.

5 Conclusion
Interpreting data from large-scale protein interaction experiments has been a

challenging task because of the widespread presence of random false positives. Here,
we presented a network-based statistical algorithm that overcomes this difficulty and
allows us to derive functions of unannotated proteins from large-scale interaction
data. The algorithm uses the insight that if two proteins share significantly strong
interaction and larger number of common interaction partners (including long-range
partners) than random, they have close functional associations. Analysis of publicly
available data from Saccharomyces cerevisiae reveals that our method can find reli-
able functional associations.

As described in the paper, our main contributions in this paper are summarized
as follows:

1. A new statistical analysis framework to build protein functional linkage is in-
troduced. It is a general framework which can be further utilized to deal with
integration of heterogeneous data sources.

2. New neighborhood relationships can be defined and global information is uti-
lized to analyze the statistical significance of similar function.

3. The method can deal with the experimental protein interaction data by consid-
ering the strength of interactions. Also the binary data also can be dealt as a
special case.
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