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Abstract This paper presents a new technique for gene function prediction with the shortest path
in functional linkage graph. With existing protein-protein interaction data, complex data and gene
expression data, a weighted functional linkage graph is inferred. By finding the shortest path in
the functional linkage graph, the functions of unknown genes can be predicted with the functions
of those that have functional links to the unknown genes. The experiments show promising results
and prove the efficiency of the proposed methods.

1 Introduction
One of the main goals in post-genomic era is to predict the biological functions

of genes. In the literature, many methods have been developed for this problem,
among which the straightforward way is applying PSI-blast [1] and FASTA [2] to find
the homology relationships between known genes and the query gene, and transfer
functions of the most similar known genes to the query gene. Furthermore, structure-
based approaches are proposed because structure is more conserved than sequence,
and proteins with similar structures are clustered into a structure space that is then
mapped to the functional space [3]. The methods described above use the entire
protein structure or sequence for gene function prediction. However, gene functions
may be determined by only a few key residues, which are denoted as functional
motifs here. In literature, it has been shown that the functional motifs, which may
directly mediate catalysis or binding, are important for gene function [4]. With the
local similarity among a small number of key residues, new genes can be annotated
with the function of known genes.

Recently, with the advance in high-throughput biotechnologies, a large amount
of biological data have been generated, such as yeast two-hybrid systems, protein
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complex and gene expression profiles, etc. These data are rich sources for deducing
and understanding gene functions. In literature, protein-protein interaction data has
been widely used for gene function prediction with the assumption that interacting
proteins have the same or similar functions, i.e. ‘guilty by association’ rule [5].
For example, Schwikowski et al. [6] have proposed neighbor counting method for
gene function determination; Hinshigaki et al. [7] proposed the χ2 statistics to infer
protein function. Some other research works have utilized the Markov random fields
[8] and simulated annealing [9] techniques for gene function prediction. In addition,
gene expression data has also been widely used for gene function prediction with
clustering where genes with similar expression values are assumed to have similar
function [10].

Although the successful application of the high-throughput data for gene func-
tion prediction, the errors in the high-throughput data have not been handled well. In
this paper, we propose a new technique for constructing a weighted functional linkage
graph with protein interaction data, protein complex and gene expression profiles. By
finding the shortest path in the functional linkage graph, we can infer the functional
links between genes. With the inferred functional links, Support Vector Machines
(SVMs) is utilized to predict the functions of unknown genes.

The rest of this paper is organized as following. Section 2 presents the datasets
used in this work; Section 3 describes the proposed methods for gene function pre-
diction; Section 4 presents the experimental results; Finally, conclusions are drawn
in Section 5.

2 Data sets
In this study, to predict the function of genes, we use three kinds of data includ-

ing protein-protein interaction data, microarray data and protein complex data. All
of these data are integrated for function prediction of S. cerevisiae genes.

In this work, the functional annotation of S. cerevisiae genes was obtained from
the FunCat 2.0 functional classification scheme, which can be downloaded from the
Comprehensive Yeast Genome Database (CYGD) of MIPS [11]. The annotation data
in FunCat are organized as a hierarchical, tree like structure with up to six levels of
increasing specificity. In total, the FunCat includes 1307 functional categories. In this
work, 13 general functional classes are selected, where each class has no less than 30
gene annotations. Table. 1 shows the selected functional classes and corresponding
number of genes.

The protein interaction data used in our experiments were obtained from the
BioGRID database [12]. The 2.0.20 version of the BioGRID is used in this work.
The dataset contains 82,633 pairs of interactions between 5,299 yeast genes. The
interaction network of genes can be denoted as a graph G(V,E), where the vertexes
V are genes and the edges E are interactions between genes.

The gene expression profiles used in this work were from the Rosetta Com-
pendium [13], which includes 300 diverse mutations and chemical treatment experi-
ments. The dataset contains 6298 genes, of which, 4,376 genes are among the 5,299
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Table 1: The functional categories and genes used in this work.
Functional category Number of proteins
01 metabolism 1292
02 energy 354
10 cell cycle and dna processing 812
11 transcription 534
12 protein synthesis 325
14 protein fate (folding, modification, destination) 905
20 cellular transport, transport facilities and transport routes 684
30 cellular communication/signal transduction mechanism 205
32 cell rescue, defense and virulence 663
34 interaction with the environment 394
40 cell fate 37
42 biogenesis of cellular components 545
43 cell type differentiation 357

genes in the protein-protein interaction dataset. Finally, the dataset used in this work
contains 4,376 genes and 300 real value features for gene expression profiles.

The protein complex data were obtained from the MIPS database, including
the data from [14] and [15]. The protein complex data is used here because genes
occurring in the same complex are assumed to have the same or similar functions.
Although it is not reasonable to infer interaction relationship from protein complex
directly, the genes in the same complex have functional correlations. Hence, we
assign functional relationship to the genes occurring in the same complex, where an
edge is constructed for any pair of genes occurring in the same complex. Finally,
62,042 functional edges were assigned to our dataset.

3 Gene function prediction with shortest path in functional
linkage graph
After getting the protein-protein interaction data, gene expression profiles and

protein complex data, we first construct a graph G(V,E) with the protein interaction
and protein complex data. In the graph, a pair of genes will be assigned an edge
if they interact or appear in the same complex. Furthermore, the absolute expres-
sion correlation Ci, j of gene expression is used as the weight of edge E in graph G.
Therefore, we get a functional linkage graph. The edge length between vertices i and
j is defined as di, j = (1−Ci, j)α , where α is a parameter used to enlarge the differ-
ence between edge lengths. We use Dijkstra’s algorithm [16] to find the shortest path
between a vertex to all the other vertices in the functional linkage graph. With the
shortest paths available, each gene i can be expressed as a vector as following:

fi = [st_pathi1, . . . ,st_pathin] (1)
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where st_pathi j is the shortest path length between gene i and gene j, and n is the
total number of genes in the functional linkage graph.

In addition, the Radial Basis Function (RBF) kernel is used to measure the sim-
ilarity between a pair of genes with:

K(x,y) = exp(−γ||x− y||2) (2)

where x and y are vectors for two genes, respectively. Furthermore, the kernel matrix
is normalized as following:

K(x,y) =
K(x,y)√

K(x,x)K(y,y)
. (3)

After getting the kernel matrix for genes, the SVMs classifier is utilized for
gene function prediction, where one classifier is constructed for each functional class,
respectively. Given an unknown gene, it will be assigned to the class that has the
biggest decision value.

4 Experimental results
In this experiment, we applied our proposed methods to gene function predic-

tion. To evaluate the performance of our proposed methods and other methods, we
adopt the following indexes of Sensitivity, Speci f icity, and AUC score that are de-
fined as:

Speci f icity =
T N

T N +FP
, (4)

Sensitivity =
T P

FN +T P
, (5)

where T P is the number of true positives, FP is the number of false positives, T N is
the number of true negatives, FN is the number false negatives, and AUC score is the
area under the ROC curve (AUC). Furthermore, all the methods are evaluated with
3-fold cross-validation.

In this experiment, we first compared the proposed methods to other three meth-
ods: SVMs trained on protein-protein interaction and protein complex data (denoted
as PPI+complex), SVMs trained on gene expression profiles, and SVMs trained on
the kernel integration of all the above three datasets. The parameter α in identifying
the shortest path in the functional linkage graph is set to 1. For the protein-protein
interaction and protein complex, the diffusion kernel is utilized and the parameter τ
of the kernel is set to 5, and the kernel matrix is denoted as Kppi+comp. For the gene
expression profiles, the gaussian kernel is utilized and the parameter σ is set to 0.5,
and this kernel matrix is denoted as Kgene. Both Kppi+comp and Kgene are normalized
as described in Eq.3. Furthermore, the kernel-based integration of all the three data
sources is utilized to predict gene function as described in [17], where the integrated
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Figure 1: The performance of the four methods for gene function prediction, where
X-axis denotes the performance indexes: 1 Sensitivity, 2 Specificity and 3 AUC score

kernel is denoted as Kall and defined as Kall = Kppi+comp +Kgene which has performed
well in gene function prediction [17].

Fig.1 shows the results obtained via the four methods, where the results are
averaged over 13 functional classes. It can be seen from Fig.1 that our proposed
method outperforms all the other methods with overall performance. The results
prove that the functional linkage graph constructed in this work is indeed useful for
gene function prediction. It can also be seen from Fig.1 that the shortest path in
the functional linkage graph can really capture the functional links between genes.
Furthermore, our proposed method can better integrate different data sources than
the kernel-based method for gene function prediction. The poor performance of the
kernel-based integration technique may be due to the noise in the gene expression
data.

Furthermore, we compared the proposed methods against the SVMs trained on
protein-protein interaction and protein complex class by class. Fig. 2 shows the
comparison of the two methods with respect to AUC scores. It can be seen from
Fig. 2 that our proposed method outperforms the one using protein interaction and
protein complex in nearly every class. The results prove again that the functional
linkage graph is really useful for gene function prediction, and our proposed method
is effective for integrating different data sources for gene function prediction.

5 Conclusions
In this paper, a new technique is proposed for gene function prediction. A

functional linkage graph is constructed with the integration of the protein-protein
interaction data, protein complex data and gene expression profiles. By finding the
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Figure 2: The comparison between PPI+complex method and shortest path method
class by class

shortest paths in the functional linkage graph, the functional links between genes can
be found. Furthermore, the SVMs are utilized to predict the function of unknown
genes. Numerical experiments show that our proposed methods outperform those us-
ing single information source, e.g. gene expression profiles or protein interaction. In
addition, our proposed methods also outperforms the kernel-base integration method,
which proves the efficiency and effectiveness of the proposed methods.
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