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Abstract Grounded on linear ordinary differential formulation, we propose an optimization model
for inferring gene regulatory networks, which integrates with not only the sparsity principle of gene
networks but also some extra priori knowledge between two genes that can be found in existing
publications or biological web sites. The model is applied to an artificial data-set and a real gene
expression profile data related to breast cancer metastasis, and the computational outcome shows
that this model can find solution with biological plausibility and reliability in a sense.
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1 Introduction
It is believed that knowledge of mRNA levels under different conditions can help

people understanding how the expression levels of each gene depend on an external
stimuli and on the expression levels of other genes. With high throughput experimen-
tal methods, such as DNA microarrays, mRNA expression levels of a group of genes
can be measured simultaneously[10]. While the amount of available gene expression
data has been increasing rapidly, the required mathematical techniques to analyze
such data is still in development and inferring a gene regulatory network from gene
expression data has been proved to be difficult.

Therefore, the model of construction of gene regulatory networks has become
one of important topics in bioinformatics. Logically the large number of regulatory
components requires a large experimental data to infer the network structure. Re-
cently, DNA microarrays has become one of the main tools in this research areas[16].
Microarray technique enables people to monitor the activities of thousands of genes
in parallel but only at a few of time instants. To reverse-engineering the regulatory
networks from these microarray-measured data sets, one has to hunt for a valid com-
putational model that can create a candidate network that yields a similar time series
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data. In other words, the model is able to reflect the true regulatory networks, i.e. the
dependencies of the biological components.

There are several approaches applied to address this problem. Although some
of them based only on the distance between the real data and the simulated data
from the mathematical model can excavate some biological knowledge in a sense,
some important and known information of the systems has been neglected, e.g. the
sparsity of the gene network, that is, one gene only depends on the average on a small
proportion of the component in the system, and the knowledge of interaction, that is,
some interactions between genes have already been known from existing publications
or biological web sites.

In this paper we propose an optimization model for reverse engineering of time
series data, and apply it to a simulated data and a real time-course gene expres-
sion data related to breast cancer metastasis (see the table in appendix in [8]). The
model is a constrained mathematical programming based on the ordinary differen-
tial equations which have been widely used to analyze genetic regulatory systems.
Firstly, a special solution in terms of least L2 norm is obtained by singular valued
decomposition (SVD) technique based on the ordinary differential equations. Then a
mathematical programming is set to improve the special solution. That is, the math
program is to be optimized to gain a regulatory network, which fits the data and real-
izes the sparse connection of the system, and the known interactions between genes
is reflected by the maximization of objective functions.

The rest of this paper is organized as follows. Section 2 presents an overview
over related works and a list of associated publications. In section 3, we detail the
method proposed in this paper. And its application to a simulated data and a real
biological microarray data will be shown in section 4. Conclusion and an outlook on
future research will be given in the last section.

2 Related Work
Understanding the mechanisms of gene regulatory system is very interesting and

enables researchers derive the underlying networks. In this section, a brief descrip-
tion of related works is given.

The first computational models for inferring gene network are boolean or ran-
dom boolean networks [5, 6, 15, 2]. In contrast to discrete models such as boolean
networks, continuous models in publication allow for the expression of gene regula-
tion to be continuous. An example for this kind of approach is the differential equa-
tion model given in [17, 19, 11]. Another popular model for inferring gene networks
is the Bayesian networks or dynamic Bayesian networks[13, 12, 9]. The computa-
tional biology literature abounds in various modelling approaches, all of which have
particular goals along with their strengths and weaknesses[4].

Particularly, linear differential equations are attractive because of their lower
number of parameters which imply that we are less likely to over-fit data and suffi-
ciency of modeling complex interactions between genes. Although gene regulations
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are often nonlinear in nature, almost all of the existing approaches for GRN infer-
ence use linear or additive models due to unclear structures of biological systems and
scarcity of data [14, 3, 8].

The idea of modeling gene expression data by differential equations has been
explored by a considerable numbers of authors [17, 11, 19]. Differential equations
are used to model gene interactions under the assumption that the transcription rate
over time of each gene expression level is a function of the expression level of some
(usually a few) other genes. Such modeling assumption is based on the reaction
kinetics at the biochemical level.

An optimization model based on linear ordinary differential equations, defining
a reverse engineering to tackle this problem, is considered in [8]. More precisely, the
optimization model is introduced to realize the sparsity of gene regulatory system,
which is helpful for inferring GRNs.

3 Method
A simple linear model has proved to be useful in a number of cases [14] even if

it is clear that nonlinearity is an unavoidable issue since it reflects also the nature of
biochemical interactions. From the viewpoint of dynamical systems, linear equations
can at least capture the main features of the network or the function. Therefore, as in
[18, 8], we will assume the system to behave linearly. We consider the linear system
described by the following differential equations:

ẋi(t) =−λixi(t)+
N

∑
j=1

Wi jx j(t)+bi(t)+ εi(t) (1)

for i = 1,2, · · · ,N, where the state variables xi’s are the concentration of mRNA of
gene i, the λi’s are the self-degration rates, the bi’s are the external stimuli, or envi-
ronment conditions, which are set to zero when there is no external input, and the εi’s
represent noise. Wi j describe the type and strength of the effect of the j-th gene on the
i-th gene with a positive, zero or negative sign indicating activating, naught and re-
pressing influence respectively. However, we sometimes do not have the information
of the external stimuli, that is to say, bi is nonexisting, so (1) changed to be

ẋ = Ax+ ε (2)

in a usual compact form, where the matrix A is an N×N matrix which incorporates
both self-degradation rates and the strength of the gene-to-gene interaction.

Microarray experiments often result in discrete time series of measured values.
We assume that the number of measured time points to be m, t1, t2, · · · , tm, and (2) can
be described in a discrete form without the error part in our model,

∆X = AX , (3)
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where the element in the N× (m− 1) matrix ∆X is 4x(ti) = (x(ti)− x(ti−1))/(ti−
ti−1), i = 2,3, · · · ,m, and the element in N × (m− 1) matrix X incorporates all the
expressive values of every gene from time t1 to tm−1.

It is well known that the data sets created by microarray technology contain the
the express levels of a large number of genes at relatively much less time points,
which is the so-called dimensional problem, and leads in the solution of the above
matrix equation (3) not uniquely determined. We can get a particular solution by
the singular valued decomposition (SVD) technique, X = V SU ′, where V and U are
orthogonal matrix with order N×N and (m− 1)× (m− 1) respectively, and S is a
diagonal matrix. Then

A0 =4XUS−1V ′, (4)

which is a least-L2-norm solution. But the solution does not have the sparse property
[8].

As discussed in [8], a more reliable solution of gene regulatory networks should
locate near to the margin of the hyper-polygon which is the part of the solution hy-
perplane in the quadrant where the least-L2-norm solution lies.

We have known that A0 + αY,(∀Y ∈ X⊥ = {Y |Y X = 0},∀α ∈ R) are also the
solutions of (3), in which the real solution is contained. In the following discussion,
X⊥ also represents a base of the null space. For the aim of enhancing veracity of
the network, some priori regulatory information among genes are imported in our
model, e.g., the known interaction between gene i0 and j0. Let G( j0) be the set of
all the known genes who regulate gene j0 . Since the known regulatory relations
in G( j0) should be easy to determined in various biological experiments from the
viewpoint of probability if they have higher strength than others, therefore we should
give enough emphasis on them, and propose the following optimization model:

max
Z∈RN−m+1 ∑

i0∈G( j0)

|ai0 j0 +X⊥(i0)Z|

s.t. sign(ai j0)(ai j0 +X⊥(i)Z)≥ 0 i = 1,2, · · · ,N, (5)

where AT
0 ( j0) = (a1 j0 , · · · ,aN j0)

T denotes the j0th column of AT
0 , X⊥(i) is the ith vec-

tor of the null space base X⊥, and Z ∈ RN−m+1, j0 = 1,2, · · · ,N, where N is the
number of genes. In order to avoid the objective functions going to infinite, the class
of constraints is presented, which keeps the sign of ai j0 + X⊥(i)Z same as that of
ai j0 , i.e., the more reliable network will be searched in the hyper-polygon mentioned
above. In the following, we assume there is only one element in G( j0), that is to
say, the number of the known genes regulating gene j0 is one. The known regulatory
information provides a direction for finding a more reliable network in the process of
the optimization than that in [8].
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4 Application
In this section, we apply our model to an artificial data set with dimensional

problem and also a real gene expression data related to breast cancer metastasis with
27 genes and 6 time points in the appendix in [1, 8]. The results of computational
experiment indicates that our models can find more reliable solution which possesses
biological plausibility.

4.1 Application to Artificial Data
The example is a small artificial network with five genes governed by




ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)




=




0 −1 2 0 0
0 0 −1 2 0
0 0 0 −1 2
2 0 0 0 −1
−1 2 0 0 0







x1(t)
x2(t)
x3(t)
x4(t)
x5(t)




+




ε1(t)
ε2(t)
ε3(t)
ε4(t)
ε5(t)




(6)

where xi(t) is the expression level of the gene-i, ẋi(t) is the transcription rate over
time of xi(t), and εi(t) is noise for i = 1,2,3,4,5. Clearly, every gene is regulated by
two genes, one for repressing it and the other for enhancing it.

To test our model, we randomly choose the initial condition of the system and
take 4 time points of x as a measured time-course dataset with time span 0.1 and
without noise, see table 6. Clearly, the number of variables (genes) is larger than
that of samples (time points), which indicates that the dataset has dimensional prob-
lem. Now we apply (5) to the artificial dataset with some known relationship such
as 3 ∈G(1)),4 ∈G(2),5 ∈G(3),1 ∈G(4)), and 2 ∈G(5) with high strength to infer
the gene regulatory network . Figure 1 shows the inferred network. The red solid
lines present the known relations between genes and the blue dashed lines are the in-
ferred gene relations. The corresponding gene regulatory network is found correctly
by the model, except for the last row in equation (6), but the least square solution
(−1.3434,1.6160−0.2280,−0.1863,−0.2691) also reflects their regulatory relation
fundamentally. In the model, for example, the maximum of the objective function
for 3 ∈G(1)) is 2 and the corresponding strength (0,−1,2,0,0) with other genes are
correctly inferred. This artificial dataset shows that our model can find the real so-
lution of the networks with added known interaction which provides a direction for
solving the optimization problem (5).

4.2 Application to Data of Breast Cancer Metastasis
In this section the optimization model is applied to a real gene expression data

related to breast cancer metastasis, containing 27 gene and 6 time points, see the
table in Appendix in [8, 1]. The content of the dataset contains gene expression
data of surgical samples, including both breast cancer primary tissue and metastasis
tissue, collected from 30 patients in different clinical staging. The oligonucleotide
microarray technique was used to identify the gene expression profiling and screen
the differential expression genes in breast cancer samples with a special emphasis on
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gene t0 = 0 t0 = 0.1 t0 = 0.2 t0 = 0.3
1 -1.0000 -1.3000 -1.6850 -2.1365
2 2.0000 2.1500 2.3250 2.4925
3 -0.5000 -0.8500 -1.0950 -1.2120
4 0.5000 0.4500 0.2900 -0.0030
5 -1.5000 -1.0000 -0.4400 0.1935

Table 1: Artificial data created by simulated gene networks (6).

gene 3
gene 4

gene 2gene 5

gene1

-1.3435

1.6160

+2
-1

+2

-1

+2

-1
-1

+2

Figure 1: The optimization model is applied to infer the simulated gene network. The
red solid lines present the known relations between genes and the blue dashed lines
are the inferred relations. The artificial gene regulatory network is found correctly by
the model, except for the last equation in equation (6), but the least L2 solution can
reflects their basical regulatory relations.

metastasis factors. 27 differential expression genes were identified, 14 of which are
up-regulation genes whose Ratio is large for 3, and the rest are down-regulation gene
whose Ratio is small for 0.33[1].

We now employ added priori information between two genes, besides the spar-
sity of biological networks, to derive the gene regulatory networks. For example,
self-regulation of gene 14 and 19 will be taken as priori knowledge to infer gene
networks by using equality (5). We maximize the objective function for the known
information and here the feasible solution has more biological plausibility, see table
2. The left of the table lists the regulation to gene 19, and the right is to gene 14. The
second row lists the multiples β who times maximum, and its corresponding col-
umn is the solution of optimization problem (5) with the condition β×maximum for
19 ∈G(19) or β×maximum for 14 ∈G(14). And their corresponding sub-networks
which regulating gene 19 and 14 respectively are showed in the column 2 and 4 of
table 2. It is worthy of attention that the two sub-networks do not contain gene 16
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which regulates gene 19 and 14 as proved in [1]. But if we decrease the maximums
a little respectively, i.e. 0.97× maximum for 19 ∈ G(19) or 0.98× maximum for
14 ∈G(14), we can find that there will be not only the regulating strength of gene 16
to gene 19 and 14, which is correct and appear in [1], but also the strength of gene 22
and 23 to gene 14, which have not been found in [1]. It is showed in column 3 and 6,
which might be caused by the error in biological experiments.

Gene-16 (geneID: NM-002091, name: GRP) regulating many genes is a very
important one. GRP is in the information path of nerve, and a check point in cell
cycle. GRP is also a transcriptional control factor on which DNA depends. GRP and
its receptor usually express in cancers such as breast cancer, and play an important
role in proliferation and differentiation of cell[1, 7]. The expression of GRP in the
cancer organization is obviously lower than that in normal organization, and GRP
influences and regulates proliferation and differentiation of cell of cancer tumor[7].
Therefor, if the optimization model find the regulation of gene GRP to the objec-
tive genes, the solution found by the model is thought as a reliable one, see figure 2.
14∈G(14),19∈G(19),25∈G(2),25∈G(26) marked with solid line arrows are the
known regulation in the model. The longer dashed lines mark the inferred gene reg-
ulation in various colors to their corresponding genes respectively, which are correct
and appear in [1]. The yellow nodes denote the genes that do not appear in [1], and
their regulatory relations are labeled in shorter dashed arrows.

16

19

14

24

10

23

22

2
25

17

26

20

Figure 2: 14 ∈ G(14),19 ∈ G(19),25 ∈ G(2),25 ∈ G(26) marked solid line arrows
in different colors are the known regulations in the optimization model. The longer
dashed arrows in various colors denote the inferred gene regulation to the different
genes respectively, which appear in [1]. The yellow nodes denote the genes that do
not appear in [1], and their regulatory relations are labeled in shorter dashed arrows.
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19 ∈ G(19) 19 ∈ G(19) 14 ∈ G(14) 14 ∈ G(14)
gene β = 1 β = 0.97 β = 1 β = 0.98

1 0 0 0 0
2 0 0 0 0
3 -0.1424 -0.1646 0 0
4 0 0 0.1757 0.1267
5 0 0 0 0
6 0 0 0 0
7 0 0 0.4279 0
8 0 0 0 0
9 0 0 0 0
10 0.8005 0.8677 0 0
11 -0.2612 -0.3688 0.0760 0.4852
12 0 0 0 0
13 0 0 0 0
14 0 0 -1.6023 -1.5702
15 0 0 0 0
16 0 1.4653 4.0555 4.6255
17 0 0 0 0
18 0 0 0 0
19 -3.3628 -3.2619 0 0
20 0 0.0132 0 0
21 0 0 0 0
22 0 0 0 -2.9778
23 0 0 0 2.7693
24 2.2436 1.6618 0 0
25 0 0 0 0
26 0 0 0 0
27 0 0 0 0

Table 2: The left of the table lists the regulation to gene 19, and the right is about
the regulation to gene 14. The second row lists the multiples β who times maximum
for 19 ∈ G(19) and 14 ∈ G(14) and their corresponding columns are their solution
respectively, where the maximums for 19 ∈ G(19) and 14 ∈ G(14) are 3.362803,
1.6022547 respectively.

5 Outlook and Future Work
Grounded on linear ordinary differential equation, we proposed an optimization

model for inferring gene regulatory networks. The model integrates with not only
the sparsity property of biological networks but also some extra priori knowledge
between genes. The model is applied to a simulated data and a real microarray data
related to breast cancer metastasis, and the computational outcome shows that this
model can find the solution with biological plausibility. The known relationship be-
tween genes provides a direction for the optimization, so the solution obtained by the
model is reliable than the solution in [8] in a proper sense.

Due to the ambiguity in the data, it is difficult for our proposed models to find
the true solution as concluded above. As one future enhancement of the proposed
methods, we plan to incorporate some additional methods to identify the correct net-
work. In future work more priori information will be imported into the inference
process of real microarray data like partially known pathways or information about
co-regulated genes, which can be found in literature or in public databases. This
would enable us to search for models consistent with current biological knowledge,
but would also allow for alternative solutions where biological information is missing
or faulty. Furthermore, non-linear interaction will be considered in our models for
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enhancing precise of gene regulatory networks to overcome the insufficiency of the
currently proposed models.
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