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Abstract Through analyzing the algorithm presented by Mitsuo.Gen, and taking into account the
schema theorem and the architecture block hypothesis of a genetic algorithm, we showed some
flaws in Mitsuo.Gen algorithm in this paper. A better genetic algorithm for solving shortest path
problems is presented further, which is based on the technology of dynamic coding of the priority
of vertex and gene weight. The microevolution strategy is also considered fully in the paper. After
putting forward the measure of the importance of a vertex in a network structure and its formula,
the real coding priority of a vertex is generated in a non-uniform distribution function with the pa-
rameters of the measure of the vertex importance. Flexible fitness functions, elitist genes selection,
the mountain climbing method for local optimum and other methods are adopted. It indicates that
the time efficiency of the algorithm is higher than Mitsuo.Gen algorithm through a lot of numeric
examples.
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1 Introduction
As an important branch of graph and network, the traditional shortest path prob-

lem (SPP) has extensive applications. That is to say, the SPP is a classical research
topic. It was proposed by Dijkstra in 1959 and has been widely researched [1,4−7]. The
research work in the past relates to two aspects: the research of the time efficiency
of algorithms and the research of the derivative problems from SPP. Though the Di-
jkstra algorithm based on the Bellman optimization theory is considered as the most
efficient method, it become inefficient when needing to repeat much computation or
when the network being very big, and it also cannot be implemented in the permit-
ted time. For example, there are tens of thousands of freight bills which need to be
processed each day in the cargo accounting system in one Railway Bureau of China.
60 percent of the magnitude computation time is consumed in the calculation of the
freight paths [2,3]. 95 percent of the time in the urban traffic flow assignment system
is spent on calculating the SPP [8] . For instance, we need 55 hours to compute paths
for solving the 3-hour dynamic urban traffic flow assignment problem [9]. The effi-
cient research of SPP embodies two aspects. The first aspect is deflating the search
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scope of the nodes and reducing the computation complexity through defining the
artful data structure [1,9−15]. The second aspect is adopting the parallel algorithms for
accelerating the process [16−18]. With the development of communications, computer
science, traffic and transportation systems, and so on, derivative problems from the
traditional SPP are becoming more and more important in real life. For instance, in
the communication nets, the nodes and the edges have costs. The calculation of the
railway freight tariff routes is constrained by the freight category and the appointed
routes in the railway transportation network. In urban traffic system the restrictions
on the path calculation are more popular, such as the restriction of the transit abil-
ity of the path and the no entry restriction and so on. Therefore, the most practical
applications are considered to be the derivative problems, such as SPP with multi-
weights, SPP with constraints, SPP with stochastic environment and SPP with fuzzy
environment.

The SPP with arbitrary constraints is proved to be NP-Hard [19]. Therefore, a
polynomial algorithm for this problem is impossible even though it is one of the
most practical applications, to which many researchers have paid attention [20−25].

2 Shortest Path Problem and Genetic Algorithms
There are many heuristic algorithms used to solve complex optimal problems.

Genetic algorithms (GAs) are one of the most powerful and successful methods in
stochastic search and optimization techniques based on the principles of the evolution
theory. In fact, GAs have succeeded in the combination and optimization field, but
the research results on computing SPP by use of genetic algorithms are scarce. The
reason is that encoding for a path in a network is critical for designing a GA. Mit-
suo.Gen, the professor of Waseda University in Japan, pointed out that the encoding
of the chromosome for SPP is more difficult than TSP. The special difficulties are:

(1) The number of nodes in each path is not fixed. Or, the number of nodes in
a path from the original vertex to the destination vertex is uncertain. If |V | = n, it is
possible that the path with the most nodes includes n−1 nodes, while the path with
the fewest nodes includes 2 nodes.

(2) A random sequence of edges usually does not correspond to a path.
The 0-1 linear program model of SPP is formulated as follows:

min ∑
(i, j)∈E

wi, jxi, j

s.t. ∑
j:(i, j)∈E

xi, j− ∑
j:( j,i)∈E

x j,i =





1, i = s
−1, i = t
0, i 6= s, t

xi, j = 0 or 1

In order to solve this problem, some researchers proposed the binary code method. In
this method, xi, j = 1 indicates that the result path includes the arc (i, j), and xi, j = 0
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means opposite circumstance. Intuitively, this code method is very simple. However,
it is very difficult to practice for the reason above that Mitsuo.Gen pointed out.

To overcome such difficulties, Mitsuo.Gen and R.Cheng et al. presented a very
effective coding method in 1998. They solved this problem by encoding some guid-
ing information for constructing a path, but not a path itself, in a chromosome. They
pointed out that the position of a gene is used to represent a node and its value is used
to represent the priority of the node for constructing a path. The chromosome length
n is fixed if |V | = n. We can get a feasible path by decoding the chromosome based
on the gene value. The encoding method is called priority-based encoding [26]. The
detail of this method is presented in [26].

3 The Priority-Based and Dynamic-Gene-Weight-Based
Encoding GA
The priority-based encoding genetic algorithm is a very effective method due

to the position of a gene to be used to represent a node while the value is used to
represent the priority of the node for constructing a path among the candidates. The
method gets rid of the limitation of the binary coding or the decision-variable coding
based on xi, j. But at the same time, we find some deficiencies in their method from
the view of the model theorem and the architecture block hypothesis of a genetic
algorithm. The main deficiencies are as follows:

(1) The convergence would be accelerated if the initial population covers the
neighborhood that includes the optimal solution. We present two methods for solving
this problem. Firstly, we increase the probability of the neighborhood including the
optimal solution or improve the diversity of the chromosomes by augmenting the
initial population. Secondly, we artificially generate the initial population, in order to
contain the optimal solution in the initial population or the optimal gene slice in the
chromosomes, through analyzing the property of the solution space and the objective
function. It is obvious that the former is superior based on the inherent parallel of
GA. However, the calculation time becomes longer along with augmenting the initial
population. To the latter, it has trouble in the analysis of the problem. But we can
exclude this trouble that is not considered in Mitsuo.Gen method after investigating
this problem thoroughly.

(2) The merit of Mitsuo.Gen method lies in the fact that the decoding is simple
and capable of mapping one chromosome to the only one solution (path) by en-
coding the chromosome with the non-repeated integer (1≤ v(i)≤ |V | ,v(i) 6= v( j)).
However, this encoding is unfit for the genetic operators. It will result in the de-
struction of the optimal chromosome slice, the influence of multiple gene positions,
and the infeasible offspring derived form the cross operation and the mutation op-
eration. Consequently, many other computations are needed to mend the unfeasible
chromosome.

(3) In general, the cross operation should not augment the gene diversity, for
it only inherits the gene slice from the parent chromosome. It should generate the
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multiplex chromosomes in order to satisfy the global optimal. However, the cross
operation in Mitsuo.Gen method generates not only a diversity of chromosomes but
also a diversity of genes. As we know the purpose of the mutation operation is to keep
the diversity of a gene and to satisfy the local optimal. Moreover, some researchers
insist that the high mutation probability would destruct the valuable gene and compel
the method to do the stochastic optimal search work. From this point of view, if the
mutation probability is low, we can accelerate the convergence. Mitsuo.Gen method
neglects this problem .

(4) In GA, the essence of the selection operator is “the survival of the fittest”
and the fitness function is the key to this objective. Generally we can use the Roulette
Wheel selection technique that selects the highest fitness value chromosome to get
into the next generation. It is important to point out that the selection operator will
bring the pre-mature and the model cheat problem at the cost of the convergence of
the algorithm.

Based on Mitsuo.Gen method, we proposed the improved GAs which is based
on the technology of dynamic coding of the priority of vertex and gene weight for
solving the SPP.

The following factors are considered in our method:
(1) Real encoding. Generate a real number M · h(i) for each node, where M is

a rather big integer, h(i) = W (i)Rand (0,1) is a non-uniform distribution stochastic
number in (0,1), and W (i) is the priority of the node. This encoding method does
not needing mend operations because cross or mutation operation wouldn’t destroy
the feasibility of the chromosomes.

(2) Optimal gene block. We prefer the optimal gene block in the chromosome
when initializing the population. Taking into account the property of the SPP, the
optimal solution usually composed with the shorter edge and the fewer edges. Now
we cannot know how many edges that composed the shortest path before hand, but
we can utilize the edge length. So we can impose the function h(i) to ensure that the
two adjacent nodes with the shorter edge weight will be included in the chromosome.
This is our so-called encoding based gene weight. The microevolution strategy is also
considered here. In fact, the effect of each node in a network is different according
to its structure and parameters. So we put forward the concept of the importance
measure of a vertex in a network structure. Its formula is as follows:

W (i) =


1−

∑
j

ci, j

∑
i

∑
j

ci, j


 , (i, j) ∈ E, ∀i ∈V.

(3) Dynamic encoding based on the varying fitness function. Here we adopt the two
phases method. In the forepart [1,βT ] (T is the iteration number, 0 < β < 1) of
evolution, in order to prevent the pre-mature and the model cheating which would
compel the algorithm to be limited in the local optimal search, we adopt the rather
large population and lower the pressure of the selection operation (e.g. weaken the
effect of the fitness function). In the second phase (βT,T ], we adopt the smaller
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Figure 1: The code of chromosome

population and increase the pressure of the selection operation in order to promot the
local optimal search and accelerate the convergence.

(4) Mutation operator based on gene weight. To guarantee the convergence we
must retain the best chromosome. We can retain the best chromosome if we adopt
the non-uniform distribution of the gene position for the mutation operator according
to the gene weight.

(5) Mountain climbing method. Mountain climbing method is also adopted for
the local optimal searching. The mountain climbing method has superiority in solv-
ing the local optimal search. There is a local optimal search in the final stages of GA.
So we adopt the uniform stochastic sequence mountain climbing method for local
optimal search in our method.

The priority-based and dynamic-gene-weight-based encoding genetic algorithm
is a very effective method.

The steps of the algorithms are as follows.
Step1. Generate initial population.
Step1-1. Calculate the importance measure of the vertex i in the network struc-

ture.

∀i ∈V, W (i) =


1−

∑
j

ci, j

∑
i

∑
j

ci, j


 , (i, j) ∈ E

Step1-2. Generate random priority based on the structure of importance mea-
sure

v(i) =M ·h(i)
=M ·W (i) ·Rand () , ∀i ∈V

where, Rand () is a uniform distribution stochastic number in (0,1). The code of the
chromosome is shown in figure 1:

Step1-3. Generate size chromosomes according to Step1-2 as the initial popu-
lation.

Step2. Crossover operator.
Select size1 chromosomes by crossover probability Pc and randomly group them

by pairs. In this way we can get
⌊

size1
2

⌋
pairs as crossover parents. We select the

substrings of two parents at random and exchange substrings between parent1 and

384 The Sixth International Symposium on Operations Research and Its Applications



Figure 2: Example of the crossover

Figure 3: Example of mutation

parent2, then determine the mapping relationship, and finally legalize offspring with
the mapping relationship. The process is shown in figure 2.

Step3. Mutation operator.
Select size2 chromosomes by mutation probability Pm.
Step3-1. Calculate the weight of each gene:

GW (i) =
1

v(i)
÷∑

j

1
v( j)

Step3-2. Calculate the selected cumulative probability of each gene:




q0 = 0

qi =
i

∑
j=1

GW (i), i = 1,2, · · ·n

Step3-3. Generate a uniform distribution stochastic number r in (0,1)，if qi−1 <
r ≤ qi, then the ith gene position is the mutation gene position.

Step3-4. Generate a priority for ith gene. The function is defined as follows:

v(i) = M ·W (i) ·Rand ()

The process is shown in figure 3.
Step4. Fitness calculation and selection operator
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Step4-1. Decoding. We perform the decoding work for each chromosome in
the population.

For the kth chromosome, the decoding work is as follows:
(a) Let i = 1, P(k) = {1}.
(b) j∗ = argmax j {v( j) |(i, j) ∈ E AND { j} /∈ P(k)}. If several identical v( j)

exist, the smallest j is selected. In this way, the exclusive solution is guaranteed. The
node i is a dead node if we cannot find such j. In the circumstance of a dead node,
we can break the process by adding the virtual edge (i,n), where j∗ = n,wi,n = Q and
Q is the maximal integer.

(c) i = j∗, P(k)+{i}→ P(k).
(d) If i = n, the path P(k) is the derived solution path according to the chromo-

some k, otherwise, jump to (b).
Step4-2. Calculate the length of the result path.

L(k) = ∑wi, j |(i, j are the two adjacent vertexs in P(k))

Step4-3. Calculate the fitness.

f (i) =
1

L(i)
÷ 1

∑
k

L(k)
, i,k = 1,2, · · · ,size

Step4-4. Calculate the dynamic variable fitness function. The exponential func-
tion is adopted to be as the dynamic variable fitness function.

f
′
(i) = eα· f (i),

Let α = α1 during the forepart of the iteration [1,βT ] and α = α2 in the (βT, T ]
phase, α2 > α1. The iteration number is T , 0 < β < 1, generally β = 2

3 .
Step4-5. Selection. Let δ · size → size, δ ∈ d0.6 0.9e, in the second iteration

phase for reducing the population.
(a) eval (i) = f

′ (i)/∑
k

f
′ (k), i,k = 1,2, · · · ,size

(b)





q0 = 0

qi =
i

∑
j=1

eval ( j)

(c) Generate a uniform stochastic number r ∈ (0,1). Select the ith chromosome
as the offspring individual.

(d) Repeat (c) until we get size offspring.
Step5. Adopt the mountain climbing method for the local optimal search in the

iteration phase (γT, T ] . Let γ = 0.95 according to the problem scale.
We propose the uniform stochastic sequence mountain climbing method for the

local optimal search in our method.
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Table 1: The computation results

No.
The The Mitsuo.Gen algorithm Our algorithm
number
of nodes

number
of edges

Convergent
solution

Convergent
probability

Convergent
solution

Convergent
probability

1 100 258 1791 0.4 1791 0.9
2 100 253 2159 0.6 2159 1.0
3 100 252 2216 0.5 2216 0.9
4 92 234 1712 0.4 1712 1.0
5 90 246 1736 0.3 1736 0.8
6 90 232 1542 0.4 1542 0.8
7 90 220 1935 0.4 1935 0.9
8 80 206 1519 0.4 1519 1.0
9 80 187 2126 0.5 2126 0.8
10 80 195 2533 0.4 2533 0.9

For the optimal chromosome i in the current population, let l∗ = L(i):
(a) Generate the stochastic sequence List of the number 1−n.
(b) For each item k in the List, mutate the kth gene value:

v(k) = M ·W (k) ·Rand () .

(c) Evaluate the mutation chromosome l = L(i). If l < l∗, then l∗ = l, the muta-
tion is successful; otherwise, resume the original gene value.

(d) Go to (b); Repeat until all the items in the Listare processed.
(e) Go to (a); Repeat until the mountain climbing iteration number is C.
Step6. Repeat the Step2–Step6 until the T round iterations are completed.

4 Numeric examples
To evaluate the performance of Mitsuo.Gen algorithm and our method, 10 dif-

ferent synthetic networks are generated by the random network generator designed
by us. For the 10 different networks, the iteration number is 500. The computation
results of the average of the 10 runs with different initial populations are listed in
table 1 and figure 4.

The results show that our method is better on the convergence. The conver-
gence process on the network with 100 nodes and 258 edges is shown in figure 4.
Mitsuo.Gen algorithm is convergent at the 277 generation whereas our method is
convergent at the 182 generation.
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Figure 4: The convergence performance of the two algorithms
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