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Abstract Dimension problem is the main difficulty in inferring gene regulatory networks and
has not been solved in substance. Grounded on linear ordinary differential equation, we propose a
simple optimization model for achieving sparseness for the derived gene regulatory networks. The
model is applied to gene expression profile data related to breast cancer metastasis, and the com-
putational outcome shows that this model has potential to find solution with biological plausibility.
The advantage of the model lies also in its simplicity and time saving in computation.
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1 Introduction
Knowledge of mRNA levels under different conditions can help people under-

standing how the expression levels of each gene depend on an external stimuli and
on the expression levels of other genes. With high throughput experimental methods,
such as DNA microarrays, mRNA expression levels of a group of genes can be mea-
sured simultaneously [1]. While the amount of available gene expression data has
been increasing rapidly, the required mathematical techniques to analyze such data
are still in development. Modelling of genetic regulatory networks (GRN) is becom-
ing increasingly appealing for gaining insight into the underlying processes of living
systems, but deriving a gene regulatory network from gene expression data has been
proved to be difficult.

Gene expression is a complex process regulated at several stages in the synthesis
of proteins [7]. A simple GRN consists of one or more input signalling pathways,
several target genes, and the RNA and protein produced from the target genes [6]. In
order to understand the underlying structures of activities and interactions of intra-
cellular processes, people have to understand the dependencies of gene products and
their impact on the expression of other genes. Therefore, finding a GRN for a specific
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process would explain this process from a logical point of view, thus explaining many
other biological phenomena.

Therefore, the model construction of GRNs has become one of the important
topics in bioinformatics. However, the large number of regulatory components re-
quires a large experimental data to infer the networks. Recently, DNA microarrays
have become one of the main tools in this research area. Microarray technology en-
ables people to monitor the activities of thousands of genes in parallel and can be
applied as a powerful tools to understand the regulatory mechanism of gene systems
in a cell. Microarray experiments often result in time series of measured values indi-
cating the levels of gene expression in a genome [2]. Using these data, a valid model
is able to reflect the true regulatory networks, i.e. the dependencies of the biological
components.

There are several approaches to address this problem. Most of them, based on
the distance between the observed data and the simulated data from the mathematical
model, can excavate some biological knowledge in a sense. But some plausible and
known structure property of the GRNs are always neglected in the modelling process,
e.g. the sparseness of biological regulation of gene networks, that is, one gene only
depends on a small proportion of the components in the system.

In this paper we propose a simple optimization model to guide the reverse en-
gineering of time series data, and apply it to a real time-course gene expression data
related to breast cancer metastasis (see table 6 in Appendix A [8]). Our model builds
on the general solution of the ordinary differential equations which have been widely
used to analyze GRNs. In the process, the set of ordinary differential equations is
transformed into a linear matrix equation. A special solution with least L2 norm of
the matrix equation is obtained by the singular valued decomposition (SVD) tech-
nique. The special solution is further removed in the solution space to gain a new
regulatory network, which remains to fit the data as well as realizes the sparse con-
nection of the system and is therefore biological plausible.

The rest of this paper is organized as follows. Section 2 presents an overview on
related works and a list of associated publications. In Section 3, we detail the method
proposed in this paper. The application of this model to a biological gene expression
profile data will be shown in Section 4. Conclusion and an outlook on future research
will be given in the last section.

2 Related Work
Understanding the mechanisms of gene regulatory system is very interesting

and promotes researchers deriving the underlying networks. In this section, a brief
description of related work is given.

The first computational models to infer gene network are boolean or random
boolean networks (RBN) [9, 12, 11, 10]. Boolean networks have the advantage that
they can be solved with light computation effort and allow large regulatory networks
to be analyzed in an efficient way. In boolean network formalism a gene is considered
to be either on or off, and intermediate expression levels are neglected, which causes

An Optimization Model for Achieving Sparsity of Gene Regulatory Networks 369



that certain behaviors may not be predicted by the simulation the designed network.
There are situations in which these idealization are not appropriate, and more general
methods are required.

In contrast to discrete models such as boolean networks, continuous models al-
low the expression of gene regulation to be numerical. An example for this kind of
approach is the differential equation model given in [16, 17, 3], where several mod-
els were successfully inferred. Linear differential equations are attractive because
of their lower number of parameters which implies that we are less likely to over
fit the data, and they are sufficient for modelling complex interactions between the
genes. Although gene regulations are often nonlinear, almost all of the existing ap-
proaches for GRN inference use linear or additive models due to unclear structures
of biological systems and scarcity of data [18, 4, 3].

Another popular model for inferring gene networks is the Bayesian network or
dynamic Bayesian network [13, 15, 14]. Friedman and his colleagues have proposed
a heuristic algorithm for the induction of Bayesian network from expression data
[13]. A Bayesian network approach towards modelling regulatory networks is attrac-
tive because of its solid basis in statistics, which enables it to deal with the stochastic
aspects of gene expression and noisy measurements in a natural way. But they also
confront some drawbacks as well, for example, they do not allow cyclic networks,
which are known to exist in biological systems.

The computational biology literature abounds in various modelling approaches,
all of which have particular goals along with their strengths and weaknesses [5].

3 Method
In this paper we consider a simple but not trivial dynamical model of a gene

network with an optimization model to mimic the sparsity property of the GRN. Even
though this oversimplified model may not be very realistic, it will be a fundamental
tool for studying and gaining insight into the basic mechanism, thus providing a
valuable numerical method for deriving biologically valid gene networks.

More precisely, we treat the problem of reconstruction of a gene network in a
practical situation in which the number of available data is insufficient to uniquely
determine the network, which is called the dimension problem. In order to try to find
more reliable solution of the network, we adopt some additional biologically relevant
a priori assumptions such as the sparseness of the GRNs.

Differential equations are used to model gene interactions under the assumption
that the transcription rate over time of each gene expression level is a function of the
expression levels of some (usually a few) other genes. Such modelling assumption is
based on the reaction kinetics at the biochemical level.

A fully realistic model should consider a number of relevant biological issues
such as the relationships between mRNA and protein concentrations, but only the
mRNA is actually measured by microarrays. Clearly, a lot of work remains to be
done in the field of gene network modelling. Nevertheless, a very simple linear
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model has been proved to be useful in a number of cases [18] even if it is obvious that
nonlinearity is an unavoidable issue since it reflects also the nature of biochemical
interactions. From the viewpoint of dynamical systems, linear equations can at least
capture the main features of the network or the function. Therefore, as in [19], we
consider the linear system described by the following differential equations:

ẋi(t) =−λixi(t)+
N

∑
j=1

Wi jx j(t)+bi(t)+ εi(t) (1)

for i = 1,2, · · · ,N, where the state variables xi’s are the concentration of mRNA of
gene i, λi’s are the self-degradation rates, bi’s are the external stimuli, or environment
conditions, which is set to zero when there is no external input, and εi’s represent the
noise. Wi j describes the type and strength of the effect of the j-th gene on the i-th
gene, whose positive, zero or negative signs indicate activating, naught and repressing
influence respectively. The differential equation (1) can be written in a compact form
as follows:

ẋ = Ax+B+ ε (2)

where A is an N×N matrix which incorporates both self-degradation rates (on its
main diagonal entries) and the strength of the gene-to-gene interaction (on its off
diagonal entries) and the columns of the N×m matrix B are the bi’s, where m is the
number of time points. However, sometimes we do not have the information of the
external stimuli, that is to say, B in (2) is nonexisting, so (2) is changed to

ẋ = Ax+ ε. (3)

Microarray experiments often result in discrete time series of measured values. We
assume that the number of measured time points to be m, t1, t2, · · · , tm, and (3) can be
described in a discrete form as follows:




∆x1(t2) · · · ∆x1(tm)
... · · · ...

∆xN(t2) · · · ∆xN(tm)


 = AN×N




x1(t1) · · · x1(tm−1)
...

. . .
...

xN(t1) · · · xN(tm−1)


+ εN×(m−1) (4)

Where 4x(ti) = (x(ti)− x(ti−1))/(ti− ti−1), i = 2,3, · · · ,m. The error part εN×(m−1) is
neglected in our model, and in a simple way (4) becomes

∆X = AX . (5)

It is well known that the data sets created by microarray technology contain the
number of genes far more than that of the time points. It leads in the solution of
the above matrix equation (5) being not uniquely determined. We can get X = V SU ′

by the SVD technique, where V and U are orthogonal matrix with order N×N and
(m−1)×(m−1) respectively, and S is a diagonal matrix. Then the particular solution
is A0 =4XUS−1V ′, which is a least-L2-norm solution, usually the solution does not
have the sparse property.
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Figure 1: A more reliable solution of gene regulatory network maybe locate near to
the margin of the hyper-polygon, which is the part of the hyperplane of (5) in the
quadrant where the least-L2-norm solution lies. Point A denotes the least-L2-norm
solution who comprise almost all variables, then is contradicting to the spareness
assumption of biological networks. Point B may be a more reliable solution of GRN,
because only gene a, b and c near to the point B have large regulating strength.

We think that a more reliable solution of gene regulatory networks should locate
near to the margin of a hyper-polygon which is the part of the solution hyperplane in
the quadrant where the least-L2-norm solution lies, see figure 1. In this figure, point
A denotes the least-L2-norm solution, which possesses more variables than the point
B. B comprises only three variables, e.g. a, b and c that maybe regulate the objective
gene. We have known that AT

0 + αY, ∀Y ∈ nl,∀α ∈ R are also solutions of (5), in
which the real solution is contained. According to the above discussion, we establish
the following optimization problem,

max
Z∈RN−m+1

N

∑
i=1
|ai j0 +X⊥(i)Z|

s.t. sign(ai j0)(ai j0 +X⊥(i)Z)≥ 0, i = 1,2, · · · ,N,

(6)

where AT
0 ( j0) = (a1 j0 , · · · ,aN j0)

T denotes the j0th column of AT
0 , X⊥(i) is the ith N−

m+1 dimensional row vector of the null space X⊥, and Z ∈RN−m+1, j0 = 1,2, · · · ,N,
where N is the number of genes. In order to avoid the objective function going to
infinite, some constrained conditions are presented, which keep the sign of ai j0 +
X⊥(i)Z as same as that of ai j0 , i.e., the reliable network will be searched in the hyper-
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Table 1: The main computational steps of the model
Realization of the optimization model
Step 1 Input a gene expression matrix with N genes and m time-points;
Step 2 A0 is obtained by using the SVD technique;
Step 3 For j0 = 1, · · · ,N, solve the optimization problem (6) to produce

a revised solution A
Step 4 A threshold ε is determined and the elements in matrix A whose

absolute value is less than the threshold are taken to zero, then
output the matrix A.

polygon mentioned above. For the purpose of lucidity, the computational steps of the
optimization model are listed in table 1.

4 Application
In this section, we apply our model to a real gene expression data related to

breast cancer metastasis which has 27 genes and 6 time points shown in table 6, see
Appendix A [8]. The content of the dataset contains gene expression data of surgical
samples, including both breast cancer primary tissue and metastasis tissue, collected
from 30 patients in different clinical staging. The oligonucleotide microarray tech-
nique was used to identify the gene expression profiling and screen the differential
expression genes in breast cancer samples with a special emphasis on metastasis fac-
tors [8]. 27 genes were identified, 14 of which are up-regulation genes whose Ratio
is as large as 3, and the rest are down-regulation gene whose Ratio is as small as 0.33
[8].

For saving the page space, we only give the computational result of the first
ten genes regulated by other genes and display the results at step 2, step 3 and step
4 in the table 1 separately to show the improvement process of the solution. The
computational outcome by SVD technique (step 1) listed in table 2 and table 3 (with
the values filtered by the threshold 0.094) display no sparseness, which shows that
the least L2-norm solution does not possess biological plausibility. The threshold ε is
taken as follows:

ε = 2/3(
N

∑
i=1

N

∑
j=1
|A(i, j)|)/N2, (7)

i.e. the threshold is two third of the average expression of all genes.
Then starting from the special least norm solution at step 2, we solve the opti-

mization problem (6) at step 3. And its computational outcome is shown in table 4.
To show that the solution is as expected as we plan to posses the sparseness property,
we take the same formula to determine a threshold to filter the data. Table 5 lists
the outcomes with 52 interactions after step 4, where ε approximates 1 according to
formula (7), which shows that the last solution has better biological plausibility than
the initial solution at step 1.
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Table 2: A computational result of the SVD technique without using the optimization
process for sparseness. It shows the first ten genes regulated by all the genes

gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9 gene10
gene1 -1.57 1.31 0.14 0.13 -0.22 -0.07 -0.34 -0.03 0.07 -0.75
gene2 1.09 -0.70 -0.31 -0.07 0.15 0.02 0.28 -0.19 -0.27 0.37
gene3 -1.52 -0.68 -0.60 -0.12 -0.14 -0.15 -0.06 -0.14 -0.17 -0.62
gene4 0.37 0.47 -0.22 -0.23 -0.01 -0.09 0.20 0.27 0.16 0.07
gene5 0.49 0.20 0.23 -0.01 0.00 0.00 -0.01 0.13 0.15 0.26
gene6 -0.26 -0.08 0.21 0.02 -0.06 -0.02 -0.16 0.06 0.13 0.03
gene7 1.06 0.14 0.56 0.12 0.07 0.09 -0.06 0.06 0.15 0.55
gene8 0.68 -1.53 0.27 0.21 0.13 0.12 -0.10 -0.36 -0.23 0.51
gene9 1.55 -1.06 -0.21 -0.05 0.21 0.06 0.31 -0.19 -0.26 0.63
gene10 0.39 0.41 -0.33 -0.13 0.03 -0.04 0.23 0.02 -0.08 -0.03
gene11 -1.11 -0.69 0.59 0.35 -0.11 0.06 -0.54 -0.26 0.00 -0.14
gene12 0.86 0.18 -0.23 -0.16 0.07 -0.02 0.27 0.10 -0.01 0.24
gene13 -0.33 1.21 -0.01 -0.15 -0.12 -0.10 0.00 0.34 0.29 -0.22
gene14 0.61 -1.64 -0.44 -0.00 0.16 0.03 0.20 -0.43 -0.47 0.26
gene15 0.16 0.29 -0.08 -0.06 0.00 -0.01 0.08 0.06 0.02 -0.00
gene16 0.24 0.00 0.04 -0.00 0.02 0.00 0.02 0.02 0.02 0.10
gene17 0.20 -0.02 -0.02 -0.01 0.02 0.00 0.04 -0.00 -0.01 0.06
gene18 0.18 0.42 -0.02 -0.06 -0.00 -0.01 0.07 0.11 0.07 0.01
gene19 0.35 1.12 0.00 -0.13 -0.02 -0.04 0.13 0.29 0.21 0.00
gene20 0.37 0.17 -0.06 -0.05 0.03 -0.00 0.10 0.04 -0.00 0.09
gene21 0.14 0.69 -0.01 -0.08 -0.02 -0.02 0.07 0.17 0.12 -0.02
gene22 0.07 0.32 -0.09 -0.06 -0.00 -0.02 0.07 0.06 0.02 -0.04
gene23 0.35 0.50 -0.10 -0.10 0.01 -0.02 0.14 0.12 0.05 0.03
gene24 0.98 0.42 -0.02 -0.12 0.07 0.00 0.22 0.17 0.09 0.31
gene25 0.42 0.46 0.05 -0.06 0.01 -0.00 0.08 0.15 0.12 0.12
gene26 0.58 0.73 -0.06 -0.14 0.02 -0.02 0.18 0.22 0.13 0.12
gene27 0.63 -0.34 -0.10 -0.03 0.08 0.02 0.14 -0.06 -0.10 0.23

The computational outcome indicates that our model is efficient and effective
in searching gene regulatory networks with sparsity property. Without incorporat-
ing more information of a given biological system, the solution found by our model
maybe inaccurate and far from the real solution. Therefore, we will enhance the ac-
curacy of our model in the future’s research by integrating more additional known
information in literature or public database into the model.

5 Outlook and Future Work
Grounded on linear ordinary differential equation, we proposed a simple op-

timization model for achieving the sparseness of GRN. The model is applied to a
microarray data related to breast cancer metastasis, and the computational outcome
shows that this model can efficiently find solution with biological plausibility. The
merit of the model is linear and takes less time for computation.

Due to the ambiguity in the data and there are many local solutions for the op-
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Table 3: The table lists the outcome after the data in table 2 being filtered by threshold
ε = 0.094. The total number of interactions between genes is 153. Therefore the
network is not sparse since the upper bound of connections is 270.

gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9 gene10
gene1 -1.57 1.31 0.14 0.13 -0.22 0 -0.34 0 0 -0.75
gene2 1.09 -0.70 -0.31 0.15 0 0.28 -0.19 -0.27 0.37
gene3 -1.52 -0.68 -0.60 -0.12 -0.14 -0.15 0 -0.14 -0.17 -0.62
gene4 0.37 0.47 -0.22 -0.23 0 0 0.20 0.27 0.16 0
gene5 0.49 0.20 0.23 0 0 0 0 0.13 0.15 0.26
gene6 -0.26 0.21 0 0 0 -0.16 0 0.13 0
gene7 1.06 0.14 0.56 0.12 0 0 0 0 0.15 0.55
gene8 0.68 -1.53 0.27 0.21 0.13 0.12 -0.10 -0.36 -0.23 0.51
gene9 1.55 -1.06 -0.21 0 0.21 0 0.31 -0.19 -0.26 0.63

gene10 0.39 0.41 -0.33 -0.13 0 0 0.23 0 0 0
gene11 -1.11 -0.69 0.59 0.35 -0.11 0 -0.54 -0.26 0 -0.14
gene12 0.86 0.18 -0.23 -0.16 0 0 0.27 0.10 0 0.24
gene13 -0.33 1.21 -0.15 -0.12 -0.10 0 0.34 0.29 -0.22
gene14 0.61 -1.64 -0.44 0 0.16 0 0.20 -0.43 -0.47 0.26
gene15 0.16 0.29 0 0 0 0 0 0 0 0
gene16 0.24 0 0 0 0 0 0 0 0 0.10
gene17 0.20 0 0 0 0 0 0 0 0 0
gene18 0.18 0.42 0 0 0 0 0 0.11 0 0
gene19 0.35 1.12 0 -0.13 0 0 0.13 0.29 0.21 0
gene20 0.37 0.17 0 0 0 0 0.10 0 0 0
gene21 0.14 0.69 0 0 0 0 0 0.17 0.12 0
gene22 0 0.32 0 0 0 0 0 0 0 0
gene23 0.35 0.50 -0.10 -0.10 0 0 0.14 0.12 0 0
gene24 0.98 0.42 0 -0.12 0 0 0.22 0.17 0 0.31
gene25 0.42 0.46 0 0 0 0 0 0.15 0.12 0.12
gene26 0.58 0.73 0 -0.14 0 0 0.18 0.22 0.13 0.12
gene27 0.63 -0.34 -0.10 0 0 0 0.14 0 -0.10 0.23

timization problem, it is difficult for the proposed model to find the true solution.
As one future enhancement of the proposed method, we plan to incorporate some
additional information to identify the correct network. As the initial results showed,
precautions have to be taken to prevent the model from finding the trivial solution
without biological significance. In future’s work we plan to take the concept of time
delay into our model, which is essential in biological networks. More a priori in-
formation can be imported into the inference process of real microarray data. These
information include partially known pathways and information about co-regulated
genes, which can be found in literature or in public databases. This would enable
our method to search for models consistent with current biological knowledge, but
would also allow for alternative solutions where biological information is missing or
faulty. Furthermore, non-linear interaction could appear in our model for enhancing
the precise of gene regulatory networks to overcome the insufficiency of the proposed
model.
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Table 4: This table lists the solutions of relations between the first ten genes and the
total 27 genes after the step 3.

gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 gene9 gene10
gene1 -0.08 0.01 0.97 0.01 0.00 -0.00 0 -1.54 0.00 -0.00
gene2 0 -7.44 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 0.66
gene3 0 0.00 0.00 0.00 -0.00 0.00 -0.11 -1.76 -0.48 -0.02
gene4 6.75 2.62 0.00 0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00
gene5 5.46 -0.00 0.61 -4.38 0.10 2.60 -5.37 -0.00 -0.00 0.00
gene6 0.00 -4.41 0.00 2.36 0.00 -2.16 -0.00 1.95 0.00 -0.00
gene7 -0.00 3.20 0.00 2.20 -0.00 -0.00 -0.00 0.18 -0.00 -0.00
gene8 0 -0.00 -0.00 0.18 -0.00 0.00 -0.00 0.00 -0.00 0.00
gene9 0 0.00 -0.16 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00

gene10 -0.00 13.75 0.00 0.00 0.00 0.00 0 7.94 0.00 -0.00
gene11 0 0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.69 0.00
gene12 0 -0.00 0.00 0.00 0.00 -0.00 0 -0.00 -0.82 -0.00
gene13 16.09 0.00 -1.56 -0.00 0.00 0.00 2.89 -0.00 0.00 -1.16
gene14 -0.00 -0.00 -0.00 0.00 -0.00 0.00 1.56 -0.00 0 0.00
gene15 0.00 -0.00 0.00 -0.00 17.14 0.00 0.00 -0.00 16.73 -21.77
gene16 8.92 28.36 6.59 -2.50 0.00 0.00 23.35 7.53 10.92 -0.00
gene17 -0.00 -62.20 -0.00 -0.00 0.00 0.84 0 -47.18 -0.00 2.18
gene18 0.76 -0.00 -17.53 -0.00 -13.01 -0.00 0.00 -0.00 -0.00 19.58
gene19 0.00 0 38.80 0.00 0.00 -0.00 0 -0.00 0.00 11.59
gene20 -0.00 -0.00 0.00 -0.00 0.00 -3.63 0 -0.00 -14.22 -0.00
gene21 13.51 0.00 -47.56 -0.00 0.00 0.00 -0.00 -0.00 0.00 -31.51
gene22 8.63 0.00 0.00 0.00 -9.05 0.00 -0.00 -0.00 2.14 -0.00
gene23 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 12.77
gene24 0 0.17 -4.95 0.00 0.00 0.88 0 -0.00 -0.00 -0.00
gene25 0.00 0.10 0.05 0.00 3.85 -2.37 -0.00 -0.00 0.00 -0.00
gene26 0 -0.00 -0.17 0.00 0.76 0.00 0.00 -0.00 0.00 -0.00
gene27 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00
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Appendix A Time-course gene expression data related to
breast cancer metastasis

The following table contains breast-cancer-metastasis gene expression data with
27 genes and 6 time points [8].
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Table 6: Time-course gene expression data related to breast cancer metastasis with
27 genes and 6 time points [8].

ID Name of gene GB.accession t0 t1 t2 t3 t4 t5
1 C7 NM_000587 3.34121 2.52946 1.14962 2.60146 3.26723 2.74518
2 MS4A1 NM_021950 2.20179 1.92798 0.85207 1.79855 1.71894 4.23766
3 TCL1A NM_021966 2.45153 2.90927 1.50698 1.21093 0.81390 0.74240
4 PDE6H NM_006205 2.10673 2.40264 1.71421 1.05099 0.96903 0.34485
5 C8 AL049265 2.46396 2.00801 1.55623 1.43118 1.39612 0.18583
6 CR2 NM_001877 2.59425 2.33566 1.67739 1.2959 1.00653 -0.2989
7 EPHA3 AF213459 2.30812 0.77683 1.06821 1.42411 1.46094 1.10292
8 P2RX5 NM_002561 2.19251 1.21243 0.59190 1.28985 0.00001 1.06793
9 MAL NM_002371 1.58432 1.38382 0.65715 1.24737 0.33575 1.30913
10 RGS1 NM_112922 1.81627 1.59915 0.30823 1.51197 2.01035 -0.1520
11 CD69 NM_001781 2.53768 1.39257 0.54790 1.14642 0.95727 0.83420
12 CD19 NM_001770 1.44899 1.52744 0.81232 0.98293 1.07732 0.02047
13 NTS NM_00613 2.16028 2.10508 1.41663 1.06212 1.67674 4.48989
14 VLCS-H1 NM_014031 1.58027 1.65533 -0.1275 1.22935 0.20798 0.52290
15 COL11A1 NM_001854 -3.3161 -2.0804 -3.0678 -1.7776 -0.5645 -0.1640
16 GRP NM_002091 -1.3116 -2.0925 -1.6290 -2.1934 -3.1304 -0.3964
17 MMP13 NM_002427 -1.1922 -1.6903 -2.3104 -1.4250 -1.3724 -1.9142
18 SFRP2 AF156100 -1.7357 -1.7517 -1.7018 -1.6943 -0.4419 -1.4481
19 C9 AK026320 -1.7078 -1.9841 -0.8269 -1.3158 0.55405 -1.5373
20 FIGL6 AF156100 -1.2134 -1.7702 -2.1249 -0.8500 -0.2737 -1.5152
21 BPAG1 NM_001723 -1.9883 -2.1649 -1.6438 -1.7930 0.00001 -0.2337
22 MMP1 NM_002421 -2.0907 -1.4412 -2.6885 -1.5775 -0.3662 1.52346
23 C10 AK022342 -3.0795 -1.8282 -1.9676 -1.2781 -0.0433 -0.8540
24 C11 AK022198 -2.3102 -2.1909 -0.5531 -1.1064 -0.7373 -0.9374
25 C12 AK016784 -0.8538 -1.5268 -0.7189 -1.4255 -0.5974 -0.2140
26 KRT17 NM_000422 -2.5797 -1.2558 -0.6813 -1.4386 -0.1230 -0.1660
27 MMP3 NM_002422 -1.4914 -1.5166 -2.2186 -0.7820 -1.9914 -1.9525
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