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Abstract Communication set generation significantly influences the performance of parallel pro-
grams. However, seldom works gives attention to the communication generation problem for ir-
regular applications. In this paper, we will explain how support to generate communication set
for irregular array references in loops. We propose a compile-time algorithm by introducing some
symbolic analysis techniques. In our symbolic analysis system, a set of symbolic solutions of a
symbolic expression system is solved by limiting some restrictions. For this proposal, we intro-
duce some symbolic analysis algorithms to fix solutions in a system of equalities and inequalities.
Finally, we show experimental results on a parallel computer CM-5 that validate our approach.
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1 Background
Parallel compilers are necessary to allow programs written in standard sequen-

tial languages to run efficiently on parallel machine. Parallel compilers that generate
code for each processor have to compute the sequence of local memory address ac-
cessed by each processor and the sequence of sends and receives for a given processor
to access non-local data. The distribution of computation in most compilers follows
the owner-computer rules. That is, a processor performs only those computations (or
assignments) for which it owns the left hand side variable. Access to non-local right
hand side variables is achieved by inserting sends and receives.

Communication overhead influences the performance of parallel programs sig-
nificantly. According to Hockney’s representation, communication overhead can be
measured by a liner function of the message length m — Tcomm = Ts +mTd , where Ts

is the start-up time and Td is the per-byte messaging time. Therefore, to achieve good
performance, we must optimize communication in following three aspects:
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Figure 1: Sample loop nest with irregular array reference

(1) to exploit local computation as much as possible,
(2) to vectorize and aggregate communication to reduce the number of commu-

nications,
(3) to reduce the message length in a communication step.
In order to compile a loop into parallel code efficiently, one must generate the

communication set for each processor at compiler-time. If the loop bounds are con-
stants and array subscripts are represented as liner (affine) functions of loop index
variables, the problem is similar to compile a typical HPF-style [1], assignment state-
ment A(l1 : h1 : s1) = B(l2 : h2 : s2), where s1 and s2 are the access stride of A and B
respectively. Given an array statement with HPF-style data mappings, there has been
much research to generate the code including the communication for each processor
[2][3][4][5]. Also, the methods to decide data distribution schemes for regular loop nests
are discussed by many researchers [2][6].

However, if the array subscript expressions are not of the liner form – called non-
linear which appears some irregular applications – the above mentioned techniques
cannot be applied in this situation.

Consider a loop nest with non-linear array referencing which is very similar
to a code excerpt where induction variables are replaced, as found in the Perfect
benchmarks [10] shown in Figure 1.

In the loop two array reference functions are f = i1 ∗ (i1 − 1)/2 + i2 and g =
i2 ∗ (i2 − 1)/2 + i1 respectively. The general affine communication set generation
techniques cannot be applied in these kinds of irregular applications, because there is
no affine relationship between the array global addresses of LHS and RHS. Commu-
nication generation for this kind of issues has not received much attention.

Many researchers have focused on the problem of communication set genera-
tion under regular array reference in parallel loop nest, or array statements such as
A(l1 : u1 : s1) = B(l2 : u2 : s2) in some data-parallel languages such as HPF and For-
tran D [1][5], with block-cyclic distribution. For instance, Gupta et al. proposed closed
forms for representing communication sets. These closed forms are then used with a
virtual processor approach to obtain a solution for arrays with block-cyclic distribu-
tion [2]. Chatterjee et al. enumerated the local memory access sequence based on a
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finite-state machine (FSM). Their run-time algorithm involves a solution of b1 linear
Diophantine equations to determine the pattern of accessed address, followed by sort-
ing of these address to derive the accesses in a linear order [3]. Kennedy et al. adopted
an integer lattice method to generate the memory access sequence [4]. Recently, Tseng
and Gaudlot [13] derived an algebraic solution for an integer lattice that models the
communication set using the Smith-Normal-Form analysis, thus generating the enu-
meration of the communication set. In this approach, the authors claimed that the
SPMD program can be constructed without any inspector-like run-time codes. Paek
et al. [14] presented a compiler framework for communication generation that has
the potential to reduce the time—consuming hand-tuning that would otherwise be
necessary to achieve good performance for non-cache-coherent multiprocessors.

However, seldom work gives attention to the problem of generating communi-
cation for irregular access in loop nest. Antonio Lain et al. [6] implemented a library,
called PILAR, for exploiting regularity in irregular application. They presented meth-
ods for detecting irregularity in array references, as well as the presence of locality
in such references, and finally, placement of inspectors and inter processor commu-
nication schedules [6]. The CHAOS/PARTI library [9], and in particular, the original
PARTI library, had a significant impact in the design of PILAR. Similarly, LPARX
[11] is a C++ library that provides run-time support for dynamic, block-structured,
irregular problems in a variety of platforms. Our recent work tried to reduce the
communication cost of irregular loop partitioning. We partitioned a loop iteration
to a processor for which the minimal communication costs is ensured when execut-
ing that iteration. Then, after all iterations are partitioned into various processors,
we gave global vs. local data transformation rules, indirection array remapping, and
communication optimization methods [15].

We propose some communication optimization techniques for the situation of
irregular array references in nest loops. In our methods, the local array distribu-
tion schemes are determined such that the total amount of communication messages
is minimum. Then, we explain how to support communication set generation at
compile-time by introducing some symbolic analysis techniques. In our symbolic
analysis system, a set of symbolic solutions of a symbolic expression system is solved
by limiting some restrictions. Experiments will be shown that demonstrate the effec-
tiveness of our approach to the parallel compilers.

The rest of this paper is organized as follows: Section 2 motivates the need
of communication optimization for irregular array references, and introduces some
background knowledge used in the following sections. Section 3 describes how to de-
termine array distribution schemes for irregular loops. Section 4 proposes a symbolic
analysis method for communication set generation. Section 5 shows the experimental
evaluations. Finally, Section 6 presents the conclusions.

2 Problem Description and Preliminaries
Given a perfectly nested loop L as shown in Figure 2.
For the sake of simplicity, we will assume that the referenced array A and B
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Figure 2: A perfectly nested loop

have only one dimension. The array access functions (f and g), the loop’s lower and
upper bounds (Xi, Yi), and stride (Zi) may be arbitrary symbolic expressions made up
of loop-invariant variables and loop indices of enclosing loops. We will also assume
that all loop strides are positive. It is not difficult to extend our method to handle
imperfectly nested loops, negative strides, multidimensional arrays, and loop-variant
variables. Furthermore, let the array A and B be distributed in a block-cyclic fashion
with block sizes of β1 and β2 respectively across P processors. This is also known as
cyclic(β1) and cyclic(β2) distributions.

We assume that the array access functions f and g are non-linear functions.
Non-linear subscript functions are commonly caused by induction variable substitu-
tion, linearizing arrays, parameterizing parallel programs with symbolic number of
processors and problem sizes, and so forth.

Compilers currently parallelize irregular references using inspector and execu-
tor approach. The inspector partitions loop iterations, allocates local memory for
each unique non-local array element accessed by a loop, and build a communication
schedule to prefetch required non-local data. In the executor phase, the actual com-
munication and computation are carried out. This approach was adopted by CHAOS
run-time library [9]. Inspector-executor incurs significant overhead caused by the in-
spector and mapping non-local indices into local buffers. The inspector must be
re-executed each time the access pattern changes.

We want, first, to decide the distribution schemes β1 and β2 such that the total
communication steps and the amount of message sizes are minimum, because the
communication patterns are different for the same loop nest and arrays A and B, ac-
cording to different data distribution schemes. Then, we will compute the necessary
communication sets in each processor due to execution of the above loop. That is,
we must be able to obtain an array subscript set for a processor pair (p,q), named
Send(p,q): which represents elements of array B sent from q to p. We only gener-
ate send communication set in this paper because the receive set generation is very
similar to the algorithm for send pattern generation.

In our previous work [7][8], array elements distributed on a specific processor can
be represented as a 4-tuple δ = (o, b, s, m), where o is the starting subscript of the
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global array elements distributed on that processor; b the length of the block; s the
stride between two consecutive blocks; and m is the number of blocks distributed
onto the processor. For instance, if an array with the size 180 is distributed across 4
processors with distribution scheme cyclic(3), the data owned by processor p0 can
be expressed as δ0 = (0, 3, 12, 15). A δ corresponds to a set of the global array
subscript defined as

Sδ = {i|o + s∗ k ≤ i < o+b+ s∗ k, 0≤ k < m} .

Intuitively, δ can represent the set of elements of A owned by a processor under any
regular distribution. Furthermore, if δ (A, p) represents 4-tuple of A distributed onto
processor p, then index(A, p) can be defined as

index(A, p) =
{
(i1, · · · , in) | f (i1, · · · , in) ∈ Sδ (A, p)

}

Thus,

Send(q, p) = {g(i1, · · · in)|(i1, · · · in) ∈ Index(A, p)∧g(i1, · · · , in} ∈ Sδ (B, q)}.
Theses formulas will be used in our symbolic communication generation algorithm.
For example1, let N = 15, P = 4, β1 = 3, β2 = 2. According to Algorithm 1, we can
compute all Send(q, p), 0.p, q.3. For instance, the elements must be sent from p3 to
p1 is Send(3, 1) = {6, 7, 15, 22, 31, 38}.

Although we can get the send communication set through the above algorithm,
the rigorous problems are that it can only be invoked at run-time execution when the
bounds of nested loops including non-constant; and the communication complexity
of the algorithm is O(yn) (assuming that the average iteration of each loop is y). This
is very high cost for the parallel program execution.

3 Decision of Array Distribution Schemes for Irregular
Loops
As mentioned in the introduction section, a good data distribution strategy can

reduce the number of communication and message length. Assuming that, in an
iteration (i1, · · · , in), if A [ f (i1, · · · , in)] and B [g(i1, · · · , in)] are distributed onto the
same processor, the statement S in the loop L is executed with local array access.

For the regular loops, based on analysis of affine subscripts, some data distribu-
tion techniques are proposed to maximize the local accesses and minimize the remote
accesses (inter-node communication), such as constraint-based method [2], linear al-
gebraic frameworks [12].

With respect to an irregular reference loop, if it is interlined between two regular
loops, the arrays in the irregular loop must be distributed the same as the previous
scheme in order to avoid redistribution overhead, because the reduced cost of com-
munication may be larger than the redistribution cost. However, if the irregular loop
is absolute or the first loop nest, we must determine the distribution schemes for
arrays in the loop to optimize communications.
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Given the global address of an array element, we can easily determine the pro-
cessor that owns this elements and the local address of the element on that processor
using the expressions

Eqproc(p, i) : p =(i div β ) mod P,
Eqloc(L, i) : L =β ∗ (i div Pβ )+ i mod β ,

where i is a global address, p the processor to which i belongs, P the number of
processors executing the parallel program, L the local address of i on processor p,
and β is the distribution scheme of the array. For the purpose of local execution of
the statement S in the loop L, we must decide β1 and β2 so that the following formula
is needed to became true:

∃β1, β2, max

(∣∣∣
{

(i1, · · · , in)
∣∣∣( f div β1) mod P = (g div β2) mod P,

1≤ β1, β2 ≤ N1

P
,

N2

P
,
(
~X ≤~I ≤~Y

)})
.

The β1 and β2 to satisfy the above formula can be easily solved. However, even if at
the compile-phase, the solving time may be very long. In order to efficiently decide
the distribution schemes, we should pay attention to the fact that because the random
access of array elements for irregular applications, the optimal distribution schemes
for a small range should also be suitable for a large range. This conjecture is verified
by our experiment. For the example1, when N is selected as 500, 1000, and 5000,
the β1, β2 all show 7 and 3 respectively. Thus, the optimal distribution schemes can
be determined at compile-time with a short excerpt of array.

4 Symbolic Analysis Methods for Generating Communi-
cation Sets
In order to compute communication sets when array subscripts and loop bounds

are symbolic and nonlinear expressions, a symbolic analysis method is proposed. A
symbolic expression may consist of arbitrary arithmetic operators and operands that
can be array subscripts, loop indices, loop bounds and strides, integer constants and
infinity symbol (−∞, ∞).

A restriction is a set of symbolic qualities and inequalities defined over loop
variables and parameters (loop invariant) which are commonly derived from loop
bounds, array subscript expressions, conditional statements, data declarations, and
data and computation distribution scheme of a program. In this paper, the symbolic
variables are designed as loop indices. An integer solution to a set of restriction is a
set of loop indices satisfying all of the constraints. There are three sub-restrictions.
They are,

(1) loop bounds and control-flow restriction C1,
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(2) array A reference and distribution restriction C2,
(3) array B reference and distribution restriction C3.
To generate the communication sets, our goal is to solve the symbolic solution

vector~I to satisfy restriction C = C1∪C2∪C3.
The first sub-restriction is derived from the loop bounds and control-flow (ex.

condition statements). That is, C1 = {X j ≤ i j ≤ Yj, (i j−X j) mod Z j = 0, 1≤ j ≤ n}.
Before computation of expressions, in order to solve the equations as easily as

possible, we must simplify symbolic expressions. The simplification can be handled
based on a set of rules of simplification. After simplifying this restriction, the ini-
tial lower and upper bounds, low(i) and up(i), for each symbolic variable i can be
deduced. Also, we use eva(i) to represent the evaluated symbolic value under the
restrictions. Thus we can obtain low(i)≤ eva(i)≤ up(i). Furthermore, we define

eva( f (i1, · · · , in)) = f (eva(i1), · · · , eva(in)).

For the k-th block of the array A distributed onto processor p, we have

C2 =
{

p =
(

f (~I) div β1

)
mod P

}
, or (1)

C2 =
{

LBk ≤ f (~I)≤UBk, 0≤ k ≤ mp

}
, (2)

and for the k-th block of the array B distributed onto processor q, we have

C3 =
{

q =
(

g(~I) div β2

)
mod P

}
, or (3)

C3 =
{

LB′ ≤ g(~I)≤UB′k, 0≤ k ≤ mq

}
, (4)

where LBk = op + sp ∗ k, UBk = op + bp + sp ∗ k,LB′k = ok + sq ∗ k, UB′k = oq + bq +
sq ∗ k.

Our evaluation method is, from the restriction C2, to limit the maximum lower
and minimum upper bounds for a symbolic variable, to replace the old, wide bounds
accordingly. The most intuitive method to replace with its bounds is to physically
substitute each occurrence of the variable in the given expression with the variable’s
bounds, then simplify the resulting expression until the minimum range can be ob-
tained. The replacement is progressively applying rewrite rules at each point where
the variable is replaced by its bounds. All these rewrite rules are as a form of range
of inequalities. If the derived new range is wider than the old one, the replacement
does not occur. The similar way is applied to restriction C3.

In some cases, using replacement shown in the above can not determine the
exact lower and upper bounds for an expression. Determining these bounds need
to observe whether f (i1, · · · , in) is monotonic for ik. Determining whether f (i) is
monotonically non-decreasing or monotonically non-increasing is not difficult. One
can prove f (x) is monotonically non-decreasing for x by proving that f (x + 1)−
f (x)≥ 0.
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The range determination of a loop index ik is more easily if the access function
f and g are monotonically non-decreasing (non-increasing) for ik, because we can
replace eva(ik) simply with its known lower or upper bound in formula (2). That is,
if assuming f is monotonically non-decreasing for ik,

LBk ≤ eva( f (i1, · · · , i j, · · · , in))≤UBk ⇒
LBk ≤ f (eva(i1), · · · , eva(i j), · · · , eva(in)) ≤ f (eva(i1), · · · , up(i j), · · · , eva(in))∧

UBk ≥ eva( f (i1, · · · , i j, · · · , in))≥ f (eva(i1) , · · · , low(i j) , · · · ,eva(in)) (5)

5 Experiments
We evaluated our symbolic analysis algorithm on a 32-node distributed mem-

ory parallel computer CM-5, using MPI communication library and gettimeofday()
system call to measure execution time. We select a subroutine OLDA from the code
TRFD, appearing in Perfect benchmark [10]. A simplified version of this loop nest
is shown in the left side of Figure 5. After using induction variable substitution to
replace the induction variable mrsij at statement S1 the optimized version is shown
in the right side of Figure 5. There is nonlinear array subscript for xrsij at S2. To
parallelize this loop nest, the communication set generation and address translation
routine must be used.

The best distribution cases cyclic(2) for array xrsij, and cyclic(4) for xij are se-
lected when N = 16 (with global array size 18632) and cyclic(3), and cyclic(7) are
selected when N = 20 (with global array size 44310). Figure 3 and Figure 4 show
the total loop execution time when N = 16 and N = 20 respectively. Runtime algo
and symbolic algo respectively represent that we use runtime algorithm and symbolic
algorithm in the communication set generation routine. We observed as the number
of nodes increases, the execution time is not so much improvement because each
processor has to communicate with increasing number of nodes. Although the com-
munication set generation only involves the computation overhead, the performance
can also be improved by using symbolic analysis algorithm.

6 Conclusions
Communication set generation influences the performance of parallel programs

significantly. In this paper, we have proposed a symbolic analysis method to generate
communication set for irregular array references. The technique overcomes the ex-
isted library’s draw back which incurs significant overhand caused by the inspector
and mapping non-local indices into local buffers. It completes the computation for
generating communication at compile-time as much as possible. Thus, the total per-
formance of the parallel programs including loop nest with nonlinear array references
can be upgraded.
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Figure 3: Results of TRFD loop nest OLDA when N = 16, β1 = 2, β2 = 4 on CM-5
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