The Sixth International Symposium on Operations Research and Its Applications (ISORA'06) Xinjiang, China, August 8–12, 2006 Copyright © 2006 ORSC & APORC, pp. 350–356

An Improved Approximation Algorithm for the Disjoint 2-Catalog Segmentation Problem*

Houchun Zhou^{1,2,†}

Dexue Zhang¹

¹Dept. of Math., Linyi Teachers College, Linyi, Shandong 276005, China ²School of Math. and Computer Science, Nanjing Normal University, Nanjing, Jiangsu 210097, China

Abstract For the disjoint 2-catalog segmentation problem (may be inequivalent), we propose a improved polynomial-time randomized approximation algorithm, and obtain a performance ratios ρ which is not less than 0.5 for a wide range of this problem. As a result, the 0.699-approximation algorithm for the disjoint equivalent 2-catalog segmentation problem can be obtained.

Keywords disjoint 2-catalog segmentation; approximation algorithm; semidefinite programming

1 Introduction

Given a set *I* of *n* items and a family $S = \{S_1, S_2, \dots, S_p\}$ of subsets of *I*, the generalized 2-catalog segmentation problem is to find $C_1, C_2 \subseteq I$ such that $|C_1| \leq r_1, |C_2| \leq r_2$ and the sum $\sum_{i=1}^p \max\{|S_i \cap C_1|, |S_i \cap C_2|\}$ is maximized. When $r_1 = r_2 = r$, it is the famous 2-catalog segmentation problem introduced by Kleinberg *et al* [1]. In [1], they presented a trivial 0.5-approximation algorithm for the 2-catalog segmentation problem, and pointed that how to improved the 0.5-approximation algorithm is a open problem. They showed that this 2-catalog segmentation problem is NP-hard, even under the assumption that the size of the collection *I* is 2r and each S_i contains at most 2 elements.

In this paper, we first introduce the disjoint 2-catalog segmentation problem which is a special case of the generalized 2-catalog segmentation problem, then give a polynomial-time randomized approximation algorithm, and obtain a performance guarantee of ρ which is not less than 0.5 for a wide range of the problem. As a special case of the problem, the 0.699-approximation algorithm for the disjoint equivalent 2-catalog segmentation problem can be obtained.

^{*}This work was supported by National Natural Science Foundation of China No.10231060, Important Project Foundation of Linyi Normal University and Academic Creative Project Foundation of Jiangsu Province.

[†]Email: zhouhouchun@163.net

2 The disjoint 2-catalog segmentation problem

The disjoint 2-catalog segmentation problem can be described as the following graph theoretic problem: given an undirected bipartite graph G = (X, Y, E) with |X| = 2r and |Y| = p, find a partition $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $|X_1| = r + k$, $|X_2| = r - k$ and the quantity $d(X_1, Y_1) + d(X_2, Y_2)$ is maximized, where $d(X_i, Y_i)$ denotes the number of edges with one end in X_i and the other in Y_i , i = 1, 2, and k is a positive integer, $0 \le k < r$.

If k = 0, i.e., $|X_1| = |X_2| = r$, it just is the disjoint equivalent 2-catalog segmentation problem [1].

Now, the disjoint inequivalent 2-catalog segmentation problem can be described as the following problem (P):

$$\max \quad d(X_1, Y_1) + d(X_2, Y_2)$$

s.t. $X = X_1 \cup X_2, Y = Y_1 \cup Y_2$
 $X_1 \cap X_2 = \phi, Y_1 \cap Y_2 = \phi,$
 $|X_1| = r - k, |X_2| = r + k.$

where *k* is a given positive integer $0 \le k < r$.

Let n = 2r + p and S^{n-1} be the unit sphere in R^n , and let $v_1, v_2, \dots, v_{2r}, w_1$, w_2, \dots, w_p be vectors constrained to be in S^{n-1} . According to the similar analysis of Kleinberg[1] and Goemans et.al.[4], this problem can be relaxed to the following problem (SDP):

$$\max \quad \frac{1}{2} \sum_{i=1}^{2r} \sum_{j=1}^{p} \boldsymbol{\omega}_{ij} (1 - v_i^T w_j)$$

s.t. $v_i, w_j \in S^{n-1},$
 $\sum_{i,j=1}^{2r} v_i^T v_j = 4k^2.$

where $\omega_{ij} = 1$ if edge $(i, j) \in E$, otherwise, $\omega_{ij} = 0$.

This (SDP) problem is equivalent to the following semidefinite program (SDP):

$$\max \quad \frac{1}{4} \sum_{i=1}^{2r} \sum_{j=2r+1}^{n} \omega_{ij} (1 - X_{ij})$$

s.t. $ee^{T} \cdot X = 4k^{2}$
 $X_{jj} = 1, j = 1, 2, \cdots, n, X \succeq 0$

Here, the unknow $X \in \mathbb{R}^{n \times n}$ is a symmetric matrix, \cdot is the matrix inner product $Q \cdot X =$ trace (QX), and $X \succeq 0$ means that X is a positive semidefinite, $e = (1, \dots, 1, 0, \dots, 0) \in \mathbb{R}^n$ is a vector of \mathbb{R}^n whose fore 2r components are ones and others are zero. Obviously, (SDP) is a relaxation of (P), hence we have $\omega^* \leq \omega^*_{SDP}$, where ω^* is the optimal value of (P) and ω^*_{SDP} is the optimal value of (SDP).

This semidefinite program can be solved. Now, we present a randomized algorithm for (P) by using the random rounding methods, and obtain a ρ -approximation algorithm which ρ is not less than 0.5 for a wide range of the problem (*P*).

3 Algorithm

In this section, we give a improved polynomial-time randomized approximation algorithm for the disjoint 2-catalog segmentation problem.

- **Step 1.** Solve the problem (*SDP*) to obtain : $v_1^*, v_2^*, \dots, v_{2r}^*, w_1^*, \dots, w_p^* \in S^{n-1}$, denote by $\bar{X} = (v_1^*, \dots, v_{2r}^*, w_1^*, \dots, w_p^*)$.
- **Step 2.** Generates a random vector *u* from a multivariate normal distribution with 0 mean and covariance matrix a convex combination of \bar{X} and X_0 , i.e.,

$$u \in N(0, \theta \bar{X} + (1 - \theta)X_0)$$

Step 3. Let $\tilde{X}_1 = \{v_i | u^T v_i^* \ge 0, i = 1, 2, \cdots, 2r\}, \tilde{X}_2 = X \setminus \tilde{X}_1; \tilde{Y}_1 = \{w_j | u^T w_j^* \ge 0, j = 1, 2, \cdots, p\}, \tilde{Y}_2 = Y \setminus \tilde{Y}_1.$

Step 4. Suppose $|\tilde{X}_1| \ge r - k$. Let X_1 consist of r - k elements of \tilde{X}_1 having the highest number of neighbors in \tilde{Y}_1 and X_2 consist of the remaining $(|\tilde{X}_1| - (r - k))$ vertices of \tilde{X}_1 together with \tilde{X}_2 . Let Y_1 be the elements of Y having more neighbors in X_1 than in X_2 ; and $Y_2 = Y \setminus Y_1$.

Where $0 \le \theta \le 1$, and

$$X_0 = \begin{pmatrix} 1 & \frac{2k^2 - r}{r(2r-1)} & \cdots & \frac{2k^2 - r}{r(2r-1)} \\ \frac{2k^2 - r}{r(2r-1)} & 1 & \cdots & \frac{2k^2 - r}{r(2r-1)} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{2k^2 - r}{r(2r-1)} & \frac{2k^2 - r}{r(2r-1)} & \cdots & 1 \end{pmatrix}$$

Remark 1. In algorithm *Step 2*, if we take k = 1, i.e., $u \in N(0,\bar{X})$, this algorithm was used to solve the Max-Bisection problem by Frieze and Jerrum[2], and also was a approximation algorithm for the disjoint 2-catalog segmentation problem[5], the performance ratios ρ of this algorithm can be seen from Table 1 for the range of $0 \le k \le 0.2 r$ (see Table 1).

Remark 2. In algorithm *Step 2*, if we take k = 0, i.e., $u \in N(0, X_0)$, we have a trivial 0.5-approximation algorithm when *r* large enough.

Remark 3. In the following, we will select a reasonable value of θ , such that the performance ratios ρ of the algorithm is large as possible as, so that we can get more efficient algorithms.

4 Analysis of the algorithm

Let *S* denote the segmentation: $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, \tilde{S} denote the segmentation: $X = \tilde{X}_1 \cup \tilde{X}_2$, $Y = \tilde{Y}_1 \cup \tilde{Y}_2$. Let $\omega(S) = d(X_1, Y_1) + d(X_2, Y_2)$, $K^* = |X_1||X_2| = r^2 - k^2$.

Define random variables $\omega(\tilde{S})$, \tilde{K} and Z as follows:

$$\begin{split} \boldsymbol{\omega}(\tilde{S}) &= d(\tilde{X}_1, \tilde{Y}_1) + d(\tilde{X}_2, \tilde{Y}_2), \\ \tilde{K} &= |\tilde{X}_1| |\tilde{X}_2| = |\tilde{X}_1| (2r - |\tilde{X}_1|), \\ Z &= \boldsymbol{\omega}(\tilde{S}) / \boldsymbol{\omega}^*_{SDP} + \tilde{K} / K^*. \end{split}$$

Clearly, the vertex swapping procedure in algorithm *Step 4* has the following property:

Lemma 1. If $\tilde{X}_1 \ge r - k$, then

$$\frac{\boldsymbol{\omega}(S)}{r-k} \geq \frac{\boldsymbol{\omega}(\tilde{S})}{|\tilde{X}_1|}.$$

Lemma 2. Let $\alpha_0 = 0.878567$, we have

(1)
$$E[\omega(\tilde{S})] \ge \alpha_0 \omega_{SDP}^* \ge \alpha_0 \omega^*$$
,
(2) $E[\tilde{K}] \ge \alpha_0 K^*$,
(3) $E[Z] \ge 2\alpha_0$.

Proof. (1) The proof can be seen in [4] (Goemans and Williamson, Theorem 2.3). (2) By the similar analysis of Goemans and Williamson [4], we have

$$\begin{split} E[\tilde{K}] \geq & \frac{\alpha_0}{4} \sum_{i=1}^{2r} \sum_{j=1}^{2r} (1 - \bar{X}_{ij}) \\ &= \frac{\alpha_0}{4} (4r^2 - \sum_{i=1}^{2r} \sum_{j=1}^{2r} \bar{X}_{ij}) \\ &= \frac{\alpha_0}{4} (4r^2 - ee^T \cdot \bar{X}) \\ &= \frac{\alpha_0}{4} (4r^2 - 4k^2) \\ &= \alpha_0 (r^2 - k^2) \\ &= \alpha_0 K^*. \end{split}$$

(3) From (1) and (2), we get

$$E[Z] = \frac{E[\omega(\tilde{S})]}{\omega_{SDP}^*} + \frac{E[\tilde{K}]}{K^*} \ge 2\alpha_0.$$

Similar to the discussion of Yinyu Ye [3], by selecting a reasonable value of θ , we hope to provide the following two new inequalities:

$$E[\boldsymbol{\omega}(\tilde{S})] = E[\frac{1}{4}\sum_{i=1}^{2r}\sum_{j=2r+1}^{n}\omega_{ij}(1-\bar{X}_{ij})] \ge \boldsymbol{\alpha} \cdot \boldsymbol{\omega}^{*}.$$
(1)

and

$$E[\tilde{K}] = E[\frac{1}{4}\sum_{i=1}^{2r}\sum_{j=1}^{2r}(1-\bar{X}_{ij})] \ge \beta \cdot K^*.$$
(2)

such that α would be slightly less than 0.878567, β would be significant greater than 0.878567, but we could give a better bound than that in[5](or Remark 1) for $\omega(\tilde{S})$.

Then, we introduce a new random variable

$$Z(\sigma) = \frac{\omega(\tilde{S})}{\omega_{SDP}^*} + \sigma \frac{\tilde{K}}{K^*}$$

where σ is a parameter and $\sigma \geq 0$.

Lemma 3. If(1), (2) hold, then

$$E[Z(\sigma)] \geq \alpha + \sigma \beta.$$

Theorem 4. Assume (1), (2) hold, then, for any given

$$\sigma \geq \frac{(r^2 - k^2)\alpha}{4r^2 - (r^2 - k^2)\beta}$$

if random variable $Z(\sigma) \ge \alpha + \sigma \beta$ *, then*

$$\omega(S) \geq \frac{2(\sqrt{\sigma(\alpha+\sigma\beta)(r^2-k^2)}-r\sigma)}{r+k}\omega^*.$$

In particular, if

$$\sigma = \frac{\alpha}{2\beta} \left[\frac{r}{\sqrt{r^2 - (r^2 - k^2)\beta}} - 1 \right],$$

then

$$\boldsymbol{\omega}(S) \geq \frac{\boldsymbol{\alpha}(r-\sqrt{r^2-(r^2-k^2)\boldsymbol{\beta}})}{\boldsymbol{\beta}(r+k)}\boldsymbol{\omega}^*.$$

Proof. Let $\omega(\tilde{S}) = \lambda \omega_{SDP}^*, |\tilde{X}_1| = 2\delta r$. From lemma 1, we have

$$\omega(S) \geq rac{r-k}{| ilde{X}_1|} \omega(ilde{S}) = rac{\lambda(r-k)}{2\delta r} \omega^*_{SDP}.$$

By the hypothesis of $Z(\sigma)$ and Lemma 2, we have

$$\alpha + \sigma\beta \leq Z(\sigma) = \frac{\omega(\tilde{S})}{\omega_{SDP}^*} + \frac{\tilde{K}}{K^*} = \lambda + \frac{4\sigma\delta(1-\delta)r^2}{r^2 - k^2}.$$

Hence, we obtain

$$\lambda \geq lpha + \sigmaeta - rac{4\sigma\delta(1-\delta)r^2}{r^2-k^2}.$$

Then we have

$$\begin{split} \omega(S) \geq & \frac{(r-k)}{2\delta r} (\alpha + \sigma\beta - \frac{4\sigma\delta(1-\delta)r^2}{r^2 - k^2}) \omega_{SDP}^* \\ = & \frac{(\alpha + \sigma\beta)(r^2 - k^2) - 4\sigma\delta(1-\delta)r^2}{2r(r+k)\delta} \omega_{SDP}^* \\ \geq & \frac{2(\sqrt{\sigma(\alpha + \sigma\beta)(r^2 - k^2)} - r\sigma)}{r+k} \omega^*. \end{split}$$

The last inequality follows from simple calculus that $\delta = \sqrt{(r^2 - k^2)(\alpha + \sigma\beta)}/2\sqrt{\sigma}$ yields the minimal value for $((\alpha + \sigma\beta)(r^2 - k^2) - 4\sigma\delta(1 - \delta)r^2)/2r(r + k)\delta$ when $0 < \delta \leq 1$.

In particular, substitute $\sigma = \frac{\alpha}{2\beta} \left[\frac{r}{\sqrt{r^2 - (r^2 - k^2)\beta}} - 1 \right]$ into the first inequality, we have the second inequality.

5 The lower bounds of α, β and $\rho(\alpha, \beta, \varepsilon)$

Lemma 5. For any $-1 \le x \le 1$ and $0 \le \theta \le 1, \varepsilon = k/r$, the function

$$f(x) = \frac{1 - \frac{2}{\pi} \arcsin(\theta x + (1 - \theta)\varepsilon^2)}{1 - x}$$

attains its minimal value $f(x_1^*)$ at $x_1^* = -0.8258$.

$$g(x) = \frac{2}{\pi} \frac{\arcsin(\theta) - \arcsin(\theta x + (1 - \theta)\varepsilon^2)}{1 - x}$$

attains its minimal value $g(x_2^*)$ at $x_2^* = -0.5779$.

Proof. The proof can be obtained by a simple computing.

Theorem 6. When *r* is large enough, $X = \theta \overline{X} + (1 - \theta)X_0$, then, (1) holds for $\alpha(\theta, \varepsilon)$, and, (2) holds for $\beta(\theta, \varepsilon)$, i.e.,

$$E[\boldsymbol{\omega}(\tilde{S})] = E[\frac{1}{4}\sum_{i=1}^{2r}\sum_{j=2r+1}^{n}\omega_{ij}(1-X_{ij})] \ge \boldsymbol{\alpha}(\boldsymbol{\theta},\boldsymbol{\varepsilon})\cdot\boldsymbol{\omega}^*.$$
(3)

and

$$E[\tilde{K}] = E\left[\frac{1}{4}\sum_{i=1}^{2r}\sum_{j=1}^{2r}(1-X_{ij})\right] \ge \beta(\theta,\varepsilon) \cdot K^*.$$
(4)

where $\alpha(\theta, \varepsilon) = f(x_1^*), \ x_1^* = -0.8258, \ \beta(\theta, \varepsilon) = 1 - \frac{2}{\pi} \arcsin(\theta) + g(x_2^*), \ x_2^* = -0.5779.$

Proof. The proof is similar to that of Theorem 1 in [3].

Table 1										
$\varepsilon = k/r$	0.2	0.15	0.1	0.05	0.03	0.01	0.001	0.0001		
ρ	0.497	0.540	0.579	0.616	0.631	0.644	0.650	0.651		

Table 2									
ε	θ	$\alpha(oldsymbol{ heta},oldsymbol{arepsilon})$	$eta(m{ heta},m{arepsilon})$	$\rho(\alpha, \beta, \varepsilon)$					
0.2	0.89	0.8333246	0.9600386	0.5208535					
0.15	0.89	0.8343090	0.9609402	0.5689984					
0.10	0.89	0.8350140	0.9615863	0.6164200					
0.05	0.89	0.8354387	0.9619742	0.6607969					
0.03	0.89	0.8355283	0.9620570	0.6770782					
0.01	0.89	0.8355736	0.9620984	0.9627290					
0.001	0.89	0.8355791	0.9621035	0.9687216					
0.0001	0.89	0.8355792	0.9621036	0.6993526					

Denote $\varepsilon = k/r$, and the performance guarantee

$$\rho(\alpha,\beta,\varepsilon) = \frac{\alpha(r - \sqrt{r^2 - (r^2 - k^2)\beta})}{\beta(r+k)} = \frac{\alpha(1 - \sqrt{1 - (1 - \varepsilon^2)\beta})}{\beta(1 + \varepsilon)}$$

By computing, the ideal θ value almost is 0.89, we compute the performance ratios $\rho(\alpha, \beta, \varepsilon)$ of the improved algorithm for the range of $0 \le k \le 0.2r$ (see Table 2).

From Table 1, it can be seen that we have efficient polynomial-time approximation algorithms for a larger range of k, and let k = 0, we can obtain a 0.699-approximation algorithm for the disjoint equivalent 2-catalog segmentation problem.

References

- J. Kleinberg, C. Papadimitrion and P. Raghavan. Segmentation problems. STOC 98, pp. 473–482, 1998.
- [2] A. Frieze and M. Jerrum. Improved algorithms for max-k-cut and bisection. Proc. of 4th IPCO, LNCS 920, Springer-Verlag, 1–13, 1995.
- [3] Y. Y. Ye. A 0.699-approximation algorithm for max-bisection. *Math. Program*, 90, 101–111, 2001.
- [4] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. of ACM, 42, 1115–1145, 1995.