
An Improved Approximation Algorithm for
the Disjoint 2-Catalog Segmentation

Problem∗

Houchun Zhou1,2,† Dexue Zhang1

1 Dept. of Math., Linyi Teachers College, Linyi, Shandong 276005, China
2 School of Math. and Computer Science, Nanjing Normal University, Nanjing,
Jiangsu 210097, China

Abstract For the disjoint 2-catalog segmentation problem (may be inequivalent), we propose a
improved polynomial-time randomized approximation algorithm, and obtain a performance ratios
ρ which is not less than 0.5 for a wide range of this problem. As a result, the 0.699-approximation
algorithm for the disjoint equivalent 2-catalog segmentation problem can be obtained.
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1 Introduction
Given a set I of n items and a family S = {S1,S2, · · · ,Sp} of subsets of I, the

generalized 2-catalog segmentation problem is to find C1,C2 ⊆ I such that |C1| ≤
r1, |C2| ≤ r2 and the sum ∑p

i=1 max{|Si
⋂

C1|, |Si
⋂

C2|} is maximized. When r1 = r2 =
r, it is the famous 2-catalog segmentation problem introduced by Kleinberg et al [1].
In [1], they presented a trivial 0.5-approximation algorithm for the 2-catalog segmen-
tation problem, and pointed that how to improved the 0.5-approximation algorithm is
a open problem. They showed that this 2-catalog segmentation problem is NP-hard,
even under the assumption that the size of the collection I is 2r and each Si contains
at most 2 elements.

In this paper, we first introduce the disjoint 2-catalog segmentation problem
which is a special case of the generalized 2-catalog segmentation problem, then give
a polynomial-time randomized approximation algorithm, and obtain a performance
guarantee of ρ which is not less than 0.5 for a wide range of the problem. As a special
case of the problem, the 0.699-approximation algorithm for the disjoint equivalent 2-
catalog segmentation problem can be obtained.

∗This work was supported by National Natural Science Foundation of China No.10231060, Important Project Foun-
dation of Linyi Normal University and Academic Creative Project Foundation of Jiangsu Province.

†Email: zhouhouchun@163.net

The Sixth International Symposium on Operations Research and Its Applications (ISORA’06)
Xinjiang, China, August 8–12, 2006
Copyright © 2006 ORSC & APORC§pp. 350–356



2 The disjoint 2-catalog segmentation problem
The disjoint 2-catalog segmentation problem can be described as the following

graph theoretic problem: given an undirected bipartite graph G = (X ,Y,E) with |X |=
2r and |Y | = p, find a partition X = X1 ∪X2 and Y = Y1 ∪Y2 such that |X1| = r +
k, |X2| = r− k and the quantity d(X1,Y1) + d(X2,Y2) is maximized, where d(Xi,Yi)
denotes the number of edges with one end in Xi and the other in Yi, i = 1,2, and k is
a positive integer, 0≤ k < r.

If k = 0, i.e., |X1|= |X2|= r, it just is the disjoint equivalent 2-catalog segmen-
tation problem [1].

Now, the disjoint inequivalent 2-catalog segmentation problem can be described
as the following problem (P):

max d(X1,Y1)+d(X2,Y2)
s.t. X = X1∪X2,Y = Y1∪Y2

X1∩X2 = φ ,Y1∩Y2 = φ ,

|X1|= r− k, |X2|= r + k.

where k is a given positive integer 0≤ k < r.
Let n = 2r + p and Sn−1 be the unit sphere in Rn, and let v1, v2, · · · , v2r, w1,

w2, · · · , wp be vectors constrained to be in Sn−1. According to the similar analysis
of Kleinberg[1] and Goemans et.al.[4], this problem can be relaxed to the following
problem (SDP):

max
1
2

2r

∑
i=1

p

∑
j=1

ωi j(1− vT
i w j)

s.t. vi,w j ∈ Sn−1,

2r

∑
i, j=1

vT
i v j = 4k2.

where ωi j = 1 if edge (i, j) ∈ E, otherwise, ωi j = 0.
This (SDP) problem is equivalent to the following semidefinite program (SDP):

max
1
4

2r

∑
i=1

n

∑
j=2r+1

ωi j(1−Xi j)

s.t. eeT ·X = 4k2

X j j = 1, j = 1,2, · · · ,n,X º 0.

Here, the unknow X ∈Rn×n is a symmetric matrix, · is the matrix inner product Q ·X =
trace (QX), and X º 0 means that X is a positive semidefinite, e = (1, · · · ,1,0, · · · ,0)
∈ Rn is a vector of Rn whose fore 2r components are ones and others are zero. Ob-
viously, (SDP) is a relaxation of (P), hence we have ω∗ ≤ ω∗

SDP, where ω∗ is the
optimal value of (P) and ω∗

SDP is the optimal value of (SDP).
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This semidefinite program can be solved. Now, we present a randomized algo-
rithm for (P) by using the random rounding methods, and obtain a ρ-approximation
algorithm which ρ is not less than 0.5 for a wide range of the problem (P).

3 Algorithm
In this section, we give a improved polynomial-time randomized approximation

algorithm for the disjoint 2-catalog segmentation problem.

Step 1. Solve the problem (SDP) to obtain : v∗1,v
∗
2, · · · ,v∗2r,w

∗
1, · · · ,w∗

p ∈ Sn−1, denote
by X̄ = (v∗1, · · · ,v∗2r,w

∗
1, · · · ,w∗

p).
Step 2. Generates a random vector u from a multivariate normal distribution with 0

mean and covariance matrix a convex combination of X̄ and X0, i.e.,

u ∈ N(0,θ X̄ +(1−θ)X0).

Step 3. Let X̃1 = {vi|uT v∗i ≥ 0, i = 1,2, · · · ,2r}, X̃2 = X \ X̃1; Ỹ1 = {w j|uT w∗
j ≥ 0, j =

1,2, · · · , p}, Ỹ2 = Y \ Ỹ1.
Step 4. Suppose |X̃1| ≥ r− k. Let X1 consist of r− k elements of X̃1 having the

highest number of neighbors in Ỹ1 and X2 consist of the remaining (|X̃1|− (r−
k)) vertices of X̃1 together with X̃2. Let Y1 be the elements of Y having more
neighbors in X1 than in X2; and Y2 = Y \Y1.

Where 0≤ θ ≤ 1，and

X0 =




1 2k2−r
r(2r−1) · · · 2k2−r

r(2r−1)
2k2−r

r(2r−1) 1 · · · 2k2−r
r(2r−1)

· · · · · · · · · · · ·
2k2−r

r(2r−1)
2k2−r

r(2r−1) · · · 1




Remark 1. In algorithm Step 2, if we take k = 1, i.e., u ∈ N(0, X̄), this algorithm
was used to solve the Max-Bisection problem by Frieze and Jerrum[2], and also was
a approximation algorithm for the disjoint 2-catalog segmentation problem[5], the
performance ratios ρ of this algorithm can be seen from Table 1 for the range of
0≤ k ≤ 0.2 r (see Table 1).

Remark 2. In algorithm Step 2, if we take k = 0, i.e., u ∈ N(0,X0), we have a trivial
0.5-approximation algorithm when r large enough.

Remark 3. In the following, we will select a reasonable value of θ , such that the
performance ratios ρ of the algorithm is large as possible as, so that we can get more
efficient algorithms.

4 Analysis of the algorithm
Let S denote the segmentation: X = X1∪X2, Y = Y1∪Y2, S̃ denote the segmen-

tation: X = X̃1 ∪ X̃2, Y = Ỹ1 ∪ Ỹ2. Let ω(S) = d(X1,Y1)+ d(X2,Y2), K∗ = |X1||X2| =
r2− k2.
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Define random variables ω(S̃), K̃ and Z as follows:

ω(S̃) = d(X̃1,Ỹ1)+d(X̃2,Ỹ2),
K̃ = |X̃1||X̃2|= |X̃1|(2r−|X̃1|),
Z = ω(S̃)/ω∗

SDP + K̃/K∗.

Clearly, the vertex swapping procedure in algorithm Step 4 has the following prop-
erty:

Lemma 1. If X̃1 ≥ r− k, then

ω(S)
r− k

≥ ω(S̃)
|X̃1|

.

Lemma 2. Let α0 = 0.878567, we have
(1) E[ω(S̃)]≥ α0ω∗

SDP ≥ α0ω∗,
(2) E[K̃]≥ α0K∗,
(3) E[Z]≥ 2α0.

Proof. (1) The proof can be seen in [4] (Goemans and Williamson, Theorem 2.3).
(2) By the similar analysis of Goemans and Williamson [4], we have

E[K̃]≥α0

4

2r

∑
i=1

2r

∑
j=1

(1− X̄i j)

=
α0

4
(4r2−

2r

∑
i=1

2r

∑
j=1

X̄i j)

=
α0

4
(4r2− eeT · X̄)

=
α0

4
(4r2−4k2)

=α0(r2− k2)
=α0K∗.

(3) From (1) and (2), we get

E[Z] =
E[ω(S̃)]

ω∗
SDP

+
E[K̃]
K∗ ≥ 2α0.

Similar to the discussion of Yinyu Ye [3], by selecting a reasonable value of θ ,
we hope to provide the following two new inequalities:

E[ω(S̃)] = E[
1
4

2r

∑
i=1

n

∑
j=2r+1

ωi j(1− X̄i j)]≥ α ·ω∗. (1)
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and

E[K̃] = E[
1
4

2r

∑
i=1

2r

∑
j=1

(1− X̄i j)]≥ β ·K∗. (2)

such that α would be slightly less than 0.878567,β would be significant greater than
0.878567, but we could give a better bound than that in[5](or Remark 1) for ω(S̃).

Then, we introduce a new random variable

Z(σ) =
ω(S̃)
ω∗

SDP
+σ

K̃
K∗

where σ is a parameter and σ ≥ 0.

Lemma 3. If (1), (2) hold, then

E[Z(σ)]≥ α +σβ .

Theorem 4. Assume (1), (2) hold, then, for any given

σ ≥ (r2− k2)α
4r2− (r2− k2)β

,

if random variable Z(σ)≥ α +σβ , then

ω(S)≥ 2(
√

σ(α +σβ )(r2− k2)− rσ)
r + k

ω∗.

In particular, if
σ =

α
2β

[
r√

r2− (r2− k2)β
−1],

then

ω(S)≥ α(r−
√

r2− (r2− k2)β )
β (r + k)

ω∗.

Proof. Let ω(S̃) = λω∗
SDP, |X̃1|= 2δ r. From lemma 1, we have

ω(S)≥ r− k
|X̃1|

ω(S̃) =
λ (r− k)

2δ r
ω∗

SDP.

By the hypothesis of Z(σ) and Lemma 2, we have

α +σβ ≤ Z(σ) =
ω(S̃)
ω∗

SDP
+

K̃
K∗ = λ +

4σδ (1−δ )r2

r2− k2 .

Hence, we obtain

λ ≥ α +σβ − 4σδ (1−δ )r2

r2− k2 .
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Then we have

ω(S)≥(r− k)
2δ r

(α +σβ − 4σδ (1−δ )r2

r2− k2 )ω∗
SDP

=
(α +σβ )(r2− k2)−4σδ (1−δ )r2

2r(r + k)δ
ω∗

SDP

≥2(
√

σ(α +σβ )(r2− k2)− rσ)
r + k

ω∗.

The last inequality follows from simple calculus that δ =
√

(r2− k2)(α +σβ )/2
√

σ
yields the minimal value for ((α + σβ )(r2− k2)−4σδ (1− δ )r2)/2r(r + k)δ when
0 < δ ≤ 1.

In particular, substitute σ = α
2β [ r√

r2−(r2−k2)β
−1] into the first inequality, we have

the second inequality.

5 The lower bounds of α,β and ρ(α,β ,ε)
Lemma 5. For any −1≤ x≤ 1 and 0≤ θ ≤ 1,ε = k/r, the function

f (x) =
1− 2

π arcsin(θx+(1−θ)ε2)
1− x

attains its minimal value f (x∗1) at x∗1 =−0.8258.

g(x) =
2
π

arcsin(θ)−arcsin(θx+(1−θ)ε2)
1− x

attains its minimal value g(x∗2) at x∗2 =−0.5779.

Proof. The proof can be obtained by a simple computing.

Theorem 6. When r is large enough, X = θ X̄ +(1−θ)X0, then, (1) holds for α(θ ,ε),
and, (2) holds for β (θ ,ε), i.e.,

E[ω(S̃)] = E[
1
4

2r

∑
i=1

n

∑
j=2r+1

ωi j(1−Xi j)]≥ α(θ ,ε) ·ω∗. (3)

and

E[K̃] = E[
1
4

2r

∑
i=1

2r

∑
j=1

(1−Xi j)]≥ β (θ ,ε) ·K∗. (4)

where α(θ ,ε) = f (x∗1), x∗1 = −0.8258, β (θ ,ε) = 1− 2
π arcsin(θ) + g(x∗2), x∗2 =

−0.5779.

Proof. The proof is similar to that of Theorem 1 in [3].
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Table 1
ε = k/r 0.2 0.15 0.1 0.05 0.03 0.01 0.001 0.0001

ρ 0.497 0.540 0.579 0.616 0.631 0.644 0.650 0.651

Table 2
ε θ α(θ ,ε) β (θ ,ε) ρ(α,β ,ε)

0.2 0.89 0.8333246 0.9600386 0.5208535
0.15 0.89 0.8343090 0.9609402 0.5689984
0.10 0.89 0.8350140 0.9615863 0.6164200
0.05 0.89 0.8354387 0.9619742 0.6607969
0.03 0.89 0.8355283 0.9620570 0.6770782
0.01 0.89 0.8355736 0.9620984 0.9627290
0.001 0.89 0.8355791 0.9621035 0.9687216
0.0001 0.89 0.8355792 0.9621036 0.6993526

Denote ε = k/r, and the performance guarantee

ρ(α,β ,ε) =
α(r−

√
r2− (r2− k2)β )

β (r + k)
=

α(1−
√

1− (1− ε2)β )
β (1+ ε)

.

By computing, the ideal θ value almost is 0.89, we compute the performance ratios
ρ(α,β ,ε) of the improved algorithm for the range of 0≤ k ≤ 0.2r (see Table 2).

From Table 1, it can be seen that we have efficient polynomial-time approx-
imation algorithms for a larger range of k, and let k = 0, we can obtain a 0.699-
approximation algorithm for the disjoint equivalent 2-catalog segmentation problem.
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