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Abstract This paper develops a new method, named E-Bayesian estimation, to estimate reliability
parameter. In the paper, the E-Bayesian estimation method of failure rate is derived for testing
data from products with exponential distribution. Relations between E-Bayesian estimation and
hierarchical Bayesian estimation are discussed. Finally, the new method is applied to a real testing
data set, and as can be seen, it is both efficient and easy to operate.
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1 Introduction
Development of science and technology always claims efficiently improving

the reliability of industrial products. Life-testing for some products often deals with
truncated data. In some practical occasion, especially when sample size is relatively
small or the concerned product is of high reliability, engineers are confronted with
the testing data observed from the type I censored life testing. To a certain extent,
it is quite difficult to estimate parameters by using classical statistical techniques.
In literature, Lindley and Smith (1972) firstly introduced the idea of hierarchical
prior distribution. Han (1997) developed the methods to construct hierarchical prior
distribution. Recently, some other results have been made on hierarchical Bayesian
method to deal with lifetime data. But those results obtained by means of hierarchical
Bayesian methods involve doing complicated integrations. Though some computing
methods such as MCMC (Markov Chain Monte Carlo) are available (Brooks (1998)),
doing integration is still very inconvenient for practical problems.

This paper develops a new method, named E-Bayesian estimation, to estimate
reliability parameter. The definition of E-Bayesian estimation is described in Section
2. In Section 3, the method of E-Bayesian estimation of failure rate is derived for
testing data from products with exponential distribution. In Section 4, the formulas
of hierarchical Bayesian estimation of failure rate are provided. In Section 5, the
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property of E-Bayesian estimation is discussed. In Section 6 and section 7, a sim-
ulation example and an application example are given respectively. Section 8 is a
conclusion.

2 Definition of E-Bayesian estimation
Carry out type I censored life testing m times, the censored times are denoted by

ti(t1 < t2 < · · · < tm), and the corresponding sample numbers are ni, i = 1,2, · · · ,m.
If ri(ri = 0,1, · · · ,ni) failure samples are observed in the testing process, then data
(ni,ri, ti) is called as the testing data from the products (i = 1,2, · · · ,m).

Suppose that the life of a product is subject to an exponential distribution with
probability density function

f (t) = λ exp{−tλ}, t > 0, (1)

where λ > 0, λ is the failure rate of the exponential distribution.
Let the prior distribution of λ be its conjugated distribution——Gamma distri-

bution with density function

π(λ |a,b) = baλ a−1 exp(−bλ )/Γ(a),

where Γ(a) =
∫ ∞

0 ta−1e−tdx is Gamma function, a > 0, b > 0, and both a and b are
hyper parameters.

According to Han (1997), a and b should be selected to guarantee that π(λ |a,b)
is a decreasing function of λ . Take derivative of π(λ |a,b) over λ , we get

dπ(λ |a,b)
dλ

= [baλ a−2 exp(−bλ )/Γ(a)][(a−1)−bλ ].

Since λ > 0, a > 0, and b > 0, then 0 < a≤ 1 and b > 0 will result in dπ(λ |a,b)
dλ < 0,

that is, π(λ |a,b) is a decreasing function of λ . When a = 1, the density function
π(λ |a,b) of λ is a decreasing function. In view of the robustness of Bayesian es-
timation (Berger 1985), the narrower tailed prior distribution often leads to worse
robustness. Accordingly, b should not be too big while a = 1. It is better to choose
b below some given upper bound c(c is a positive constant). Thereby, the scope of
hyper parameter b may be considered as 0 < b < c (c = 1 for instance).

While a = 1, the density function of λ becomes

π(λ |b) = bexp(−bλ ) (2)

Definition 1. Let λ̂ (x) be continuous, if
∫

D

λ̂ (x)π(x)dx < ∞,

then
λ̂EB =

∫

D

λ̂ (b)π(b)db
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is called the E-Bayesian estimation (expected Bayesian estimation) of λ , where D is
the set of all the possible value of b, λ̂ (b) is Bayesian estimation of λ with hyper
parameter b, and π(b) is the density function of b over D.

In the definition 1, it is assumed, of course, that the integral
∫

D λ̂ (x)π(x)dx ex-
ists. As a matter of fact, we have

λ̂EB =
∫

D

λ̂ (b)π(b)db = E[λ̂ (b)],

that is, the E-Bayesian estimation of λ is the expectation of Bayesian estimation of
λ for the hyper parameter.

3 E-Bayesian estimation
E-Bayesian estimation based on three different prior distributions of parameter

λ is used in this section to investigate the influence of different prior distributions on
the E-Bayesian estimation of λ .

Theorem 1. For the testing data set (ni,ri, ti) from m times type I censored testings
of life distribution in (1), i = 1,2, · · · ,m, let M = ∑m

i=1(ni− ri)ti, r = ∑m
i=1 ri. If the

prior density function π(λ |b) of λ is given by (2), then, we have the following two
conclusions.

(i) Using the quadratic loss function, the Bayesian estimation of λ is λ̂ (b) =
r+1
M+b ;

(ii) For the following prior densities function of b

π1(b) = 2(1−b), 0 < b < 1 (3)

π2(b) = 1, 0 < b < 1 (4)

π3(b) = 2b, 0 < b < 1 (5)

the corresponding E-Bayesian estimation of λ are respectively

λ̂EB1 = 2(r +1)
{

(M +1) ln
(

M +1
M

)
−1

}
,

λ̂EB2 = (r +1) ln
(

M +1
M

)
,

λ̂EB3 = 2(r +1)
{

1−M ln
(

M +1
M

)}
.

Proof. (i) Carry out type I censored life testing m times, where the censored times
are denoted by ti(t1 < t2 < · · ·< tm) and the corresponding sample numbers are ni, i =
1,2, · · · ,m. If corresponding failure samples are Xi in the testing process, according
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to Lawless(1982), Xi is subject to a Poisson distribution with parameter (ni− ri)tiλ ,
that is

P{Xi = ri}=
[(ni− ri)tiλ ]ri

(ri)!
exp{−(ni− ri)tiλ}

ri = 0,1, 2, · · · , ni, i = 1, 2, · · · , m.
Then the likelihood function of λ is

L(r|λ ) =
m

∏
i=1

P{Xi = ri}=
{ m

∏
i=1

[(ni− ri)ti]ri

(ri)!

}
λ r exp{−Mλ}

where M = ∑m
i=1(ni− ri)ti, r = ∑m

i=1 ri.
If the prior density function π(λ |b) of λ is given by (2), then, by means of the

Bayesian theorem, the posterior density function of λ will be

h(λ |r) =
π(λ |b)L(r|λ )∫ ∞

0 π(λ |b)L(r|λ )dλ

=
λ r exp{−(M +b)λ}∫ ∞

0 λ r exp{−(M +b)λ}dλ

=
(M +b)r+1

Γ(r +1)
λ r exp{−(M +b)λ}, λ > 0.

Thus, with the quadratic loss function, the Bayesian estimation of λ will be

λ̂ (b) =
∫ ∞

0
λh(λ |r)dλ

=
(M +b)r+1

Γ(r +1)

∫ ∞

0
λ (r+2)−1 exp{−(M +b)λ}dλ

=
Γ(r +2)(M +b)r+1

Γ(r +1)(M +b)r+2

=
r +1
M +b

.

(ii) If the prior distribution of b is given by (3), then, by definition 1, the E-
Bayesian estimation of λ will be

λ̂EB1 =
∫

D
λ̂ (b)π1(b)db = 2(r +1)

∫ 1

0

1−b
M +b

db = 2(r +1)
{

(M +1) ln
(

M +1
M

)
−1

}
.

If the prior distribution of b is given by (4), then, by definition 1, the E-Bayesian
estimation of λ will be

λ̂EB2 =
∫

D
λ̂ (b)π2(b)db = (r +1)

∫ 1

0

1
M +b

db = (r +1) ln
(

M +1
M

)
.
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If the prior distribution of b is given by (5), then, by definition 1, the E-Bayesian
estimation of λ will be

λ̂EB3 =
∫

D
λ̂ (b)π3(b)db = 2(r +1)

∫ 1

0

b
M +b

db = 2(r +1)
{

1−M ln
(

M +1
M

)}
.

Thus, the proof is completed.

4 Hierarchical Bayesian estimation
If the prior density function π(λ |b) of λ is given by (2), how can the value of

hyper parameter b be determined? Lindley and Smith (1972) addressed an idea of
hierarchical prior distribution, which suggested that one prior distribution may be
adapted to the hyper parameters while the prior distribution includes hyper parame-
ters.

If the prior density function π(λ |b) of λ is given by (2), and the prior density
function of hyper parameter b are given by (3), (4) and (5), then the corresponding
hierarchical prior density function of λ will respectively be

π4(λ ) =
∫ 1

0
π(λ |b)π1(b)db = 2

∫ 1

0
b(1−b)exp(−bλ )db, (6)

π5(λ ) =
∫ 1

0
π(λ |b)π2(b)db =

∫ 1

0
bexp(−bλ )db, (7)

π6(λ ) =
∫ 1

0
π(λ |b)π3(b)db = 2

∫ 1

0
b2 exp(−bλ )db. (8)

Theorem 2. For the testing data set (ni,ri, ti) from m times of type I censored test-

ings of life distribution in (1), i = 1,2, · · · ,m, let M =
m
∑
i=1

(ni− ri)ti, r =
m
∑
i=1

ri. If the

hierarchical prior density function of λ are given by (6), (7) and (8), then, using the
quadratic loss function, the corresponding hierarchical Bayesian estimation of λ are
respectively

λ̂HB1 = (r +1)

∫ 1
0

b(1−b)
(M+b)r+2 db

∫ 1
0

b(1−b)
(M+b)r+1 db

,

λ̂HB2 = (r +1)

∫ 1
0

b
(M+b)r+2 db

∫ 1
0

b
(M+b)r+1 db

,

λ̂HB3 = (r +1)

∫ 1
0

b2

(M+b)r+2 db
∫ 1

0
b2

(M+b)r+1 db
.

Proof. According to the proof of Theorem 1, the likelihood function of λ is

L(r|λ ) =
m

∏
i=1

P{Xi = ri}=
{ m

∏
i=1

[(ni− ri)ti]ri

(ri)!

}
λ r exp{−Mλ}
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where M =
m
∑
i=1

(ni− ri)ti, r =
m
∑
i=1

ri.

If the hierarchical prior density function of λ is given by (6), then, by means of
the Bayesian theorem, the hierarchical posterior density function of λ will be

h1(λ |r) =
π4(λ )L(r|λ )∫ ∞

0 π4(λ )L(r|λ )dλ
=

∫ 1
0 b(1−b)λ r exp[−(M +b)λ ]db

∫ 1
0

b(1−b)Γ(r+1)
(M+b)r+1 db

where 0 < λ < ∞.
Using quadratic loss function, the hierarchical Bayesian estimation of λ will be

λ̂HB1 =
∫ ∞

0
λh1(λ |r)dλ

=
∫ 1

0 b(1−b)
{∫ ∞

0 λ (r+2)−1 exp[−(M +b)λ ]dλ
}

db
∫ 1

0
b(1−b)Γ(r+1)

(M+b)r+1 db

=

∫ 1
0

b(1−b)Γ(r+2)
(M+b)r+2 db

∫ 1
0

b(1−b)Γ(r+1)
(M+b)r+1 db

= (r +1)

∫ 1
0

b(1−b)
(M+b)r+2 db

∫ 1
0

b(1−b)
(M+b)r+1 db

.

If the hierarchical prior density function of λ is given by (7), then, by means of
the Bayesian theorem, the hierarchical posterior density function of λ will be

h2(λ |r) =
π5(λ )L(r|λ )∫ ∞

0 π5(λ )L(r|λ )dλ
=

∫ 1
0 bλ r exp[−(M +b)λ ]db

∫ 1
0

bΓ(r+1)
(M+b)r+1 db

where 0 < λ < ∞.
Using quadratic loss function, the hierarchical Bayesian estimation of λ will be

λ̂HB2 =
∫ ∞

0
λh2(λ |r)dλ

=
∫ 1

0 b
{∫ ∞

0 λ (r+2)−1 exp[−(M +b)λ ]dλ
}

db
∫ 1

0
bΓ(r+1)
(M+b)r+1 db

=

∫ 1
0

bΓ(r+2)
(M+b)r+2 db

∫ 1
0

bΓ(r+1)
(M+b)r+1 db

= (r +1)

∫ 1
0

b
(M+b)r+2 db

∫ 1
0

b
(M+b)r+1 db

.

If the hierarchical prior density function of λ is given by (8), then, by means of
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the Bayesian theorem, the hierarchical posterior density function of λ will be

h3(λ |r) =
π6(λ )L(r|λ )∫ ∞

0 π6(λ )L(r|λ )dλ
=

∫ 1
0 b2λ r exp[−(M +b)λ ]db

∫ 1
0

b2Γ(r+1)
(M+b)r+1 db

where 0 < λ < ∞.
Similarly , the hierarchical Bayesian estimation of λ will be

λ̂HB3 =
∫ ∞

0
λh3(λ |r)dλ

=
∫ 1

0 b2
{∫ ∞

0 λ (r+2)−1 exp[−(M +b)λ ]dλ
}

db
∫ 1

0
b2Γ(r+1)
(M+b)r+1 db

=

∫ 1
0

b2Γ(r+2)
(M+b)r+2 db

∫ 1
0

b2Γ(r+1)
(M+b)r+1 db

= (r +1)

∫ 1
0

b2

(M+b)r+2 db
∫ 1

0
b2

(M+b)r+1 db
.

Thus, we complete the proof.

5 Property of E-Bayesian estimation
Now we discuss the relations between E-Bayesian estimation and E-Bayesian

estimation for different prior distributions, and the relations between E-Bayesian es-
timation and hierarchical Bayesian estimation.

5.1 Relations Between λ̂EB1, λ̂EB2 and λ̂EB3

Theorem 3. In Theorem 1, when M > 2, λ̂EBi(i = 1,2,3) satisfy: (i) λ̂EB3 < λ̂EB2 <

λ̂EB1, (ii) lim
M→∞

λ̂EB1 = lim
M→∞

λ̂EB2 = lim
M→∞

λ̂EB3.

Proof. (i). According to Theorem 1, it suffices for us to prove that

2
{

1−M ln
(

M +1
M

)}
< ln

(
M +1

M

)
< 2

{
(M +1) ln

(
M +1

M

)
−1

}
.

Since −1 < x < 1, we have

ln(1+ x) = x− x2

2
+

x3

3
− x4

4
+ · · ·=

∞

∑
i=1

(−1)i−1 xi

i
.
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Let x = 1
M , when M > 2, 0 < 1

M < 1, we get

ln
(

M +1
M

)
−2

[
1−M ln

(
M +1

M

)]

= (1+2M) ln
(

M +1
M

)
−2

= (1+2M)
(

1
M
− 1

2M2 +
1

3M3 −
1

4M4 +
1

5M5 −
1

6M6 + · · ·
)
−2

=
[
(1+2M)

(
1
M
− 1

2M2 +
1

3M3 −
1

4M4

)
−2

]

+(1+2M)
[(

1
5M5 −

1
6M6

)
+

(
1

7M7 −
1

8M8

)
+ · · ·

]

Notice that

(1+2M)
(

1
M
− 1

2M2 +
1

3M3 −
1

4M4

)
−2 =

1
12M4 (2M2−2M−3),

2M2−2M−3 > 0 as M > 2, thus

ln
(

M +1
M

)
> 2

[
1−M ln

(
M +1

M

)]
,

therefor λ̂EB3 < λ̂EB2.
Since

2
[
(1+M) ln

(
M +1

M

)
−1

]
− ln

(
M +1

M

)
= (1+2M) ln

(
M +1

M

)
−2

and notice that (1+2M) ln(M+1
M )−2 > 0 as M > 2, hence we have λ̂EB2 < λ̂EB1.

(ii) Notice that

λ̂EB2− λ̂EB3

= λ̂EB1− λ̂EB2

= (r +1)
[
(1+2M) ln

(
M +1

M

)
−2

]

= (r +1)
[

1
12M4

(
2M2−2M−3

)]

+(r +1)(1+2M)
[(

1
5M5 −

1
6M6

)
+

(
1

7M7 −
1

8M8

)
+ · · ·

]
,
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then

lim
M→∞

(λ̂EB2− λ̂EB3)

= lim
M→∞

(λ̂EB1− λ̂EB2)

= (r +1) lim
M→∞

[
1

12M4 (2M2−2M−3)
]

+(r +1) lim
M→∞

(1+2M)
[(

1
5M5 −

1
6M6

)
+

(
1

7M7 −
1

8M8

)
+ · · ·

]

= 0,

and hence we have lim
M→∞

λ̂EB3 = lim
M→∞

λ̂EB2 = lim
M→∞

λ̂EB1.

Thus, we complete the proof.

5.2 Relations Between λ̂EBi and λ̂HBi(i = 1,2,3)

Theorem 4. In Theorem 1 and Theorem 2, λ̂EBi and λ̂HBi(i = 1,2,3) satisfy:

lim
M→∞

λ̂EBi = lim
M→∞

λ̂HBi(i = 1,2,3)

We cannot prove this theorem. But we will give simulation example In the next
section to verify this theorem.

Theorem 4 shows that λ̂EBi and λ̂HBi(i = 1,2,3) are equal as M approaches in-
finity, or λ̂EBi and λ̂HBi(i = 1,2,3) are close to each other when M is sufficiently big.

6 Simulation Example
According to Theorem 1 and Theorem 2, we can obtain the E-Bayesian estima-

tion λ̂EBi of λ and the hierarchical Bayesian estimation λ̂HBi(i = 1,2,3) of λ . Some
results are listed in Table 1(r = 0), Table 2(r = 1), Table 3(r = 2) and Table 4(r = 3).

From Table 1, 2, 3, 4, we find that for some of M and r, λ̂EBi(i = 1,2,3) satisfy
Theorem 3, λ̂EBi and λ̂HBi(i = 1,2,3) are very close to each other and satisfy Theorem
4.

7 Application Example
Consider the testing data of some electronic products in Table 5(time unit: hour),

the life of such type of electronic products has an exponential distribution.

By Theorem 1 and Theorem 2, we can obtain the λ̂EBi and λ̂HBi(i = 1,2,3). All
numerical results are listed in Table 6.

From Table 6, we find that λ̂EBi(i = 1,2,3) satisfy Theorem 3, λ̂EBi and λ̂HBi(i =
1,2,3) are very close to each other and satisfy Theorem 4.
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Table 1: Results of λ̂EBi and λ̂HBi (r = 0)
M i 1 2 3 Range

1000 λ̂EBi 9.9967E-04 9.9950E-04 9.9933E-04 3.3301E-07
1000 λ̂HBi 9.9995E-04 9.9993E-04 9.9992E-04 7.5001E-07
1000 λ̂− 2.8317E-07 4.2967E-07 1.3383E-07 1.4933E-07
5000 λ̂EBi 1.9999E-04 1.9998E-04 1.9997E-04 1.3302E-08
5000 λ̂HBi 1.9998E-04 1.9997E-04 1.9996E-04 2.0021E-08
5000 λ̂− 6.6678E-09 1.0003E-08 1.3338E-08 6.6698E-09
10000 λ̂EBi 9.9997E-05 9.9992E-05 9.9993E-05 4.3326E-09
10000 λ̂HBi 9.9994E-05 9.9992E-05 9.9991E-05 3.1013E-09
10000 λ̂− 2.6666E-09 3.0003E-09 2.2134E-09 8.0667E-08
50000 λ̂EBi 1.9999E-05 1.9999E-05 1.9999E-05 1.1513E-10
50000 λ̂HBi 1.9999E-05 1.9999E-05 1.9999E-05 2.0123E-10
50000 λ̂− 5.5757E-10 6.0001E-10 6.4244E-10 8.4873E-11

Remark: 5.5757E−10 = 5.5757×10−10, λ̂− = |λ̂EBi− λ̂HBi|(i = 1,2,3).

Table 2: Results of λ̂EBi and λ̂HBi (r = 1)
M i 1 2 3 Range

1000 λ̂EBi 1.9993E-03 1.9990E-03 1.9986E-03 6.6601E-07
1000 λ̂HBi 1.9990E-03 1.9987E-03 1.9985E-03 5.0201E-07
1000 λ̂− 3.3367E-07 3.0067E-07 1.6767E-07 1.6601E-07
5000 λ̂EBi 3.9997E-04 1.9996E-04 1.9995E-04 2.6661E-08
5000 λ̂HBi 3.9995E-04 1.9994E-04 1.9992E-04 1.9531E-08
5000 λ̂− 2.3336E-08 2.0005E-08 3.3751E-09 1.6661E-08
10000 λ̂EBi 1.9999E-04 1.9999E-04 1.9998E-04 6.6651E-09
10000 λ̂HBi 1.9999E-04 1.9999E-04 1.9998E-04 3.1013E-09
10000 λ̂− 2.6666E-09 3.6559E-09 3.3319E-09 1.3328E-12
50000 λ̂EBi 3.9999E-05 3.9999E-05 3.9999E-05 2.3025E-10
50000 λ̂HBi 3.9999E-05 3.9999E-05 3.9999E-05 1.9012E-09
50000 λ̂− 1.8487E-10 3.0021E-10 1.4849E-10 1.3001E-09
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Table 3: Results of λ̂EBi and λ̂HBi (r = 2)
M i 1 2 3 Range

1000 λ̂EBi 2.9990E-03 2.9985E-03 2.9980E-03 9.9905E-07
1000 λ̂HBi 2.9985E-03 2.9980E-03 2.9978E-03 7.0321E-07
1000 λ̂− 5.3050E-07 5.0100E-07 2.0150E-07 3.9901E-07
5000 λ̂EBi 5.9996E-04 5.9994E-04 5.9992E-04 3.9991E-08
5000 λ̂HBi 5.9995E-04 5.9993E-04 5.9990E-04 5.9633E-08
5000 λ̂− 1.3393E-08 1.0208E-08 2.0013E-08 2.0009E-08
10000 λ̂EBi 2.9999E-04 2.9999E-04 2.9998E-04 9.9977E-09
10000 λ̂HBi 2.9999E-04 1.9998E-04 1.9997E-04 2.1041E-09
10000 λ̂− 3.9998E-09 5.0011E-09 1.0102E-08 2.3219E-12
50000 λ̂EBi 5.9999E-05 5.9999E-05 5.9999E-05 3.4538E-10
50000 λ̂HBi 5.9999E-05 5.9999E-05 5.9999E-05 3.6535E-10
50000 λ̂− 4.2730E-10 5.9999E-10 7.7268E-10 3.4538E-10

Table 4: Results of λ̂EBi and λ̂HBi(r = 3)
M i 1 2 3 Range

1000 λ̂EBi 3.9987E-04 3.9981E-04 3.9973E-04 1.3321E-06
1000 λ̂HBi 3.9981E-04 3.9974E-04 3.9970E-04 1.1328E-06
1000 λ̂− 5.6733E-07 6.0133E-07 3.3533E-07 2.3200E-07
5000 λ̂EBi 7.9995E-04 7.9992E-04 7.9989E-04 5.3321E-08
5000 λ̂HBi 7.9992E-04 7.9991E-04 7.9988E-04 4.2373E-08
5000 λ̂− 2.6671E-08 1.0011E-08 1.3350E-08 1.3321E-08
10000 λ̂EBi 3.9999E-04 3.9998E-04 3.9997E-04 2.0330E-08
10000 λ̂HBi 3.9999E-04 3.9998E-04 3.9997E-04 2.2016E-08
10000 λ̂− 1.3334E-09 1.9999E-09 2.6664E-09 1.3330E-08
50000 λ̂EBi 7.9999E-05 7.9999E-05 7.9999E-05 4.6050E-10
50000 λ̂HBi 7.9999E-05 7.9999E-05 7.9999E-05 4.5531E-10
50000 λ̂− 4.3026E-10 2.0001E-10 3.0243E-10 4.0002E-10

Table 5: Testing data of the electronic products
i 1 2 3 4 5 6 7
ti 480 680 880 1080 1280 1480 1680
ni 3 3 5 5 8 8 8
ri 0 0 0 1 0 2 1
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Table 6: Results of λ̂EBi and λ̂HBi
i 1 2 3 Range

λ̂EBi 8.53238E-05 8.53235E-05 8.53233E-05 4.97347E-10
λ̂HBi 8.53241E-05 8.53237E-05 8.53234E-05 7.02103E-10
λ̂− 3.57000E-10 2.33000E-10 1.73000E-07 6.50000E-10

Table 7: Results of R̂EBi(500) and R̂HBi(500)
i 1 2 3 Range

R̂EBi(500) 0.9582353 0.9582354 0.9582356 2.38288E-07
R̂HBi(500) 0.9582351 0.9582353 0.9582354 3.84252E-07
R̂−(500) 2.290E-07 1.070E-07 8.270E-08 1.46300E-07

Remark: R̂−(500) = |R̂EBi(500)− R̂HBi(500)|(i = 1,2,3).

Based on Table 6, we can calculate the E-Bayesian estimation R̂EBi(t)
= exp(−λ̂EBit) and the hierarchical Bayesian estimation R̂HBi(t) = exp(−λ̂HBit) of
the reliability for these electronic products. Some results are listed in Table 7 (where
R̂−(t) = |R̂EBi(t)− R̂HBi(t)| ).

From Table 7, we find that R̂EBi(500) and R̂HBi(500)(i = 1,2,3) are very close
to each other.

8 Conclusion
This paper develops a new method, named E-Bayesian estimation to estimate

reliability parameters. The author would like to put forward the following two ques-
tions for any new parameter estimation method: (1) How much dependence is there
between the new method and other already-made ones? (2) In which aspects is the
new method superior to the old ones?

For the E-Bayesian estimation method, Theorem 3 and Theorem 4 gave a good
answer to the above question (1). To the above question (2), from Theorem 1 and
Theorem 2, we find that the expression of the E-Bayesian estimation is the simplest
one, whereas the expression of the hierarchical Bayesian estimation relies on integral
expression, which is often not easy, that is an answer to the above question (2).

By Theorem 3, λ̂EBi(i = 1,2,3) satisfy: (i) λ̂EB3 < λ̂EB2 < λ̂EB1, (ii) limM→∞ λ̂EB1

= limM→∞ λ̂EB2 = limM→∞ λ̂EB3. By the simulation example and the application ex-
ample, λ̂EBi(i = 1,2,3) are very close to each other and satisfy Theorem 3; also
that λ̂HBi(i = 1,2,3) and λ̂HBi(i = 1,2,3) are very close to each other and satisfy:
(i) λ̂HB3 < λ̂EB2 < λ̂HB1, (ii) limM→∞ λ̂HB1 = limM→∞ λ̂HB2 = limM→∞ λ̂HB3; λ̂EBi and
λ̂HBi(i = 1,2,3) are very close to each other and satisfy Theorem 4. So, in this paper,
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the author suggests uniform distribution as prior distribution of the hyper parame-
ter. This might also be the main reason that in some literatures uniform distribution
usually serves as prior distribution of the hyper parameter.
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