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Abstract f -colorings have applications in scheduling problems. An f -coloring of a graph G is
a coloring of edges of E(G) such that each color appears at each vertex v ∈ V (G) at most f (v)
times. The minimum number of colors needed to f -color G is called the f -chromatic index of G,
and denoted by χ ′

f (G). Any graph G has f -chromatic index equal to ∆ f (G) or ∆ f (G)+ 1, where
∆ f (G) = max

v∈V
{d d(v)

f (v)e}. If χ ′
f (G) = ∆ f (G), then G is of C f 1; otherwise G is of C f 2. The f -core

of G is the subgraph of G induced by the vertices of V ∗
0 = {v : ∆ f (G) = d(v)

f (v) ,v ∈V}. In this paper,
some conditions for the classification on f -coloring are given.
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1 Introduction
Our terminology and notation in this paper are standard. Readers are referred to

[1] for undefined terms. Throughout this paper, the graph refers to a simple graph.
A multigraph may have multiple edges but no loops. Let G be a graph with vertex
set V (G) and edge set E(G). For each v ∈ V (G), dG(v) denotes the degree of v,
and NG(v) denotes the vertex set adjacent to v. ∆(G) is the maximum degree of G,
and δ (G) is the minimum degree of G. Let f be a positive integer-valued function
defined on V (G). A graph G is called a fan-graph, if it can be obtained from a path
Pk = v1v2...vk(k≥ 2) by adding a new vertex w and joining w to all the vertices on the
path. w is called the core. If a circuit have k edges, then the circle is called k-circuit.
A wheel G is a graph obtained from a k-circuit by adding a new vertex w and then
joining this new vertex to all the vertices on the circuit. A wheel G is an even wheel
if k is even and an odd wheel otherwise. w is also called the core. A graph G is called
series-parallel graph if G has no subgraph homeomorphic to K4.

The edge-coloring problem was posed in 1880 in relation with the well-known
four-color conjecture. The four-color conjecture is that every map could be colored
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with four colors so that any neighboring countries have different colors. It took more
than 100 years to prove the conjecture affirmatively in 1976 with the help of comput-
ers since it was posed in 1852. In the proper edge-coloring, each vertex has at most
one edge colored with a given color. The minimum number of colors needed to color
the edges of G in such a way that no two adjacent edges are assigned the same color
is called the chromatic index, denoted by χ ′(G). Hakimi and Kariv [1] generalized
the proper edge-coloring and obtained many interesting results.

An f -coloring of G is a coloring of edges such that each vertex v has at most
f (v) edges colored with the same color. The minimum number of colors needed to
f -color G is called the f -chromatic index of G, and denoted by χ ′

f (G). If f (v) = 1
for all v ∈V , the f -coloring problem is reduced to the proper edge-coloring problem.

f -colorings have applications in scheduling problems such as the file transfer
problem in a computer network [2-4, 6]. The file transfer problem on computer
networks is molded as follows. Each computer v has a limited number f (v) of com-
munication ports. For each pair of computer there are a number of files which are
transferred between the pair of computers. In such a situation the problem is how to
schedule the file transfers so as to minimize the total time for the overall transfer pro-
cess. The file transfer problem in which each file has the same length is formulated
as an f -coloring problem for a graph as follows. Vertices of the graph correspond
to nodes of the network, and edges correspond to files to be transferred between the
endpoints. Such a graph G describes the file transfer demands. Assume that each
computer v has f (v) communication ports, and transferring any file take an equal
amount of time. Under these assumptions, the schedule to minimize the total time
for overall transfer process corresponds to an f -coloring of G with the minimum
number of colors. Note that the edges colored with the same color correspond to files
that can be transferred simultaneously.

Since the proper edge-coloring problem is NP-complete [5], the f -coloring
problem which asks us to find χ ′

f (G) of a given multigraph G is also NP-complete
in general. In the proper edge-coloring, one of the most celebrated results is that
χ ′(G) = ∆(G) or ∆(G) + 1 for any graph G, which is due to Vizing [5]. This re-
sult naturally partitions all graphs into two classes, and we say that G is class 1 if
χ ′(G) = ∆(G), and class 2 otherwise.

Let

∆ f (G) = max
v∈V

{dd(v)
f (v)

e}.

in which d d(v)
f (v)e is the smallest integer not smaller than d(v)

f (v) . It is easy to verify that
χ ′

f (G)≥ ∆ f (G). The multiplicity µ(u,v) of a pair of u and v of distinct vertices is the
number of edges joining u and v. Let µ(v) = max

u∈V
{µ(v,u)}. The following lemma

was given by Hakimi and Kariv [4].
Theorem 1. Let G be a multigraph, Then

∆ f (G)≤ χ ′
f (G)≤max

v∈V
{dd(v)+ µ(v)

f (v)
e}.
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When G is a graph, we have µ(v) ≤ 1 for each v ∈ V . Therefore the following
lemma holds.

Theorem 2. Let G be a graph. Then

∆ f (G)≤ χ ′
f (G)≤max

v∈V
{dd(v)+1

f (v)
e} ≤ ∆ f (G)+1.

>From the above lemma we can see that the f -chromatic index of any graph G
be ∆ f (G) or ∆ f (G)+1. This immediately gives us a simple way of classifying graphs
into two classes according to their f -chromatic indices. More precisely, we say that
G is of C f 1 if χ ′

f (G) = ∆ f (G); and that G is of C f 2 if χ ′
f (G) = ∆ f (G)+1.

Hakimi and Kariv [1] obtained the f -chromatic indices of bipartite graphs and
graphs with f (v) being even for all v ∈ V . Zhang and Liu studied the classification
of regular graphs and complete graphs on f -colorings[9−11].

Let

V ∗ = {v|∆ f = dd(v)
f (v)

e,v ∈V}.

and

V ∗
0 = {v|∆ f =

d(v)
f (v)

,v ∈V}.

Theorem 3. [9] Let G be a graph and let G∗
0 be the subgraph of G induced by the

vertices of V ∗
0 . Then G is of C f 1 if G∗

0 is a forest.

Theorem 4. [10] Let G be a graph. Let f (v) and V ∗ be as defined earlier. If f (v∗) -
d(v∗) for all v∗ ∈V ∗, then G is of C f 1.

Theorem 5. [8] Let G be a series-parallel graph with δ ≥ 2. Then at least one of the
following case holds:

(1) There exists an edge e = uv such that d(u)+d(v)≤ 5;
(2)There exist two disjoint vertices u and v of degree 2 which have a common

neighbor w of degree 4 such that N(u)\{w}= N(v)\{w} ⊂ N(w);
(3)There exist two disjoint vertices u and v of degree 2 which have a common

neighbor w of degree 4 such that N(w)\{u,v}= (N(u)∪N(v))\{w}= {x,y};
(4)There exist three vertices u, v and w of degree 2 such that N(u) = N(v) and

N(u)∩N(w) 6= φ .

Theorem 6. [4] Let G be a graph and f (v) be even for all v∈V . Then χ ′
f (G) = ∆ f (G).

In the following section, we will consider the classification of fan graphs, wheels
and series-parallel graphs.

2 Main results and proofs
Before discussing the classification of graphs, we need some preliminary knowl-

edge from [9]. We denote by C the set of ∆ f (G) colors used to f -color a graph G.
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An edge colored with color c ∈C is called a c-edge. Denoted by d(v,c) the number
of c-edge of G incident with the vertex v, and define m(v,c) = f (v)−d(v,c). Define
M(v) = {c : m(v,c)≥ 1,c ∈C}.

Theorem 7. Let G be a fan-graph with the core w and the path Pn = v1v2...vn(n≥ 2).
G is of C f 1 but n = 2 and f (v) = 1 for all v ∈V .

Proof. If n = 2 and f (v) = 1 for all v ∈V , then G is an odd cycle and the f -coloring
reduced to proper edge-coloring. Obviously, G is of class two and G is of C f 2. If
n = 2 and there exits at least one vertex v ∈ V (G) such that f (v) ≥ 2, then we have
∆ f (G) = 1 or ∆ f (G) = 2. It is easy to verify that G is of C f 1. In the following, we
suppose that n≥ 3. Four cases need to be discussed.

Case 1. ∆ f (G) = 1.
In this case, we have d(v)≤ f (v) for all v∈V . Obviously, we can f -color graph

G with one color and thus G is of C f 1.
Case 2. ∆ f (G) = 2.
In this case, if V ∗

0 6= φ , then G∗
0 is a forest since V ∗

0 ⊆ {v1,vn,w} by the definition
of V ∗

0 . Thus G is of C f 1 by Theorem 3. If V ∗
0 = φ , then G is of C f 1 by Theorem 4.

Case 3. ∆ f (G) = 3.
In this case, it suffice to proof G is C f 1 when f (vi) = 1(i = 1,2, ...,n) and

d(w)
f (w) = 3.

Draw the path Pn horizontally and draw the core 2 under the path Pn. Join w
to each vertex of Pn by a straight line. f -color, sequentially, the edges incident to w
from left to right using the colors 1, 2 and 3. f -color , sequentially, the edges on the
path from left to right using the colors 3, 1, and 2. We obtain a desired f -coloring of
G with ∆ f (G) = 3 colors. Hence G is of C f 1.

Case 4. ∆ f (G)≥ 4.
In this case, obviously, V ∗

0 ⊆ {w}. If V ∗
0 = {w} then G∗

0 is a forest and G is of
C f 1 by Theorem 3. If V ∗

0 = φ , then G is of C f 1 by Theorem 4.
The theorem is proved.

By Theorem 7, the following corollary holds.

Corollary 8. Let G be a fan-graph with the core w and the path Pn = v1v2...vn(n≥ 2).
If n≥ 3, then G is of class one.

Theorem 9. Let G be a wheel of order n + 1 with the core w and the cycle Cn =
v1v2 · · ·vnv1. If d(w) 6= 3r +2(r = 1,2, ...) when ∆ f (G) = 3, then G is of C f 1.

Proof. To prove that the theorem, for cases need to be considered.
Case 1. ∆ f (G) = 1.
In this case, d(v)≤ f (v) for all v ∈V . Obviously, we can f -color graph G with

one color and thus G is of C f 1.
Case 2. ∆ f (G) = 2.
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In this case, we have V ∗
0 ⊆ {w} by the definition of V ∗

0 . Then G∗
0 is a forest if

V ∗
0 = {w}, and G is of C f 1 by Theorem 3. If V ∗

0 = φ , G is of C f 1, by Theorem 4.
Case 3. ∆ f (G) = 3.
In this case, G is of C f 1 if and only if χ ′f (G) = 3.
Subcase 3.1. d(w) = 3r(r ≥ 1).
We draw the circle Cn = v1v2v3...vnv1 in a clockwise direction. Starting from

v1v2, f -color the edges on the circle with the color 1, 2, and 3 alternately. Then
f -color the edges wvi(i = 1,2, ...,n) with the color 2, 3, and 1 alternately. Thus, a
desired f -coloring of G is obtained.

Subcase 3.2. d(w) = 3r +1(r ≥ 1).

In this case, obviously, d(w)
f (w) ≤ 3 = ∆ f (G). We say that w /∈ V ∗

0 . Otherwise,

w∈V ∗
0 , we have d(w)

f (w) = 3, that is f (w) = r+ 1
3 . But f (w) is an integer, a contradiction.

Thus, V ∗
0 ⊆ V (Cn). If V ∗

0 ⊂ V (Cn), then G∗
0 is a forest, and G is of C f 1 by Theorem

3. If V ∗
0 = V (Cn), we give an f -coloring of G. Note that ∆ f (G) = 3, d(vi) = 3 and

vi ∈ V ∗
0 for all i ∈ {1,2, · · · ,n}, we have f (vi) = 1 for all i ∈ {1,2, · · · ,n}. Since

d(w)
f (w) < 3, we have d d(w)

f (w)e = 3 or d d(w)
f (w)e < 3. It is easy to see that it suffice to prove

that χ ′f (G) = 3 when d d(w)
f (w)e= 3. Since d(w)

f (w) < 3 and d(w) = 3r +1, we have f (w)≥
r + 1

3 . Thus f (w)≥ r +1 since f (w) is an integer. Now, we give an f -coloring with
χ ′f (G) = 3 when f (w) = r +1 and f (vi) = 1 for all i ∈ {1,2, · · · ,n}. Draw the circle
Cn = v1v2v3...vnv1 in a clockwise direction. Starting from v1v2, f -color the edges on
the circle but vnv1 with the color 1, 2, and 3, alternately. Then f -color the edges
wvi(i = 2,3, ...,n−1) with the color 3, 1, and 2, alternately. Finally, f -color the edge
vnv1 with the color 2. Now there are only two uncolored edges wvn and wv1. f -color
the edge wvn with one of the colors c ∈M(vn) and f -color the edge wv1 with one of
the colors c ∈M(v1). A desired f -coloring of G is obtained.

Case 4. If ∆ f (G)≥ 4, then V ∗
0 ⊆ {w}. If V ∗

0 = {w}, then G∗
0 is a forest and G is

C f 1 by Theorem 3. If V ∗
0 = φ , then G is also of C f 1 by Theorem 4.

This completes the proof of the theorem.

Remark 1. we conjecture that G is of C f 2 if d(w) = 3r + 2 in Theorem 9, but we
can not prove it now.

Theorem 10. If G is a 2-connected series-parallel graph and f (v) ≥ 2 for all v ∈
V (G), then G is of C f 1.

Proof. If ∆ = 2, obviously, the theorem holds. It suffices to prove that the theorem
holds for ∆ ≥ 3. We proceed by induction on both the number of vertices P(G) and
the maximum degree ∆(G). If ∆(G) = 3, we prove that G is of C f 1. If f (v) = 2
for all v ∈ V (G), then G is of C f 1 by Theorem 4. If there exists a vertex v with
f (v)≥ 3, then d d(v)

f (v)e= 1 since δ ≥ 2 and ∆ = 3, which can not change the coloring
of G. Thus G is also of C f 1. If f (v)≥ 3 for all v ∈V (G), it is easy to see ∆ f (G) = 1.
Thus G is of C f 1. We may assume the theorem holds on ∆(G) < ∆(∆ ≥ 4)(the first
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hypothesis). In the case ∆(G) = ∆, we may proceed by induction on the number of
vertices P(G). It is easy to see that the theorem holds on P(G) = 3, since G is an 3-
cycle, ∆ f (G) = 1 since f (v)≥ 2 for all v ∈V (G). We may assume the theorem holds
for P(G) < P(P ≥ 4) (the second hypothesis). We consider five cases according to
Theorem 5.

Case 1. There exists an edge e = uv such that d(u)+d(v) = 4.
Let N(u) = {v,x} and N(v) = {u,y}. Obviously x 6= y, otherwise x≡ y is a cut-

vertex, which contradicts the fact that G is 2-connected. Let G∗ = G\{u}∪{vx}. If
∆(G∗) < ∆, then G∗ is of C f 1, by the first hypothesis; If ∆(G∗) = ∆, G∗ is also of C f

1, by the second hypothesis. Let σ ∗ be an f -coloring of G∗. Consider an f -coloring
σ of G such that for all e ∈ E(G)\{ux,uv}, we have σ ∗(e) = σ(e). In f -coloring σ
of G, note that m(v) > 0, m(x) > 0 and f (u)≥ 2, we can obtain an proper f -coloring
of G.

Case 2. There exists an edge e = uv such that d(u)+d(v) = 5.
We consider two subcases.
Subcase 2.1. N(u)∩N(v) = φ , N(u) = {v,x} and N(v) = {u,y1,y2}.
Let G∗ = G\{u}∪{vx}. If ∆(G∗) < ∆, then G∗ is of C f 1, by the first hypothesis;

If ∆(G∗) = ∆, then G∗ is of C f 1, by the second hypothesis. Let σ ∗ be an f -coloring
of G∗. Consider an f -coloring σ of G such that for all e ∈ E(G)\{ux,uv}, we have
σ ∗(e) = σ(e). In f -coloring σ of G, note that m(v) > 0, m(x) > 0 and f (u)≥ 2, we
can obtain an proper f -coloring of G.

Case 2.2. N(u)∩N(v) 6= φ , N(u) = {v,x} and N(v) = {u,x,y1}.
Let G∗ = G \ {u}. If ∆(G∗) < ∆, then G∗ is of C f 1, by the first hypothesis;

if ∆(G∗) = ∆, G∗ is of C f 1, by the second hypothesis. Let σ ∗ be an f -coloring of
G∗. Consider an f -coloring σ of G such that for all e ∈ E(G) \ {ux,uv}, we have
σ ∗(e) = σ(e). In f -coloring σ of G, note that m(v) > 0, m(x) > 0 and f (u)≥ 2, we
can obtain an proper f -coloring of G.

Case 3. There exist two disjoint vertices u and v of degree 2 which have a
common neighbor w of degree 4 such that N(u)\{w}= N(v)\{w} ⊂ N(w).

Let N(u) \ {w} = N(v) \ {w} = {x} and let G∗ = G \ {u}. If ∆(G∗) < ∆, G∗ is
of C f 1, by the first hypothesis; If ∆(G∗) = ∆, G∗ is of C f 1 by the second hypothesis.
Let σ ∗ be an f -coloring of G∗. Consider an f -coloring σ of G such that for all
e∈E(G)\{ux,uw}, we have σ ∗(e) = σ(e). In f -coloring σ of G, note that m(w) > 0,
m(x) > 0 and f (u)≥ 2, we can obtain an proper f -coloring of G.

Case 4. There exist two disjoint vertices u and v of degree 2 which have a
common neighbor w of degree 4 such that N(w) \ {u,v} = (N(u)∪N(v)) \ {w} =
{x,y}.

Let G∗ = G\{u}. If ∆(G∗) < ∆, G∗ is of C f 1, by the first hypothesis; If ∆(G∗) =
∆, G∗ is of C f 1, by the second hypothesis. Let σ ∗ be an f -coloring of G∗. Consider
an f -coloring σ of G such that for all e ∈ E(G) \ {ux,uw}, we have σ ∗(e) = σ(e).
In f -coloring σ of G, note that m(w) > 0, m(x) > 0 and f (u)≥ 2, we can obtain an
proper f -coloring of G.

Some Results on the Classification for f -colored Graphs 297



Case 5. There exist three disjoint vertices u, v and w of degree 2 such that
N(u) = N(v) and N(u)∩N(w) 6= φ .

Let N(u) = {x1,x2}, x1 ∈ N(w). If x1 and x2 are not adjacent, then let G∗ =
G \ {u}∪ {x1x2}, otherwise let G∗ = G \ {u}. If ∆(G∗) < ∆, G∗ is of C f 1, by the
first hypothesis; If ∆(G∗) = ∆, G∗ is of C f 1, by second hypothesis. Let σ ∗ be an f -
coloring of G∗. Consider an f -coloring σ of G such that for all e∈ E(G)\{ux1,ux2},
we have σ ∗(e) = σ(e). In f -coloring σ of G, note that m(x1) > 0, m(x2) > 0 and
f (u)≥ 2, we can obtain an proper f -coloring of G.

All cases complete the proof.
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