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Abstract f-colorings have applications in scheduling problems. An f-coloring of a graph G is
a coloring of edges of E(G) such that each color appears at each vertex v € V(G) at most f(v)
times. The minimum number of colors needed to f-color G is called the f-chromatic index of G,
and denoted by x}(G) Any graph G has f-chromatic index equal to A;(G) or A;(G)+ 1, where

Ar(G) = I?EE%/X{[%—‘} If x}(G) = A¢(G), then G is of C; 1; otherwise G is of C; 2. The f-core
d(v

of G is the subgraph of G induced by the vertices of Vj = {v: A;(G) = W;’V € V}. In this paper,
some conditions for the classification on f-coloring are given.
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1 Introduction

Our terminology and notation in this paper are standard. Readers are referred to
[1] for undefined terms. Throughout this paper, the graph refers to a simple graph.
A multigraph may have multiple edges but no loops. Let G be a graph with vertex
set V(G) and edge set E(G). For each v € V(G), dg(v) denotes the degree of v,
and Ng(v) denotes the vertex set adjacent to v. A(G) is the maximum degree of G,
and 0(G) is the minimum degree of G. Let f be a positive integer-valued function
defined on V(G). A graph G is called a fan-graph, if it can be obtained from a path
P, =vivy...vi(k > 2) by adding a new vertex w and joining w to all the vertices on the
path. w is called the core. If a circuit have k edges, then the circle is called k-circuit.
A wheel G is a graph obtained from a k-circuit by adding a new vertex w and then
joining this new vertex to all the vertices on the circuit. A wheel G is an even wheel
if k is even and an odd wheel otherwise. w is also called the core. A graph G is called
series-parallel graph if G has no subgraph homeomorphic to Kj.

The edge-coloring problem was posed in 1880 in relation with the well-known
four-color conjecture. The four-color conjecture is that every map could be colored
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with four colors so that any neighboring countries have different colors. It took more
than 100 years to prove the conjecture affirmatively in 1976 with the help of comput-
ers since it was posed in 1852. In the proper edge-coloring, each vertex has at most
one edge colored with a given color. The minimum number of colors needed to color
the edges of G in such a way that no two adjacent edges are assigned the same color
is called the chromatic index, denoted by x'(G). Hakimi and Kariv [1] generalized
the proper edge-coloring and obtained many interesting results.

An f-coloring of G is a coloring of edges such that each vertex v has at most
f(v) edges colored with the same color. The minimum number of colors needed to
f-color G is called the f-chromatic index of G, and denoted by x/(G). If f(v) =1
for all v € V, the f-coloring problem is reduced to the proper edge-coloring problem.

f-colorings have applications in scheduling problems such as the file transfer
problem in a computer network [2-4, 6]. The file transfer problem on computer
networks is molded as follows. Each computer v has a limited number f(v) of com-
munication ports. For each pair of computer there are a number of files which are
transferred between the pair of computers. In such a situation the problem is how to
schedule the file transfers so as to minimize the total time for the overall transfer pro-
cess. The file transfer problem in which each file has the same length is formulated
as an f-coloring problem for a graph as follows. Vertices of the graph correspond
to nodes of the network, and edges correspond to files to be transferred between the
endpoints. Such a graph G describes the file transfer demands. Assume that each
computer v has f(v) communication ports, and transferring any file take an equal
amount of time. Under these assumptions, the schedule to minimize the total time
for overall transfer process corresponds to an f-coloring of G with the minimum
number of colors. Note that the edges colored with the same color correspond to files
that can be transferred simultaneously.

Since the proper edge-coloring problem is NP-complete [5], the f-coloring
problem which asks us to find x'f(G) of a given multigraph G is also NP-complete
in general. In the proper edge-coloring, one of the most celebrated results is that
% (G) = A(G) or A(G) +1 for any graph G, which is due to Vizing [5]. This re-
sult naturally partitions all graphs into two classes, and we say that G is class 1 if
% (G) = A(G), and class 2 otherwise.

Let d)
v
A/(G) = .
/(6) =max{[ 55T}
in which [%1 is the smallest integer not smaller than % It is easy to verify that

xf(G) > A¢(G). The multiplicity (u,v) of a pair of u and v of distinct vertices is the
number of edges joining u and v. Let u(v) = ma‘gc{y(v, u)}. The following lemma
ue

was given by Hakimi and Kariv [4].
Theorem 1. Let G be a multigraph, Then

Af(G) < X}(G) < r?g/x{ [W”
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When G is a graph, we have p(v) < 1 for each v € V. Therefore the following
lemma holds.

Theorem 2. Let G be a graph. Then

As(G) < 2,(G) < max{ [d(v) * 11} <AHG)+1.

veV fv)

>From the above lemma we can see that the f-chromatic index of any graph G
be A/(G) or As(G) + 1. This immediately gives us a simple way of classifying graphs
into two classes according to their f-chromatic indices. More precisely, we say that
Gis of Cy 1if x;(G) = A/(G); and that G is of C; 2if x;(G) = A¢(G) + 1.

Hakimi and Kariv [1] obtained the f-chromatic indices of bipartite graphs and
graphs with f(v) being even for all v € V. Zhang and Liu studied the classification
of regular graphs and complete graphs on f-colorings® 'l

Let 4
V' ={v|A;= [][E:;],v ev}.
and 4
Vo ={v|Ar= fE:;,v eV}

Theorem 3. °) Let G be a graph and let G} be the subgraph of G induced by the
vertices of Vii. Then G is of Cy 1 if G is a forest.

Theorem 4. ' Let G be a graph. Let f(v) and V* be as defined earlier. If f(v*) {
d(v*) for all v € V*, then G is of Cy 1.

Theorem 5. ! Let G be a series-parallel graph with 8 > 2. Then at least one of the
following case holds:

(1) There exists an edge e = uv such that d(u) +d(v) <5;

(2)There exist two disjoint vertices u and v of degree 2 which have a common
neighbor w of degree 4 such that N(u)\{w} =N(v)\{w} C N(w);

(3)There exist two disjoint vertices u and v of degree 2 which have a common
neighbor w of degree 4 such that N(w) \ {u,v} = (N(u) UN(v)) \ {w} = {x,y};

(4)There exist three vertices u, v and w of degree 2 such that N(u) = N(v) and
N(u)NN(w) # ¢.
Theorem 6. ¥ Let G be a graph and f (v) be even for allv € V. Then x;(G) =As(G).

In the following section, we will consider the classification of fan graphs, wheels
and series-parallel graphs.

2 Main results and proofs

Before discussing the classification of graphs, we need some preliminary knowl-
edge from [9]. We denote by C the set of A¢(G) colors used to f-color a graph G.
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An edge colored with color ¢ € C is called a c-edge. Denoted by d(v,c) the number
of c-edge of G incident with the vertex v, and define m(v,c) = f(v) —d(v,c). Define
M) ={c:m(v,c) > 1,c € C}.

Theorem 7. Let G be a fan-graph with the core w and the path P, = v\v,...v,(n > 2).
GisofC;lbutn=2and f(v) =1 forallveV.

Proof. If n =2 and f(v) = 1 for all v € V, then G is an odd cycle and the f-coloring
reduced to proper edge-coloring. Obviously, G is of class two and G is of Cf 2. If
n =2 and there exits at least one vertex v € V(G) such that f(v) > 2, then we have
Ar(G) =1 or A;(G) =2. It is easy to verify that G is of C; 1. In the following, we
suppose that n > 3. Four cases need to be discussed.

Case 1. A/(G) = 1.

In this case, we have d(v) < f(v) for all v € V. Obviously, we can f-color graph
G with one color and thus G is of Cy 1.

Case 2. A/(G) =2.

In this case, if V" # ¢, then Gj is a forest since V7 C {v;,v,,w} by the definition
of V. Thus G is of Cy 1 by Theorem 3. If Vij = ¢, then G is of C; 1 by Theorem 4.

Case 3. A/(G) =3.

In this case, it suffice to proof G is C; 1 when f(v;) = 1(i = 1,2,...,n) and
i) 3,

flw)
Draw the path P, horizontally and draw the core 2 under the path P,. Join w

to each vertex of P, by a straight line. f-color, sequentially, the edges incident to w
from left to right using the colors 1, 2 and 3. f-color , sequentially, the edges on the
path from left to right using the colors 3, 1, and 2. We obtain a desired f-coloring of
G with A;(G) = 3 colors. Hence G is of Cy 1.

Case 4. A (G) > 4.

In this case, obviously, Vj C {w}. If V; = {w} then G is a forest and G is of
Cy 1 by Theorem 3. If Vi = ¢, then G is of Cy 1 by Theorem 4.

The theorem is proved. O

By Theorem 7, the following corollary holds.

Corollary 8. Let G be a fan-graph with the core w and the path P, = vv,...v,(n > 2).
Ifn >3, then G is of class one.

Theorem 9. Let G be a wheel of order n+ 1 with the core w and the cycle C, =
viva- vy Ifd(w) #3r+2(r=1,2,...) when Ar(G) =3, then G is of Cy 1.

Proof. To prove that the theorem, for cases need to be considered.

Case 1. A¢(G) = 1.

In this case, d(v) < f(v) for all v € V. Obviously, we can f-color graph G with
one color and thus G is of Cy 1.

Case 2. A¢(G) =2.
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In this case, we have V; C {w} by the definition of V. Then Gj is a forest if
Vo ={w}, and G is of C; 1 by Theorem 3. If Vj = ¢, G is of Cy 1, by Theorem 4.

Case 3. A/(G) =3.

In this case, G is of Cy 1 if and only if x;(G) = 3.

Subcase 3.1. d(w) =3r(r > 1).

We draw the circle C, = v{v,v;...v,v; in a clockwise direction. Starting from
vy, f-color the edges on the circle with the color 1, 2, and 3 alternately. Then
f-color the edges wv;(i = 1,2,...,n) with the color 2, 3, and 1 alternately. Thus, a
desired f-coloring of G is obtained.

Subcase 3.2. d(w) = 3r+ l(r >1).
In this case, 0bV10us1y, < 3 = A;(G). We say that w ¢ V. Otherwise,

weVy, we have =3, thatis f (w) =r+1. But f(w) is an integer, a contradiction.
Thus, V; C V(C, ) If Vs C V(C,), then Gj is a forest, and G is of C; 1 by Theorem
3. f Vy =V(C,), we give an f-coloring of G. Note that A;(G) = 3, d(vi) =3 and
v; € Vy forall i € {1,2,---,n}, we have fvy)y=1forallie{l,2,---,n}. Since

;{Ei; < 3, we have [;EZ;} 3 or [ e 1 < 3 It is easy to see that it suffice to prove

that x;(G) = 3 when [ﬂw)} 3. Slnce < 3 and d(w) =3r+1, we have f(w) >
r+%. Thus f(w) > r+ 1 since f(w) is an 1nteger Now, we give an f-coloring with
27(G) =3 when f(w) =r+1and f(v;) = 1 forall i € {1,2,--- ,n}. Draw the circle
C, = vi»v3...v,v in a clockwise direction. Starting from v,v,, f-color the edges on
the circle but v,v; with the color 1, 2, and 3, alternately. Then f-color the edges
wv;(i =2,3,...,n— 1) with the color 3, 1, and 2, alternately. Finally, f-color the edge
v, v, with the color 2. Now there are only two uncolored edges wv, and wv,. f-color
the edge wv, with one of the colors ¢ € M(v,) and f-color the edge wv; with one of
the colors ¢ € M(v,). A desired f-coloring of G is obtained.

Case 4. If A;(G) > 4, then Vy C {w}. If Vi = {w}, then G, is a forest and G is
Cy 1 by Theorem 3. If V' = ¢, then G is also of C; 1 by Theorem 4.

This completes the proof of the theorem. O

Remark 1. we conjecture that G is of C; 2 if d(w) = 3r+2 in Theorem 9, but we
can not prove it now.

Theorem 10. If G is a 2-connected series-parallel graph and f(v) > 2 for all v €
V(G), then G is of Cy 1.

Proof. If A =2, obviously, the theorem holds. It suffices to prove that the theorem
holds for A > 3. We proceed by induction on both the number of vertices P(G) and
the maximum degree A(G). If A(G) = 3, we prove that G is of C; 1. If f(v) =2
for all v € V(G), then G is of C; 1 by Theorem 4. If there exists a vertex v with
f(v) >3, then [d(ﬂ = 1 since 6 > 2 and A = 3, which can not change the coloring
of G. Thus G is also of C; 1. If f(v) >3 forall v € V(G), it is easy to see A;(G) = 1.
Thus G is of C; 1. We may assume the theorem holds on A(G) < A(A > 4)(the first
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hypothesis). In the case A(G) = A, we may proceed by induction on the number of
vertices P(G). It is easy to see that the theorem holds on P(G) = 3, since G is an 3-
cycle, A¢(G) = 1since f(v) > 2 for all v € V(G). We may assume the theorem holds
for P(G) < P(P > 4) (the second hypothesis). We consider five cases according to
Theorem 5.

Case 1. There exists an edge e = uv such that d(u) +d(v) = 4.

Let N(u) = {v,x} and N(v) = {u,y}. Obviously x # y, otherwise x = y is a cut-
vertex, which contradicts the fact that G is 2-connected. Let G* = G\ {u} U {vx}. If
A(G*) < A, then G* is of C; 1, by the first hypothesis; If A(G*) = A, G* is also of C;
1, by the second hypothesis. Let o* be an f-coloring of G*. Consider an f-coloring
o of G such that for all e € E(G) \ {ux,uv}, we have 6*(¢) = 6(e). In f-coloring &
of G, note that m(v) > 0, m(x) > 0 and f(u) > 2, we can obtain an proper f-coloring
of G.

Case 2. There exists an edge ¢ = uv such that d(u) +d(v) = 5.

We consider two subcases.

Subcase 2.1. N(u) "\N(v) = ¢, N(u) = {v,x} and N(v) = {u,y1,y2 }.

Let G* =G\ {u}U{vx}. If A(G*) < A, then G" is of C; 1, by the first hypothesis;
If A(G*) = A, then G* is of C; 1, by the second hypothesis. Let 6* be an f-coloring
of G*. Consider an f-coloring ¢ of G such that for all e € E(G) \ {ux,uv}, we have
c6*(e) = o(e). In f-coloring o of G, note that m(v) > 0, m(x) > 0 and f(u) > 2, we
can obtain an proper f-coloring of G.

Case 2.2. N(u) "N (v) # ¢, N(u) = {v,x} and N(v) = {u,x,y }.

Let G* = G\ {u}. If A(G*) <A, then G* is of C; 1, by the first hypothesis;
if A(G*) = A, G is of C; 1, by the second hypothesis. Let * be an f-coloring of
G*. Consider an f-coloring ¢ of G such that for all e € E(G) \ {ux,uv}, we have
o*(e) = o(e). In f-coloring o of G, note that m(v) > 0, m(x) > 0 and f(u) > 2, we
can obtain an proper f-coloring of G.

Case 3. There exist two disjoint vertices # and v of degree 2 which have a
common neighbor w of degree 4 such that N(u) \ {w} =N(v)\ {w} C N(w).

Let N(u) \ {w} =Nv) \ {w} = {x} and let G* = G\ {u}. If A(G*) < A, G* is
of C; 1, by the first hypothesis; If A(G*) = A, G* is of C; 1 by the second hypothesis.
Let 6* be an f-coloring of G*. Consider an f-coloring ¢ of G such that for all
e € E(G)\{ux,uw}, we have 6*(e) = o(e). In f-coloring o of G, note that m(w) > 0,
m(x) >0 and f(u) > 2, we can obtain an proper f-coloring of G.

Case 4. There exist two disjoint vertices # and v of degree 2 which have a
common neighbor w of degree 4 such that N(w) \ {u,v} = (N(u) UN(v)) \ {w} =
{x,y}.

Let G* =G\ {u}. If A(G*) <A, G" is of C; 1, by the first hypothesis; If A(G*) =
A, G* is of Cy 1, by the second hypothesis. Let 6* be an f-coloring of G*. Consider
an f-coloring ¢ of G such that for all e € E(G) \ {ux,uw}, we have 6*(e) = o(e).
In f-coloring ¢ of G, note that m(w) > 0, m(x) > 0 and f(u) > 2, we can obtain an
proper f-coloring of G.
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Case 5. There exist three disjoint vertices u, v and w of degree 2 such that
N(u) =N(v) and N(u) NN (w) # ¢.

Let N(u) = {x1,x2}, x; € N(w). If x; and x, are not adjacent, then let G* =
G\ {u} U{xx,}, otherwise let G* = G\ {u}. If A(G*) < A, G" is of Cy 1, by the
first hypothesis; If A(G*) = A, G* is of C; 1, by second hypothesis. Let 6* be an f-
coloring of G*. Consider an f-coloring ¢ of G such that for all e € E(G) \ {ux;,ux },
we have 0*(e) = o(e). In f-coloring ¢ of G, note that m(x;) > 0, m(x;) > 0 and
f(u) > 2, we can obtain an proper f-coloring of G.

All cases complete the proof. O
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