
The Branch and Bound Algorithm for Solving
a Sort of Non-smooth Programming on

Simplex∗

Zai-En Hou1,† Fu-Jian Duan2

1 Shaanxi University of Science & Technology, Xianyang, Shaanxi 712081, China
2 Guilin University of Science & Technology, Guilin, Guangxi 541004, China

Abstract An approximation algorithm for solving a sort of non-smooth programming is pro-
posed. In the programming, the objective function is the Hölder function and the feasible region is
contained in a simplex (viz. hyper-simplex). To establish the algorithm, the properties of the Hölder
function and an approximation of the function by using Bernstein α-polynomial are studied. Ac-
cording to the properties of the approximation polynomial and the algorithm for solving geometric
programming, the strategy for branching and bounding and the branch-and-bound algorithm are
constructed to solve the programming. The convergence of the algorithm can be guaranteed by the
exhaustive of the bisection of the simplex. The feasibility of the algorithm is validated by solving
an example.

Keywords Hölder function; non-smooth programming; approximation polynomial; geometrical
programming; branch-and-bound algorithm

1 Introduction
The following model is called as non-smooth programming

(NSP)





min f (x)
s.t. gi(x)≤ 0,(i = 1,2, · · · ,m)

h j(x) = 0,(j = 1,2, · · · ,n),

where there exists one non-smooth function in f (x), gi(x) (i = 1,2, · · · ,m) and h j(x)
(j = 1,2, · · · ,n). The study for solving the programming has attracted much atten-
tion since the programming is widely existed in practical engineering and the penalty
function of a constrained smooth programming is generally a non-smooth function.
According to the properties of the programming and the study on smooth program-
ming, the necessary and sufficient conditions and the basic methods are established to

∗This work is supported by (Doctor) Scientific Research Startup Foundation of Shaanxi University of Science &
Technology: BJ06-2.

†E-mail: hkze-00795@163.com

The Sixth International Symposium on Operations Research and Its Applications (ISORA’06)
Xinjiang, China, August 8–12, 2006
Copyright © 2006 ORSC & APORC§pp. 270–282

solve the programming (see [1–3]). And some modern methods for solving smooth
programming are applied to solve the programming, such as bundle method, trust
region method, reformed Newton method and SQP method, which is a successive ap-
proximation method with quadratic programming (see [4–9]). Some of these meth-
ods have requests or restrictions on smoothness or convexity to the function in the
programming. The typical example is the Lipschitz optimization in which the Lips-
chitzian continuity is assumed to the objective and constraint function (see [10,11]).
Can these restrictions be weakened in model (NSP)? These motivate us to study the
properties of the Hölder function, the approximation of the function by using Bern-
stein α-polynomial and the strategy for branching and bounding. Our goal is to
develop a new method for solving the programming where the objective function and
constrained functions are all Hölder continues (see [12]).

The content of this paper is as follows. In section 2 we review the properties
of the Hölder function and the approximation of the function by using Bernstein α-
polynomial. In section 3 we construct the algorithm and study the convergence of the
algorithm for solving the programming. In section 4 we give a numerical example to
illuminate the feasibility of the algorithm. We end the paper with the conclusion of
the paper in section 5.

2 The Properties of Hölder Function
2.1 Hölder Function

In this section we review the concept of Hölder function and study several prop-
erties of the function.

Definition 1. Let f (x) be a real function on P(⊂Rn), f (x) is called a Hölder function
on P(or Hölder continuous) if there exist constant L = L(f ,P) > 0 and γ > 0 such
that

| f (x2)− f (x1)| ≤ L ‖ x2− x1 ‖γ , for all x1,x2 ∈ P. (1)

Where constants L = L(f ,P) > 0 and γ > 0 are called Hölder constants of f (x).

In the definition the norm ‖ · ‖ is the general Euclidean norm. In practice, the
following lp− norm is often adopted

‖ x ‖p=

(
s

∑
i=1
|xi|p

) 1
p

, (1≤ p≤ ∞), (2)

where ‖ x ‖∞= maxi=1,··· ,s |xi|.
Obviously, Hölder function f (x) is a Lipshchitz function on P when γ = 1, that

is, Lipshchitz function is a special kind of Hölder function. Even so, the continuity
of them is alike, and other properties of them are analogous as well.

Lemma 1. Let f (x),g(x), fi(x) (i = 1, · · · ,m) be Hölder functions on the compact set
P⊂ Rs, then for any x ∈ P, there exists a neighborhood U(x) at x, such that

Solving a Sort of Non-smooth Programming on Simplex 271

(i) Every linear combination of fi(x)(i = 1, · · · ,m) is a Hölder function on
U(x)∩P;

(ii) maxi=1,··· ,m fi(x) and mini=1,··· ,m fi(x) are Hölder functions on U(x)∩P;
(iii) f (x) ·g(x) is a Hölder function on U(x)∩P.

Proof. The constructive method may be used in the proofs of (i) ∼ (iii). The proof
of maxi=1,··· ,m fi(x) in (ii) is given here, the others are similar.

Suppose Li and γi (i = 1, · · · ,m) are Hölder constants of function fi(x) (i =
1, · · · ,m), respectively, by the definition 1, we have following inequalities

| fi(x2)− fi(x1)| ≤ Li‖x2− x1‖γi , for all x1,x2 ∈ P,(i = 1, · · · ,m). (3)

Let
F(x) = max

i=1,··· ,m
fi(x) (4)

and U(x) = {x|‖x− x‖ < d}, for any x ∈ P, we choose d such that 0 < d ≤ 1, then
for all x1,x2 ∈U(x)∩P, we have following inequalities

|F(x2)−F(x1)|=|max
i

fi(x2)−max
i

fi(x1)|
≤max

i
| fi(x2)− fi(x1)|

≤max
i
{Li‖x2− x1‖γi}

≤(max
i

Li)max
i
{‖x2− x1‖γi}

≤(max
i

Li)‖x2− x1‖(mini γi).

(5)

Further, let L = maxi Li, γ = mini γi, the inequality (5) can be denoted as follows

|F(x2)−F(x1)| ≤ L‖x2− x1‖γ . (6)

This shows that maxi=1,··· ,m fi(x) is a Hölder function on U(x)∩P.

Lemma 2. Let fi(x) (i = 1, · · · ,m) be a Hölder function on the compact set P ⊂ Rs

and Li,γi (i = 1, · · · ,m) be the Hölder constants respectively, then for any x ∈ P,
there exists a neighborhood U(x) at x, such that for any p (1 ≤ p ≤ ∞) the function
f (x) = (∑m

i=1 | fi(x)|p)
1
p is a Hölder function on U(x)∩P and the constants L = ∑m

i=1 Li

and γ = mini γi are its Hölder constants.

Proof. Let F(x) = (f1(x), · · · , fm(x))T , then f (x) is the lp-norm of F(x), that is
f (x) = ‖F(x)‖p. Let U(x) = {x|‖x− x‖ < d}, for any x ∈ P, where we choose d

272 The Sixth International Symposium on Operations Research and Its Applications

such that 0 < d ≤ 1, then for all x1,x2 ∈U(x)∩P, we have following inequalities

|‖F(x2)‖p−‖F(x1)‖p| ≤‖F(x2)−F(x1)‖p

≤‖F(x2)−F(x1)‖1

=
m

∑
i=1
| fi(x2)− fi(x1)|

≤
m

∑
i=1

Li‖x2− x1‖γi

≤
m

∑
i=1

Li‖x2− x1‖(mini γi)

=

(
m

∑
i=1

Li

)
‖x2− x1‖(mini γi)

(7)

Therefore, let L = ∑m
i=1 Li, γ = mini γi, the inequality (7) can be expressed as follows

| f (x2)− f (x1)| ≤ L‖x2− x1‖γ . (8)

It is shown that f (x) is a Hölder function on U(x)∩P.

Actually, the functions in the results of the lemma are all local Hölder function.

2.2 The Approximation of Hölder Function
From the definition 1, Hölder function is continuous on P while P(⊂ Rn) is

simplex (viz. hyper-simplex). In this case the Hölder function can be approximated
by Bernstein α- polynomials (like in paper [13]). But the labor of calculation of the
approximation is increasing rapidly when the degree of the Bernstein α- polynomials
is increasing in higher order. The higher degree Bernstein α- polynomials can not
be used in practical computation. We pay attention to the process of branching and
bounding, in which the region is divided smaller and smaller. Can the approximation
by Bernstein α- polynomials be applied in this process, that is, can the heightening
of the degree of the polynomials be substituted by the dwindling of the region? If
it is possible, we can conclude that the Hölder function can be approximated by
Bernstein α- polynomials in the process mentioned. We explain the feasibility of
this approximation in the section below, then we will give the application of the
approximation to the approximation algorithm in the next section.

Lemma 3. Let f (x) be a Hölder function on the simplex P⊂Rs, {Pm} be a sequence
of simplexs such that

P = P0 ⊃ P1 ⊃ ·· · ⊃ Pm ⊃ ·· · ,
and dm = sup{‖x2− x1‖|x2,x1 ∈ Pm} be the diameter of simplex Pm(m = 0,1,2, · · ·),
such that dm → 0, as m→ ∞. And let

Bm
n (f ,x,α) = ∑

|k|≤n

f ((
k
n
)

1
α)Bn,k(x,α) (9)

Solving a Sort of Non-smooth Programming on Simplex 273

be the Bernstein α-polynomials of f (x) on Pm(m = 0,1,2, · · · , · · ·), then we have the
following limit

lim
m→∞

(Bm
n (f ,x,α)− f (x)) = 0. (10)

Proof. It is easy to know the f (x) is a Hölder function on the simplex Pm ⊂ P(m =
0,1, · · ·) from the assumption of the lemma. Therefore, we have following inequality:

| f (x2)− f (x1)| ≤ L‖x2− x1‖γ , x2,x1 ∈ Pm(m = 0,1, · · ·) (11)

where L and γ > 0 are the Hölder constants. We also have inequalities

|Bm
n (f ,x,α)− f (x)|=

∣∣∣∣∣ ∑
|k|≤n

(
f ((

k
n
)

1
α)− f (x)

)
Bn,k(x,α)

∣∣∣∣∣

≤ ∑
|k|≤n

∣∣∣∣ f ((
k
n
)

1
α)− f (x)

∣∣∣∣Bn,k(x,α)

≤ ∑
|k|≤n

L
∥∥∥∥ f (

k
n
)

1
α − x

∥∥∥∥
γ

Bn,k(x,α)

≤Ldγ
m ∑
|k|≤n

Bn,k(x,α) = Ldγ
m.

(12)

From the assumption, when m → ∞, dm → 0. Because of this, for any ε > 0,
there exists a positive number N, such that dm <

(ε
L

) 1
γ as m > N. Thus

|Bm
n (f ,x,α)− f (x)|< L

((ε
L

) 1
γ
)γ

= ε. (13)

It shows the limit (10) holds.

2.3 The Non-smooth Programming
For the non-smooth programming

(NSPH)





min f (x)
s.t. gi(x)≤ 0,(i = 1,2, · · · ,m)

h j(x) = 0,(j = 1,2, · · · ,n),

where f (x),gi(x),h j(x)(i = 1,2, · · · ,m; j = 1,2, · · · ,n) are Hölder functions, we de-
fine a Lagrange penalty function as follows

L(x,M) = f (x)+M(
m

∑
i=1

max{gi(x),0}+
s

∑
j=1

h2
j(x)),

274 The Sixth International Symposium on Operations Research and Its Applications

where M is a large positive number. Then we choose a huge simplex D which
comprise the feasible region of the programming (NSPH). The programming can
be solved by solving the problem

min L(x,M)
s.t. x ∈ D.

Therefore, only do we need to solve the problem

min f (x)
s.t. x ∈ D,

(14)

or the problem
min Bn(f ,x,α)
s.t. x ∈ D,

(15)

where the L(x,M) is denoted as the new function f (x) in problem (14) and (15).

3 The Algorithm and Its Convergence
The general branch and bound methodology is applicable to broad classes of op-

timization problems. The branch and bound algorithms are based upon operations of
partition, sampling, and subsequent lower and upper bounding procedures, in which
these operations are applied iteratively to the collection of active (‘candidate’) subsets
within the feasible set. In the section we describe the algorithm for solving the non-
smooth programming ((NSPH) or (14)), in which we combine the strategy of branch
and bound with the approximation of Hölder function by Bernstein α-polynomials.
Moreover, we study the convergence of the algorithm.

3.1 The Basic Algorithm
Compared with general branch and bound methodology, here we approximate

the function f (x) with its Bernstein α-polynomials Bn(f ,x,α) and we have the in-
equality

min
x∈D

f (x)≤min
x∈D

Bn(f ,x,α), (16)

our method did not need the process of bounding in formally, it only needs the process
of branching and pruning. Thus, rules of branching and pruning is the key of the
method. According to these rules, we can preserve the solution in the sequence of the
simplex, and we need solve lesser subproblem as well. Thus the labor of calculation
needn’t be added a great deal.

The Branching Rule. To guarantee the convergence of the algorithm, we par-
tition the simplex Pk with bisection method, that is, we bisect the simplex Pk at the
midpoint of its longest edge. Where Pk is partitioned as two simplex:Pk1,Pk2. The
diameter of simplex Pki(i = 1,2) is dwindled step by step with the process of the par-
tition continuing. Moreover, the diameter of the simplex Pki(i = 1,2) converges to
zero as k → ∞.

Solving a Sort of Non-smooth Programming on Simplex 275

The Pruning Rule. To set up the pruning rule, we need to determine the initial
threshold value µ0 and the degree n of the polynomials.

In theory, we can choose the initial threshold value µ0 > 0 and the degree n,
such that

|Bn(f ,x,α)− f (x)| ≤ µ0, x ∈ P0 (17)

where P0 = D, since we have the following limit由于

lim
n→∞

Bn(f ,x,α) = f (x), x ∈ P0. (18)

But the degree n may be too large to be used in actual computation.
In practical computation, we can first choose proper n according to the proper-

ties of the function, where a smaller n is chosen generally. Then we determine µ0 > 0
with the bisection method or 0.618 method (golden section method). Moreover, the
following inequalities hold,

min
x∈P0

Bn(f ,x,α)−µ0 ≤min
x∈P0

f (x)≤min
x∈P0

Bn(f ,x,α). (19)

Let u = minx∈P0 Bn(f ,x,α) be the upper bound of the optimization value of objective
function, according to the branching rule, we partition the simplex P0 as: P1

0 ,P2
0 , and

solve minx∈P1
0

Bn(f ,x,α),minx∈P2
0

Bn(f ,x,α) at the same time. Then Comparing the
optimization values of them with u, if u > minx∈Pi

0
Bn(f ,x,α), we update the upper

bound u as u = minx∈Pi
0
Bn(f ,x,α). Actually, that can be expressed as follows,

u = min
{

min
x∈P1

0

Bn(f ,x,α),min
x∈P2

0

Bn(f ,x,α)
}
≤min

x∈P0
Bn(f ,x,α),

where the Bernstein α-polynomial Bn(f ,x,α) in minx∈P1
0

Bn(f , x, α), minx∈P2
0

Bn(f , x,
α) and minx∈P0 Bn(f ,x,α) is the Bernstein α-polynomial Bn(f ,x,α) on correspond-
ing simplex, respectively. For convenience, we denote them as the same front though
they are different. This is the same in lemma 4 and hereinafter.

Like the proof of the theorem 3 in paper [13], we have following inequality

|Bn(f ,x,α)− f (x)|< M
n

.

Therefore, we can take µ1 = µ0
2 as a new threshold value and pruning with the value.

If minx∈Pi
0
Bn(f ,x,α) ≥ u + µ1, then we pruning the branch on Pi

0 (i = 1 or 2), in
which there does not exist the optimization solution; otherwise we save the branch.

When we complete the work above, we collect the reserved branches to form
a set and number the branches in the set over again. For instance, if two branches
above did not be pruned, we have the set P1 = {P11,P12}, which is called as the set of
reserved branches and the diameter of which is defined as follows

d1 = max{d1 j|d1 jis the diameter of P1 j,P1 j ∈ P1} .

276 The Sixth International Symposium on Operations Research and Its Applications

Afterwards, we do the process of branch and bound on P1, and gain the new set of
reserved branches P2. Generally, repeating this process, we can obtain the set of
reserved branches

Pm = {Pm1,Pm2, · · · ,Pmlm} , (20)

and corresponding upper bound u, threshold value µm diameter dm.
Until satisfactory precision being reached, the above process is repeated.
The Terminate Rule. For given precision ε > 0, if

µm < ε or dm < ε,

then stop the process, and solve the optimization solution and value.

Algorithm 1. (Basic Algorithm)

Step 0: Let an accuracy ε > 0 be given. Initialization: Initialize iterative num-
ber m := 0, initialize the set of reserved branches P0 = {P01},P01 = D, choose
proper integer n, and solve

min
x∈P01

Bn(f ,x,α)

to obtain the solution x0 and initial upper bound

u0 = min
x∈P01

Bn(f ,x,α),

and determine the initial threshold value µ0. Let d0 be the diameter of P01,
which is called as diameter of P0 too.

Step 1: If µm < ε or dm < ε , then stop the iterative process. We obtain um is the
optimization value and the corresponding solution is the optimization solution.
Otherwise, go to step 2.

Step 2: Denote the set of reserved branches as:

Pm = {Pm1,Pm2, · · · ,Pmlm} . (21)

Bisect every Pm j(1≤ j ≤ l) as : P1
m j,P

2
m j(1≤ j ≤ lm).

Step 3: Solve problems

min
x∈Pi

m j

Bn(f ,x,α), j = 1,2, · · · , lm; i = 1,2.

Get the solutions xi
m j(j = 1,2, · · · , lm; i = 1,2); determine the upper bound

um+1 = min
1≤ j≤lm;i=1,2

{
min
x∈Pi

m j

Bn(f ,x,α)

}
,

and corresponding solution xm+1.

Solving a Sort of Non-smooth Programming on Simplex 277

Step 4: Let µm+1 = µm
2 be the new threshold value, if

min
x∈Pi

m j

Bn(f ,x,α) > u+ µm+1,

we abnegate the corresponding branch Pi
m j. Otherwise, we save the corre-

sponding branch, which constitute the new set of reserved branches

Pm+1 = {P(m+1)1,P(m+1)2, · · · ,P(m+1)lm+1}. (22)

Let

dm+1 = max
1≤ j≤lm+1

{
d(m+1) j|d(m+1) jis the diameter of P(m+1) j, 1≤ j ≤ lm+1

}

be the diameter of Pm+1.
Step 5: m+1⇒ m, go to step 1.

3.2 The Convergence of the Algorithm
To give the convergence of the algorithm we review the following concept.

Definition 2. Let P be a simplex, then partition the simplex. If this partition produce
a sequence {Pm} of partition set of the simplex P such that

P = P0 ⊃ P1 ⊃ ·· · ⊃ Pm ⊃ ·· · ,

and limm→∞ d(Pm) = 0,且limm→∞ Pm =
⋂∞

m=0 Pm = {P̂}, where d(Pm) is the diameter
of Pm and P̂ is a point in the simplex P, then this partition {Pm} of P is called as
exhaustive.

In the aforesaid algorithm, the set of partition is the partition of simplex, this
simplex partition is exhaustive from the reference [14]. Therefore, the branch and
bound algorithm is exhaustive. So the algorithm is convergent from the exhaustive of
the algorithm and lemma (3).

Theorem 4. If the process of branch and bound algorithm can be done infinitely, and
this process produce every sequence of the partition sets, such that

Pm1 ⊃ Pm2 ⊃ ·· · ⊃ Pmk ⊃ ·· · ,

and it is exhaustive, then
u = lim

k→∞
umk = lim

k→∞
f (xmk)

and the accumulation point x∗ of the sequence {xm} is the optimization solution of
the programming (14).

Proof. There exists a accumulation point of the sequence {xm} since the set D is a
compact set in the assumption of the theorem. Let x∗ be the accumulation point, then

278 The Sixth International Symposium on Operations Research and Its Applications

there exists a subsequence {xmk} of sequence {xm}, such that the subsequence {xmk}
converge to the point x∗ and corresponding sequence {Pmk}

Pm1 ⊃ Pm2 ⊃ ·· · ⊃ Pmk ⊃ ·· ·

is exhaustive. Combining the continuity of the function f (x) and the results of lemma
4, we have the limit

lim
k→∞

f (xmk) = f (x∗),

and the limit
lim
k→∞

umk = lim
k→∞

f (xmk).

Thus from the meaning of umk , we know the point x∗ is the optimization solution of
the programming (14) and the corresponding limit u = limk→∞ umk is the optimization
value.

Clearly, for given ε > 0, the process of branch and bound will be stopped at
finite number of steps under the terminate rule and results of the theorem. In other
words, the algorithm possesses the property of finite termination.

4 Numerical Example
Example 1. Solve the problem

max
x∈S

f (x) (23)

where S = {x : x = (x1,x2,x3)T ∈ R3,0≤ xi ≤ 1, i = 1,2,3,x1 + x2 + x3 ≤ 1}, and

f (x) =max{ f1(x), f2(x)},
f1(x) =−1.0+8x1 +8x2−32x1x2,

f2(x) =3.6−12x1−4x3 +4x1x3 +10x2
1 +2x2

3.

This is a maximum-minimum problem, in which the maximum of two functions
or several functions is no longer smooth. Otherwise, if the primary two functions or
several functions are Hölder functions, the obtained function also is a Hölder func-
tion. This property of Hölder function is the same as that of Lipschitz function.

As mentioned before, the larger the integer n is, the larger the labor of compu-
tation Bernstein α-polynomial is. So when we solve the problem

max
x∈S

Bn(f ,x,α), (24)

with the above algorithm, we choose n = 3 and α = (1.5,1,1.25)T .
For convenience in computation, we choose a rectangle S = {x : x = (x1,x2,x3)T

∈R3,0≤ xi ≤ 1, i = 1,2,3} ⊃ S and solve the problem maxx∈S f (x), that is, we solve
the problem maxx∈S Bn(f ,x,α) with the algorithm in which the rectangle S substitute

Solving a Sort of Non-smooth Programming on Simplex 279

Table 1: Results of example 1

Sequence
number

Rectangle
Sm

Extreme point
xm minBm f (xm)

0 [0,1]3 (.79622; .96929; .00000) .93130 .3850
1 [0, .5][0,1]2 (.49438;1.00000; .37119) −.102800 −.3636
2 [.5,1][0,1]2 (.50000; .99999; .50000) −.101280 −.4000
3 [0, .5]2[0,1] (.50000; .50000; .28167) −.00794 1.0000
4 [0, .5][.5,1][0,1] (.49438;1.00000; .37119) −.10280 −.3636
5 [.5,1][0, .5][0,1] (.50000; .50000; .28167) −.00790 1.0000
6 [.5,1]2[0,1] (.50000;1.00000; .35931) −.10128 −.36040
7 [0, .5][.5,1][0, .5] (.49070;1.00000; .38142) −.22548 −.3666
8 [0, .5][.5,1]2 (.48529;1.00000; .50000) −.19528 −.3978
9 [.5,1]2[0, .5] (.50000;1.00000; .36889) −.22062 −.3656
10 [.5,1]3 (.50000; .50000;1.00000) −.18140 1.0000
11 [0, .25][.5,1][0, .5] (.2500;1.00000; .50000) −.31322 3.0000
.
18 [.75,1][.5,1]2 (.75000;1.00000; .50000) .76724 .2250
.
28 [.5, .75][.75,1][.5,1] (.5000;1.00000; .50000) −.18140 −.4000
.

for the simplex S in the above algorithm. Observingly, Bn(f ,x,α) in (25) is different
from that in (24). The partial processes and results are listed in the table bellow.

In table 1, xm is the extreme point of the corresponding Bernstein α- polynomial
in the rectangle Sm, minBm is corresponding extreme value, f (xm) is the function
value of f (x) at the extreme point. Every segment in table 1 consist of the partitions
of the reserved branches in the segment above its. We continue the process in the
table 1, as the results, the optimization solution of problem

max
x∈S

f (x) (25)

x∗ = (0.50000,1.00000,0.50000)T and the optimization value f (x∗) = −0.4000 are
obtained.

5 Conclusion
In our approach, we give a algorithm for solving the nonsmooth programming.

Except the usual strategy of branch and bound, we mainly utilize on the approxi-
mation properties of Hölder function by Bernstein α- polynomial. The dwindling
of the region substitute the heightening of the degree of the polynomials in the ap-
proximation. This technique largely cut down on the labor of the computation. The

280 The Sixth International Symposium on Operations Research and Its Applications

convergence of the algorithm is guaranteed in theory and the feasibility of algorithm
is validated from the example. At the end of the paper, we point out there are two
difficulties while solving a problem with the algorithm, one is the choosing of the
parameter α in polynomial Bn(f ,x,α), another is the solving of the subproblems
minx∈Pm j Bn(f ,x,α), though we solve it as a geometric programming [15,16]. There-
fore, this study will be continued.

References
[1] Z. C. Xuan and P. G. Shao. A programming approach for nonsmooth structural

optimization. Advances in Engineering Software, 31(2), 75–81, 2000.

[2] A. J. V. Brandão, M. A. Rojas-Medar and G. N. Silva. Nonsmooth continuous-
time optimization problems: necessary conditions. Computers and Mathematics
with Applications, 41(12), 1477–1486, 2001.

[3] Marco Castellani. A necessary second-order optimality condition in nonsmooth
mathematical programming. Operations Research Letters, 19(2), 79–86, 1996.

[4] José Mario Martínez and Antonio Carlos Moretti. A trust region method for
minimization of nonsmooth functions with linear constraints. Mathematical
Programming, 76(3), 431–449, 1997.

[5] Peiping Shen, Kecun Zhang, Yanjun Wang. Applications of interval arithmetic
in non-smooth global optimization. Applied Mathematics and Computation,
144(2–3), 413–431, 2003.

[6] P. E. Gill, W. Murray and M. A. Saunders. SNOPT: An SQP algorithm for large
scale constrained optimization. SIAM Journal on Optimization, 12, 979–1006,
2002.

[7] John E. Dennis Jr, Shou-Bai B. Li and Richard A. Tapia. A unified approach to
global convergence of trust region methods for nonsmooth optimization. Math-
ematical Programming, 68(3), 319–346, 1995.

[8] Claude Lemaréchal, Arkadii Nemirovskii, Yurii Nesterov. New variants of bun-
dle methods. Mathematical Programming, 69(1), 111–147, 1995.

[9] M. J. Kontoleon, D. N. Kaziolas, M. D. Zygomalas and C. C. Baniotopoulos.
Analysis of steel bolted connections by means of a nonsmooth optimization
procedure. Computers and Structures, 81(26–27), 2455–2465, 2003.

[10] A. E. Csallner. Lipschitz continuity and the termination of interval methods for
global optimization. Computers and Mathematics with Applications, 42(8–9),
1035–1042, 2001.

[11] Ya. I. Alber, A. N. Iusem and M. V. Solodov. On the projected subgradient
method for nonsmooth convex optimization in a Hilbert space. Mathematical
Programming, 81(1), 23–35, 1998.

Solving a Sort of Non-smooth Programming on Simplex 281

[12] Stéphane Seuret and Jacques Lévy Véhel. The local Hölder function of a contin-
uous function. Applied and Computational Harmonic Analysis, 13(3), 263–276,
2002.

[13] Zai-En Hou and Ke-Cun Zhang. Approximation of multivariable function by
using new multivariable Bernstein α-polynomials. Applied Mathematics and
Computation, 154(2), 335–345, 2004.

[14] R. Horst, P. M. Pardalos and N. V. Thoai. Introduction to Global Optimization,
Second Edition, Kluwer Academic Publishers, 1–368, 2000.

[15] J. Rajgopa and D. L. Bricker. Solving posynomial geometric programming
problems via generalized linear programming. Computational Optimization and
Application, 21, 95–100, 2002.

[16] Y. J. Wang, K. C. Zhang and P. P. Shen. A new type of condensation curvilinear
path algorithm for unconstrained generalized geometric programming. Mathe-
matical and Computer Modelling, 35(11–12), 1209–1219, 2002.

282 The Sixth International Symposium on Operations Research and Its Applications

