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Abstract This paper formulates a stochastic inventory model for a single-period seasonal or fash-
ion product inventory system consisting of multiple stocking echelons in series and retailers. By
transforming model, an equivalent two-stage stochastic linear program model is developed to solve
this stochastic inventory problem, which makes the inventory problem easier to analyze. The opti-
mal placement policy of this inventory system is characterized and its existence is proved. More-
over, the algorithm for finding optimal placement policies is obtained.
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1 Introduction
In practical situations, many manufacturing processes of seasonal or fashion

products can be viewed as serial assembling processes. Here, we consider a produc-
tion-inventory system of such seasonal or fashion products, which comprises multiple
stocking echelons in series and retailers. We assume that the system containsm re-
tailers and its manufacturing process consists ofk−1 serial assembling/processing
facilities, so it includesk different stocking echelons, which hold various kinds of
inventory items in the form of raw materials(echelon 1), subassemblies/work-in-
processes (echelons 2 tok− 1) and finished products (echelonk). Through them
retailers, the demand of all customers is satisfied by obtaining the finished products
or converting the available raw materials and subassemblies within the selling period.
A diagrammatic representation of such a manufacturing system is given in Figure 1
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Figure 1: A Production-Inventory System consisting ofk echelons in series andm
retailers

Because of the short selling period, we consider the case in which there are no
opportunities to reorder more raw materials from the suppliers, neither is there time
to modify its initial inventory levels at the stocking echelons and the downstream
retailers. Therefore, the inventory placement decisions have to be made at the start
of the selling period. The major challenge facing manufacturers of the seasonal or
fashion products is to plan for the production and inventorylevels of their products
to meet random demands over a short selling period.

Generally, there are two kinds of inventory policies used for production and in-
ventory planning. One is assemble in advance (AIA) and the other is assemble to
order (ATO).In contrast to AIA, which assembles the finishedproducts according
to plan (forecast demand) and keeps inventory at the end product level, ATO keeps
iinventory at the subassembly/work-in-process level and only assemble a product in
response to demand. ATO can postpone the commitment point ofsubassemblies to
end products and thus make it possible to reduce liquidationloss and realize great
products variety. However for many seasonal or fashion products with a serial as-
sembly process, because of their short selling period, production capacity limits and
delays in a series of converting (assembling) and shipping processes, adopting the
ATO inventory strategy will result in the loss of customers who are unwilling to wait.
Moreover, as far as production is concerned, the unit cost ofa finished product under
ATO is higher than that under AIA, because for the latter there is no need for rush
orders, and production can be planned and implemented well in advance. On the
other hand, when the AIA inventory strategy is used, liquidation loss will be incurred
if supply exceeds demand to cause the wasted processing costs and the disposal of
unused inventory. Therefore, as shown by Eynan and Rosenblatt [4], a composite
of AIA and ATO is the dominating strategy for the serial multi-echelon systems of
seasonal or fashion products.

Whitin [10] first presented such a single-period problem with stochastic demand
and two echelons. Subsequently, many authors (Brayan et.al. [1], Hanssmann [6],
Johson et.al. [8], Gerchak et.al. [5], Eynan and Rosenblatt[4]) analyzed the simi-
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lar problems with two or four echelons. Recently, Hariga [7]and Chung et al. [3]
investigated such a single period stochastic model composed of n echelons, indepen-
dently. However, these existing models with multiple echelons in series typically
assume that only one retailer faces all customer demand. To the best of our knowl-
edge, there are no papers studying the case with multiple retailers. In this paper we
consider a single-period mixed ATO and AIA production-inventory system consist-
ing of k echelons andm retailers as illustrated in Figure 1, in which each retailerfaces
his own stochastic demand and the random demands arriving atthe various retailers
are allowed to be correlative and their distribution is arbitrary. The profitable stock
quantities placed at various stock points of this system have to be made before the
start of selling period. In selling period, the customer’s demand arriving at a retailer
is first satisfied with the retailer’s stock. When a shortage occurs at the retailer’s
inventory, based on the customers’ different willingness to wait, the excess demand
can be partially satisfied by converting and transporting the available inventory items
at the upstream echelons.

The remainder of this paper is organized as follows. In Section 2, we introduce
the single-period inventory system withk echelons andm retailers. In Section 3, an
equivalent two-stage stochastic linear program model withfixed recourse is devel-
oped to analyze this inventory problem. In Section 4, we characterize the optimal
solution to this problem , prove the existence of optimal inventory policies and pro-
pose an effective algorithms to find optimal inventory placement policies. Finally,
we conclude the paper in Section 5.

2 Notation and Model Formulation
As shown in Figure 1, we consider a single-period stochasticproduction-inven-

tory model composed ofm retailers andk stocking echelons which hold various
inventory items in the form of raw materials (echelon 1), different grades of sub-
assemblies/work-in-processes (echelons 2 tok− 1) and finished products (echelon
k).

We use the following notation to define this production-inventory system:

i = 1,2, · · · ,m index the retailers.

j = 1,2, · · · ,k index the echelons.

xr
i = stock quantity placed in the store of retaileri at the beginning of the period,

wherexr
i ≥ 0. We denote the vectorxr = (xr

1,x
r
2, . . . ,x

r
m).

xe
j = stock quantity placed in the echelonj at the beginning of the period, where

xe
j ≥ 0. xe = (xe

1,x
e
2, . . . ,x

e
k).

Di=random demand of theith retailer, andD = (D1,D2, · · · ,Dm) is a random
vector with joint distribution functionF(x1,x2, · · · ,xm).

si = unit cost for shipping products from the manufacturer to retailer i.

pr
i =unit profit (excluding the shipping cost from one retailer toanother) when

the ith retailer’s stock assembled in advance is sold, wherepr
i > 0. pr = (pr

1, pr
2, . . . ,

pr
m).
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p j =unit profit (excluding shipping cost from the manufacturer to retailers)
when the finished products assembled to order by converting the inventory items at
echelonj are sold,j = 1,2, · · · ,k−1, andpk = unit profit (excluding shipping cost)
when the finished products assembled in advance at the echelonk are sold. Because in
practical situations the net profit ( including the downstream shipping cost) of a unit
stock sold through a retailer is nondecreasing with its stock point being close to the
retailer’s customer, it is natural to assume that 0< p1 < p2 < · · ·< pk−1 < pk < pr

i +si.
pe = (p1, p2, . . . , pk).

le
j =unit liquidation loss for unused inventory at thejth echelon andl r

i = unit
liquidation loss for unused inventory at theith retailer. It is also natural to as-
sume thatle

1 6 le
2 6 · · · 6 le

k 6 l r
i . Define the unit liquidation loss vector at eche-

lons by le = (le
1, l

e
2, . . . , l

e
k) ∈ Rk and the unit liquidation loss vector at retailers by

lr = (l r
1, l

r
2, . . . , l

r
m) ∈ Rm.

α ji = fraction of the demand not satisfied by theith retailer’s inventory that
will wait for shipments from retailerj, which measure the impacts on the lost sales
induced by the various lead times of assembling and shippingprocesses. From Figure
1, it holds that 0≤ α1i 6 α2i 6 · · ·6 αki ≤ 1.

Here, we neglect the the shipping costs between the echelonsbecause these costs
are included in the profit of the sold subassemblies at each echelon.xe

j andxr
i are the

inventory placement decision variables before the beginning of the selling period and
we define the inventory placement policyx= (xe, xr) = (xe

1, . . . , xe
k,x

r
1, . . . ,x

r
m). When

the customer demandD is realized,min{xr
i ,Di} is the supply quantity of the retailer

i to meet its customer demand. Lety ji denotes thetth echelon’s supply quantity to
meet theith retailer’s unsatisfied demand that will wait for the shipment from the
echelon j , where ally ji are not nonnegative. Define the shipping decision vector
y = (y11, · · · ,y1m, · · · ,yk1, · · · ,ykm) ∈R

mk.

For a given inventory placement policyx , when the actual demand vectorD
becomes known, the profit of taking the shipping decisiony is given by

P(x,y,D) =−(
k

∑
j=1

le
j x

e
j +

m

∑
i=1

l r
i x

r
i )+

m

∑
i=1

(pr
i + l r

i )min{xr
i ,Di}+

k

∑
j=1

m

∑
i=1

(p j + le
j −si)y ji

Our objective is to determine the most profitable inventory placement policy be-
fore the start of the selling period and then make a most reasonable shipping decision
when demand is realized so as to maximize the expectation ofP(x,y,D). In fact, this
illustrates the sequence of events in the single-period inventory problem. In the first
stage, the optimal inventory placement policyx is taken in accordance with the max-
imum expected profit principle before the start of the selling period. Later, the actual
demandD becomes known and a second-stage shipping decisiony can be taken to re-
alize the actual maximum profit. Therefore, the single-period inventory problem can
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be formulated mathematically as a two-stage stochastic program problem as follows:

max
x

f (x) = E[max
y

P(x,y,D)]

s.t.
k

∑
i=1

y ji ≤ xe
j , j = 1,2, · · · ,m,

k

∑
j=1

α ji
−1y ji ≤ max{0,Di −xr

i }, i = 1,2, · · · ,n

x≥ 0, y≥ 0

(1)

whereE represents the mathematical expectation with respect toD. In the above con-
straints, the first constraints ensure that the total supplyquantity of each echelon do
not exceed its stock quantity. Sincey ji is the supplying quantity from the echelonj to
meet theith retailer’s unsatisfied demand,∑k

j=1(α ji )
−1y ji is the sum of the supplying

quantity from echelons to theith retailer and the corresponding demand loss. Hence,
the second constraint ensures that the sum of the supplying quantity meeting theith
retailer’s residual demand and the corresponding demand loss do not exceed theith
retailer’s residual demand max{0,Di −xr

i }.

From the above analysis, the optimal solutionx∗ of the problem (1) is the most
profitable inventory placement policy of the single-periodinventory system that max-
imizes the expected profit of the entire system, and the optimal solutiony∗ to the
problem maxy P(x∗,y,D) is the shipping decision achieving the actual maximal profit
for a specific demand realizationD. Therefore, the optimal solutionx∗ of the problem
(1) is the optimal inventory placement policy of the single-period stochastic inventory
system.

Because of including the nonlinear terms min{xr
i ,Di} and max{0,Di −xr

i }, the
two-stage stochastic program (1) is a nonlinear stochasticprogram problem, which
makes the problem hard to analyze. Next, by introducing new slack variables, we
will transform the nonlinear stochastic program problem into an equivalent two-stage
linear stochastic program problem with fixed recourse and thus analyze this problem
well.

3 Equivalent Linear Stochastic Program Problem
For the analytical convenience, we denote the vectorl = (le, lr) ∈ R

m+k
, p̄ =

(p1 + le
1− s1, · · · , p1 + le

1− sm, · · · , pk + le
k − s1, · · · , pk + le

k − sm) ∈ R
mk

, p = (p̄, pr +

lr) ∈ R
m(k+1)

and min(xr ,D) = (min{xr
1,D1}, min{xr

2,D2}, · · · ,min{xr
n,Dm}) ∈ R

m
.

In order to remove the nonlinear terms from the problem (1), we introduce a new
slack variableyr

i to denote the supply quantity of the retaileri to meet the customer’s
demandDi, where we allow 0≤ yr

i ≤ Di. And define a new shipping decision vector
z = (y,yr

1,y
r
2, · · · ,y

r
m) ∈ R

m(k+1) in which y is the shipping decision vector defined
by yi j . Thus, we can define a new two-stage linear stochastic program with fixed
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recourse as follows:
max

x
f (x) =−lx′ +E[max

z
pz′]

s.t. Mz′ ≤ x′, Nz′ ≤ D′

x≥ 0, z≥ 0

(2)

in which the matrixesM = ( aλι )(m+k)×m(k+1) andN = ( bλι )m×m(k+1) are defined as
follows:

aλι =











1 λ = 1,2, · · · ,k, (λ −1)m< ι ≤ λm

1 λ = k+1,k+2, · · · ,k+m, ι = (λ −k)+km

0 otherwise

bλι =











αtι
−1 λ = 1,2, · · · ,m, ι = tm+λ , t = 0,1, · · · ,k−1

1 λ = 1,2, · · · ,m, ι = km+λ
0 otherwise.

Here,Mz′≤ x′ expresses the constraints:yr
i ≤ xr

i , ∑m
i=1 y ji ≤ xe

j ; Nz′ ≤D′ expresses the
constraints:yr

i +∑k
j=1 α ji

−1y ji ≤Di . With the analogous analysis of the stochastic pro-
gram problem (1), it follows that the new stochastic programproblem (2) describes a
similar single-period inventory problem to the one discussed above. The only differ-
ence is that here the customer’s demand arriving at a retailer can be allowed to first
satisfied with the stock of other stock points. In the stochastic program (2), the objec-
tive function can be also written asf (x) = E[maxz(−lx′+ pz′)], in which−lx′+ pz′ =
∑m

i=1 pr
i y

r
i −∑m

i=1 l r
i (x

r
i −yr

i )+∑k
j=1 p j ∑m

i=1 y ji −∑k
j=1 le

j (x
e
j −∑m

i=1 y ji )−∑k
j=1 ∑m

i=1 siy ji is
the profit value of taking the shipping decisionz for the given inventory placement
policy x.

For a fixedx andD, we denote the optimal value of the second-stage program in
(2) by

SP(x,D) = max
z
{pz′ | z≥ 0, Mz′ ≤ x′, Nz′ ≤ D′}.

And letS (x) = E[SP(x,D)]. Then, the above two-stage stochastic program problem
(2) is equivalent to the following deterministic program:

max
x

f (x) =−lx′ +S (x)

s.t. x≥ 0
(3)

Theorem 1. An inventory placement policy x∗ is an optimal solution of the problem
(1) if and only if it is an optimal solution of the problem (2) (or (3)).

Proof. DenoteSP(x,D) = max
y
{p̄y′ | y≥ 0 andy satisfies the constraints of (1)} and

S̄ (x) = E[SP(x,D)]. Then, the two-stage stochastic program problem (1) is equiva-
lent to the program:

max
x

f (x) =−lx′ +(pr + lr)E[min(xr ,D)′]+ S̄ (x)

s.t. x≥ 0
(4)
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By using the given conditions 0< p1 < p2 < · · · < pk−1 < pk < pr
i + si and

le
1 6 le

2 6 · · ·6 le
k 6 l r

i , it can be proved that for any fixed inventory placement policy
x and demandD,

SP(x,D) = SP(x,D)+(pr + lr)E[min(xr ,D)′]. (5)

Then, we have that

S (x) = S̄ (x)+(pr + lr)E[min(xr ,D)′]. (6)

Therefore, from (3),(4) and (6), it follows that the theoremholds.

Furthermore, from the process of the above proof , the following theorem fol-
lows directly.

Theorem 2. For any inventory placement policy x and demand D, z∗ = (y∗, y∗r
1,

y∗r
2, · · · , y∗r

m) ∈ R
m(k+1) is an optimal solution of the problem SP(x,D) if and only

if y∗r
i = min{xr

i ,Di}, i = 1,2, · · · ,m, and y∗ is an optimal solution of the problem
SP(x,D).

Theorem 1 and Corollary 2 show that the stochastic program problem (1) is
equivalent to the stochastic program problem (2). Due to thefixed coefficient ma-
tricesM andN, the stochastic program (2) is a two-stage stochastic linear program
problem with fixed recourse. This implies that the single-period stochastic inven-
tory problem is transformed equivalently into a two-stage linear stochastic program
problem (2) with fixed recourse, which makes it easy for us to analyze this inventory
problem.

4 Optimal Placement Policies and Their Algorithm
We assume further thatthe random demandD has finite second moments.

This assumption is very general because it holds for all popular demand distributions.

Lemma 3. 1). S (x) is a concave function and is also finite onR
n+m+k
+ = {x≥ 0 |

x∈ R
m+k}.

2). When the distribution of D is finite,S (x) is piecewise linear onRm+k
+ .

3). If the D’s joint distribution function F(·) is absolutely continuous,S (x) is
differentiable onRm+k

+

Proof. It is easy to prove that there exists a positive numberB such that|SP(x,D)|<
B‖x‖. Hence,|S (x)| = |E[SP(x,D)]| < B‖x‖ (here,‖x‖ = maxτ |xι |). This implies
that{x | S (x) < ∞} = R

m+k
+ . It is also known that theD has finite second moments

and the stochastic program (2) has the fixed recourse. Therefore, 1), 2) and 3) follow
directly from the theory of stochastic programming (see [2]for details).

The following theorem guarantee that an optimal placement policy of the single-
period inventory problem exists.
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Theorem 4. The single-period inventory problem has a finite optimal placement pol-
icy x∗ ∈ R

m+k
+ .

Proof. f (x) =−cx′+Z (x) is concave and lim‖x‖→∞ f (x) = ∞. Hence, the stochastic
program problem (2) has a finite optimal value and it is attained for somex∈ R

m+k
+ .

By Theorem 1, the theorem holds.

Next, we characterize the optimal inventory placement policies. The determin-
istic equivalent program (3) gives us the following resultsin terms of Karush-Kuhn-
Tucker conditions.

Theorem 5. a placement policy x∗ ∈ R
m+k
+ is optimal if and only if there exists a

subgradient∂S (x∗) of S (x) at x∗ such that

∂S (x∗)κ = lκ for x∗κ > 0 and ∂S (x∗)κ ≤ lκ for x∗κ = 0

where∂S (x∗)κ , lκ and x∗κ are theκth components of the vectors∂S (x∗), l and x∗,
respectively,κ = 1,2, · · · ,m+k.

Proof. From the optimization of a convex function over a convex region and Karush-
Kuhn-Tucker conditions of the problem (3), the theorem follows directly.

It is known that∂S (x) = ∇S (x) whenS (x) is differentiable. Thus, when the
D’s joint distribution function is absolutely continuous, it follows from Lemma 3 that

∂S

∂xκ
(x∗) = ∂S (x∗)κ , κ = 1,2, · · · ,k+m.

Since∇ f (x) = ∇(−lx′ + S (x)) = ∇S (x)− l , ∇S (x)− l ( or ∂S (x)− l) can be
viewed as the marginal expected profit vector of the inventory system atx. It is
well-known that many continuous probability distributions are absolutely continuous,
including the normal, exponential, uniform, etc. Therefore, Theorem 5 implies that
a placement policyx′ ∈ R

m+k
+ is optimal if and only if it take zero marginal expected

profits on its nonempty stock points and nonpositive marginal expected profits on its
empty stock points.

∂S (x∗) in Theorem 5 can be decomposed into subgradients ofSP(x,D) for each
realization ofD. Because{x | S (x) < ∞} = R

k+m
+ , it follows from Corollary 3.12

in [2] that ∂S (x) = E∂S (x,D), for anyx∈ R
m+k
+ . BecauseSP(x,D) is a piecewise

linear concave function inx, E∂SP(x,D) is easier to compute than∂S (x), which will
be used in the following algorithm finding optimal placementpolicies. In addition,
it is shown below thatE∂SP(x,D) is just the expectation of optimal dual value of
the problemSP(x,D) = maxz{pz′ | z≥ 0,Mz′ ≤ x′, Nz′ ≤ D′}. TheSP(x,D)’s dual
problem can be written as

D(x,D) = min
X =(X 1, X 2)

X
1x′ +X

2D′

s.t. M′
X

1′ +N′
X

2′ ≥ p′

X
1 ≥ 0, X

2 ≥ 0.

(7)
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Let X 1∗ andX 2∗ denote the optimal values of the dual problem (7) corresponding
to x and D respectively. This implies thatE∂SP(x,D) = EX 1∗. The following
theorem reveals this relationship and gives new necessary and sufficient conditions
to characterize an optimal placement policy.

Theorem 6. A placement policy x∈ R
m+k
+ is optimal if and only if there exists an

optimal solution(X 1∗,X 2∗) of the dual problemD(x,D) (7) such that

EX
1∗

κ = lκ for xκ > 0 and EX
1∗

κ ≤ lκ for xκ = 0 (8)

where EX 1∗
κ denotes theκth component of EX 1∗ and lκ is theκth components of

the unit liquidation cost vector l ,κ = 1,2, · · · ,k+m.

Proof. SinceSP(x,D) has an optimal solution, so does its dual problem (7) and at
optimality their objective values are equal. Namely,SP(x,D) = X 1∗x′ +X 2∗D′.

Because of the existence of finitely many different optimal bases for the dual
problem (7),(X 1∗,X 2∗) can take finitely many different values for allD, x∈ R

m+k
+

and thusX 1∗x′ +X 2∗D′ is piecewise linear. It follows thatE∂SP(x,D) = EX 1∗.
Therefore, this theorem follows from Theorem 5.

From linear program theory, the optimal dual valueX 1∗ is the shadow prices of
the inventoryx under the demandD, and thusEX 1∗ is the expected shadow prices
of the inventoryx. Therefore, Theorem 6 shows that a placement policyx∗ ∈R

m+k
+ is

optimal if and only if, at each stock point, its inventory hasan expected shadow price
which is not greater than the inventory’s unit liquidation loss when the inventory of
this stock point is placed on zero and equal to the inventory’s unit liquidation loss
when the inventory of this stock point is nonempty. Theorem 5and Theorem6 not
only characterize the optimal placement policies but also provide a method for finding
a optimal inventory placement policy. Next, we consider thealgorithms solving the
optimal inventory placement policies.

Since the inventory placement problem with continuous or infinitely discrete de-
mand requires some form of approximation and these approximations are built on the
algorithms of the finite demand’s realizations case (for example, Monte Carlo sam-
pling approximation approach [see [2] and [9] for details]), we here mainly focuses
on the algorithms for solving the inventory problem with finite demand’s realiza-
tions. Letd1,d2, · · · ,dT denote the possible realizations of the demandD and let
q1,q2, · · · ,qT be their probabilities. By using Lemma 3 and Theorem 5–6, we can
give the following algorithm for finding optimal inventory placement policies, which
is really a modified L-shaped method of stochastic programming for the special in-
ventory problem. It proceeds as follows.

Algorithm:1◦. Sett = ς = 0 .

A Stochastic Inventory Placement Model 255



2◦. Setς = ς +1. Solve the following linear program

max f (x,ε) =−lx′ + ε
s.t. −Hγx

′ + ε ≤ hγ ,γ = 1,2, · · · , t

x≥ 0.

(9)

Let (xς ,ες ) be the optimal solution. Whent = 0, the constraint (9) is not considered
in the computation ofxς andες is set equal to+∞.3◦. Forκ = 1,2, · · · ,T, solve the linear program

D(xς
,dκ) = min

X =(X 1, X 2)
X

1xς ′ +X
2dκ ′

s.t. M′
X

1′ +N′
X

2′ ≥ p′

X
1 ≥ 0, X

2 ≥ 0.

(10)

Let X ς = (X 1
ς , X 2

ς ) be the optimal solution of Problemκ of type (10). Define

Ht+1 =
T

∑
κ=1

qκ ·X
1

ς , and ht+1 =
T

∑
κ=1

qκ ·X
2

ς dκ ′
.4◦. Let ως = ht+1 +Ht+1xς ′. If ες < ως , stop;xς is an optimal solution. Other-

wise, sett = t +1, add to the constraint set (9), and return to Step1◦.
For the continuous or infinitely discrete demand, based on the above finite re-

alization algorithm, Monte Carlo sampling approximation approach can be used to
solve the inventory problem. The basic ideas of the approachare to generates a fi-
nite number of samples according to the given demand distribution and then use the
above finite realization algorithm to obtain computable approximation. Besides these
approaches, other methods may be also used to solve the inventory problem, such as
the bounding approximation approach, the subgradient method and other nonlinear
convex optimization methods, which may be more effective for some special cases.

5 Conclusions
This paper addresses a two-stage stochastic inventory model for a single-period

seasonal or fashion product inventory system consisting ofmultiple stocking ech-
elons in series and retailers. In the inventory system, the joint distribution of the
demands arriving retailers is a general distribution. The customer demand arriving
at a retailer is first satisfied with the retailer’s stock. In case a shortage occurs at
the retailer’s inventory, the excess demand can be partially satisfied by shipping and
converting the upstream echelon’s inventory items based onthe customers’ different
willingness to wait. The objective is to seek initial stock quantities placed at various
stock points so as to maximize the expected profit of the entire system. By transform-
ing model, an equivalent two-stage stochastic linear program model is developed to

256 The Sixth International Symposium on Operations Research and Its Applications



solve this nonlinear stochastic inventory problem, which makes the inventory prob-
lem easier to analyze. We characterize an optimal placementpolicy of this inventory
system, prove its existence and give its necessary and sufficient conditions. Finally,
we propose an effective algorithm for finding optimal placement policies.

In a few cases, perhaps some retailers are allowed to obtain the finished products
from its neighboring retailers. By some minor modifications(only adding some linear
parts of new shipping variables representing the shipmentsbetween these retailers
into the corresponding constraints and objective function) to our inventory model,
our model can include this case and the results and algorithmproposed in this paper
still hold.
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