The Sixth International Symposium on Operations Research and Its Applications (ISORA’06)
Xinjiang, China, August 8-12, 2006
Copyright © 2006 ORSC & APORC, pp. 247-257

A Stochastic Inventory Placement Model for a
Multi-echelon Seasonal Product Supply Chain
with Multiple Retailers *

Ji-Hong Zhang? Jian Cheh Yu-Nan W@
Xiang-Sun Zhanty

1School of Economics and Management, Tsinghua Universityin§el 00084, China
2School of International Business, Beijing Foreign Studliesversity, Beijing 100089, China
3Department of Management, The Hong Kong Polytechnic UsitseiHong Kong
4Academy of Mathematics and Systems Science, CAS, Beijing8Mabhina

Abstract This paper formulates a stochastic inventory model for glsiperiod seasonal or fash-

ion product inventory system consisting of multiple stockiechelons in series and retailers. By
transforming model, an equivalent two-stage stochasteali program model is developed to solve
this stochastic inventory problem, which makes the invgnpooblem easier to analyze. The opti-

mal placement policy of this inventory system is charaztstiand its existence is proved. More-
over, the algorithm for finding optimal placement policis®obtained.
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1 Introduction

In practical situations, many manufacturing processeseaganal or fashion
products can be viewed as serial assembling processes.wteo@nsider a produc-
tion-inventory system of such seasonal or fashion produttieh comprises multiple
stocking echelons in series and retailers. We assume thatygtem contains re-
tailers and its manufacturing process consistk -ofl serial assembling/processing
facilities, so it includesk different stocking echelons, which hold various kinds of
inventory items in the form of raw materials(echelon 1), asgemblies/work-in-
processes (echelons 2 ko- 1) and finished products (echel&h Through them
retailers, the demand of all customers is satisfied by oiigitne finished products
or converting the available raw materials and subassemblifin the selling period.
A diagrammatic representation of such a manufacturingegy$s given in Figure 1
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Figure 1: A Production-Inventory System consistingkachelons in series and
retailers

Because of the short selling period, we consider the casdicihvthere are no
opportunities to reorder more raw materials from the s@pplineither is there time
to modify its initial inventory levels at the stocking ecbie$ and the downstream
retailers. Therefore, the inventory placement decisiawho be made at the start
of the selling period. The major challenge facing manufastiof the seasonal or
fashion products is to plan for the production and inventewgls of their products
to meet random demands over a short selling period.

Generally, there are two kinds of inventory policies usedpfmduction and in-
ventory planning. One is assemble in advance (AIA) and theras assemble to
order (ATO).In contrast to AlIA, which assembles the finislpedducts according
to plan (forecast demand) and keeps inventory at the enduptdelel, ATO keeps
iinventory at the subassembly/work-in-process level amlgt assemble a product in
response to demand. ATO can postpone the commitment posuthafssemblies to
end products and thus make it possible to reduce liquiddtiss and realize great
products variety. However for many seasonal or fashion yectsdwith a serial as-
sembly process, because of their short selling period,ymtazh capacity limits and
delays in a series of converting (assembling) and shippinggsses, adopting the
ATO inventory strategy will result in the loss of custometsosare unwilling to wait.
Moreover, as far as production is concerned, the unit cosffioished product under
ATO is higher than that under AlA, because for the latteréhierno need for rush
orders, and production can be planned and implemented weltlivance. On the
other hand, when the AIA inventory strategy is used, ligtiataloss will be incurred
if supply exceeds demand to cause the wasted processirgarasthe disposal of
unused inventory. Therefore, as shown by Eynan and Rosepdlaa composite
of AIA and ATO is the dominating strategy for the serial mdtihelon systems of
seasonal or fashion products.

Whitin [10] first presented such a single-period problenhwtbchastic demand
and two echelons. Subsequently, many authors (Brayan §tlalHanssmann [6],
Johson et.al. [8], Gerchak et.al. [5], Eynan and Rosenfltianalyzed the simi-
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lar problems with two or four echelons. Recently, Harigadi Chung et al. [3]
investigated such a single period stochastic model contpaiseechelons, indepen-
dently. However, these existing models with multiple eohslin series typically
assume that only one retailer faces all customer demandheTbdst of our knowl-
edge, there are no papers studying the case with multiddenest. In this paper we
consider a single-period mixed ATO and AlA production-int@y system consist-
ing of k echelons andhretailers as illustrated in Figure 1, in which each retddees
his own stochastic demand and the random demands arrivihg &arious retailers
are allowed to be correlative and their distribution is &evy. The profitable stock
guantities placed at various stock points of this systene havbe made before the
start of selling period. In selling period, the customegsménd arriving at a retailer
is first satisfied with the retailer's stock. When a shortageuos at the retailer’s
inventory, based on the customers’ different willingnessvait, the excess demand
can be partially satisfied by converting and transportirggibailable inventory items
at the upstream echelons.

The remainder of this paper is organized as follows. In $a@j we introduce
the single-period inventory system wikhechelons andh retailers. In Section 3, an
equivalent two-stage stochastic linear program model Vuidd recourse is devel-
oped to analyze this inventory problem. In Section 4, we attarize the optimal
solution to this problem , prove the existence of optimakmwery policies and pro-
pose an effective algorithms to find optimal inventory ptaeat policies. Finally,
we conclude the paper in Section 5.

2 Notation and Model Formulation

As shown in Figure 1, we consider a single-period stochastiduction-inven-
tory model composed ofn retailers andk stocking echelons which hold various
inventory items in the form of raw materials (echelon 1)fedi#nt grades of sub-
assemblies/work-in-processes (echelons R +ol) and finished products (echelon
K).

We use the following notation to define this production-imeey system:

i=12,---,mindex the retailers.

j=1,2,--- kindex the echelons.

X = stock quantity placed in the store of retailet the beginning of the period,
wherex| > 0. We denote the vector = (X;,X5, ..., X,).

X} = stock quantity placed in the echelpat the beginning of the period, where
X > 0. % = (6,56, %),

Di=random demand of thih retailer, andD = (D4,D,,---,Dn) is a random
vector with joint distribution functior (X;,Xz, - -+ ,Xm)-

S = unit cost for shipping products from the manufacturer taiteti.

pi =unit profit (excluding the shipping cost from one retaileatwther) when
theith retailer’s stock assembled in advance is sold, wiperte 0. p, = (p, P, ...,

Ph)-
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p; =unit profit (excluding shipping cost from the manufacturerrétailers)
when the finished products assembled to order by convehimgnientory items at
echelonj are sold,j =1,2,--- ,k— 1, andpx = unit profit (excluding shipping cost)
when the finished products assembled in advance at the edtele sold. Because in
practical situations the net profit ( including the downatneshipping cost) of a unit
stock sold through a retailer is nondecreasing with itsksfmint being close to the
retailer’s customer, it is natural to assume thatf < p2 < -+ - < Pz < P < P +S.-

Pe = (P1; P2;- - -5 Px)-

I$ =unit liquidation loss for unused inventory at tiign echelon andf = unit
liquidation loss for unused inventory at tlih retailer. It is also natural to as-
sume that? <15 < --- < I < I{. Define the unit liquidation loss vector at eche-
lons byl = (I‘f,lg,...,le) € R and the unit liquidation loss vector at retailers by
[ =(3,15,...,1F) € R™.

aj = fraction of the demand not satisfied by ttik retailer’s inventory that
will wait for shipments from retailef, which measure the impacts on the lost sales
induced by the various lead times of assembling and shigpiocesses. From Figure
1,itholdsthat < oy < az < -+ < ag < 1.

Here, we neglect the the shipping costs between the echatoasise these costs
are included in the profit of the sold subassemblies at edutl@t. x; andx are the
inventory placement decision variables before the begmaf the selling period and
we define the inventory placement policy= (Xe, %) = (X§,..., X¢, XY, ..., X,). When
the customer demarfd is realizedmin{x ,D;} is the supply guantity of the retailer
i to meet its customer demand. Lgt denotes théth echelon’s supply quantity to
meet theith retailer's unsatisfied demand that will wait for the shgamhfrom the
echelonj , where ally; are not nonnegative. Define the shipping decision vector
y= (yll’... ,Yim, Yk, ;ykm) ERmk.

For a given inventory placement poliay, when the actual demand vectDr
becomes known, the profit of taking the shipping decisiggiven by

P(x,y,D Zlexe+zll X +Zl pl + 1) min{x, D}+lel pJ+I S)Yj

Our objective is to determine the most profitable inventdagement policy be-
fore the start of the selling period and then make a most rede shipping decision
when demand is realized so as to maximize the expectatiB(xof, D). In fact, this
illustrates the sequence of events in the single-perioghtory problem. In the first
stage, the optimal inventory placement policig taken in accordance with the max-
imum expected profit principle before the start of the sglfperiod. Later, the actual
demand becomes known and a second-stage shipping degisian be taken to re-
alize the actual maximum profit. Therefore, the singlegmbimventory problem can
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be formulated mathematically as a two-stage stochastgrano problem as follows:

max f(x) = E[myaxP(x, y,D)]

k
S.t. yjléxtjaa j:laza"'ama

e (1)
Zlaji71in <max{0,Di—x}, i=1,2---,n
j:

x>0, y>0

whereE represents the mathematical expectation with respé&xt to the above con-
straints, the first constraints ensure that the total sugpantity of each echelon do
not exceed its stock quantity. Singgis the supplying quantity from the echelpto
meet thdth retailer's unsatisfied demang'j‘:l(aji )~ty;i is the sum of the supplying
guantity from echelons to thiéh retailer and the corresponding demand loss. Hence,
the second constraint ensures that the sum of the supplyiaugtity meeting théth
retailer’s residual demand and the corresponding demassddo not exceed théh
retailer’s residual demand méx D; — X }.

From the above analysis, the optimal solutiérof the problem (1) is the most
profitable inventory placement policy of the single-perfimgentory system that max-
imizes the expected profit of the entire system, and the @btsolutiony* to the
problem maxP(x*,y, D) is the shipping decision achieving the actual maximal profit
for a specific demand realizati@h Therefore, the optimal solutioti of the problem
(1) is the optimal inventory placement policy of the singleriod stochastic inventory
system.

Because of including the nonlinear terms i D;} and max0,D; — X }, the
two-stage stochastic program (1) is a nonlinear stochpstigram problem, which
makes the problem hard to analyze. Next, by introducing rneeksvariables, we
will transform the nonlinear stochastic program probleto an equivalent two-stage
linear stochastic program problem with fixed recourse and #nalyze this problem
well.

3 Equivalent Linear Stochastic Program Problem

For the analytical convenience, we denote the vekter(lg,l,) € R™, p=
(Pr41§ =51, Pr+1§—Sm- Pt IE =St P+ 1E—sn) €R™, p= (P, pr +
;) € R™™ and mir(x;,D) = (min{x;, Dy}, min{x,,D},--- ,min{x, Dy,}) € R".

In order to remove the nonlinear terms from the problem (®)introduce a new
slack variabley to denote the supply quantity of the retailéo meet the customer’s
demandD;, where we allow &< y/ < D;. And define a new shipping decision vector
z=(V,Yy,Y5, -, ¥ € R+ in which y is the shipping decision vector defined
by yi;. Thus, we can define a new two-stage linear stochastic progrith fixed
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recourse as follows:

max f(x) = —Ix'+ E[max pZ]
X z
st. MZ<X, NZ<D (2)
x>0,z>0

in which the matrixe? = (@, )(mikxmir1) @NdN = (b, )mxm+1) are defined as
follows:
1 2=12--k (A-1)m<i<Am
ay =<1 A=k+1k+2--- k+tm 1 =(A—K)+km
0 otherwise

a,t A=12--- mi=tm+A,t=01--- k-1
by,=<1 A=12---mi1=km+A
0 otherwise.

Here,MZ < X expresses the constraings:< x{, 3, y; < x§; NZ <D’ expresses the
constraintsy; + Z',‘:l aji *1y,-i < Dj. With the analogous analysis of the stochastic pro-
gram problem (1), it follows that the new stochastic progmoblem (2) describes a
similar single-period inventory problem to the one diseasabove. The only differ-
ence is that here the customer’s demand arriving at a retale be allowed to first
satisfied with the stock of other stock points. In the stottb@sogram (2), the objec-
tive function can be also written d$x) = E[max,(—Ix'+ pZ)], in which—Ix'+ pZ =
SRR = S O4 =YD + 35 P S Yii — Sl 06— S yi) — 31 S sy i
the profit value of taking the shipping decisiaffor the given inventory placement
policy x.

For a fixedx andD, we denote the optimal value of the second-stage programin
(2) by

SRx,D) = mzax{pz |z>0, MZ <X, NZ<D'}.

And let.(x) = E[SRx,D)]. Then, the above two-stage stochastic program problem
(2) is equivalent to the following deterministic program:

max f(x) = —IX'+.7(X)
i\ 3

st. x>0

Theorem 1. An inventory placement policy is an optimal solution of the problem
(1) if and only if it is an optimal solution of the problem (2 (3)).

Proof. DenoteSRx,D) = max{ py | y > 0 andy satisfies the constraints of (1 and
_ y

7 (X) = E[SRx,D)]. Then, the two-stage stochastic program problem (1) isvaqui
lent to the program:

max  f(X) = —IX' + (p + I, E[min(x,D)'] +.7(x) B

x 4

st. x>0
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By using the given conditions @ p; < P2 < --- < Pre1 < Pk < P +S and
IT<I3<--- <IE LI, it can be proved that for any fixed inventory placement golic
x and demandD,

SAx,D) = SAX,D) + (pr +I;)E[min(x., D)’]. (5)

Then, we have that

S (X) =7 (X)+ (pr +1r)E[min(x.,D)']. (6)
Therefore, from (3),(4) and (6), it follows that the theorboids. O

Furthermore, from the process of the above proof , the fatigwtheorem fol-
lows directly.

Theorem 2. For any inventory placement policy x and demand D=z(y*, y*],

Y5, oo+, Y € R s an optimal solution of the problem $D) if and only
if y =min{x{,D;}, i =1,2,---,m, and y is an optimal solution of the problem
SRx,D).

Theorem 1 and Corollary 2 show that the stochastic prograshlgm (1) is
equivalent to the stochastic program problem (2). Due tdittesl coefficient ma-
tricesM andN, the stochastic program (2) is a two-stage stochasticripeagram
problem with fixed recourse. This implies that the singleigee stochastic inven-
tory problem is transformed equivalently into a two-stagedr stochastic program
problem (2) with fixed recourse, which makes it easy for ustayze this inventory
problem.

4 Optimal Placement Policies and Their Algorithm

We assume further thahe random demandD has finite second moments
This assumption is very general because it holds for all [omiemand distributions.

Lemma 3. 1). .#(x) is a concave function and is also finite &i*™* = {x > 0|
x € R™K}

2). When the distribution of D is finite7'(x) is piecewise linear oR™X.

3). If the D’s joint distribution function ) is absolutely continuous?’ (x) is
differentiable orR™*

Proof. Itis easy to prove that there exists a positive nunibguch tha{SRx,D)| <
B||x||. Hence,|.”(x)| = |[E[SRx,D)]| < B||x|| (here ||x|| = max |x,|). This implies
that{x | (x) < w} = R™¥, Itis also known that th® has finite second moments
and the stochastic program (2) has the fixed recourse. Trerdf), 2) and 3) follow
directly from the theory of stochastic programming (sed¢2ldetails). O

The following theorem guarantee that an optimal placemelntyof the single-
period inventory problem exists.
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Theorem 4. The single-period inventory problem has a finite optimatplaent pol-
icy X € Rk,

Proof. f(x) = —cX + 2(x) is concave and lify—. f(x) = ». Hence, the stochastic
program problem (2) has a finite optimal value and it is aétdifor somex € RT*,
By Theorem 1, the theorem holds. O

Next, we characterize the optimal inventory placementgesdi The determin-
istic equivalent program (3) gives us the following resuitserms of Karush-Kuhn-
Tucker conditions.

Theorem 5. a placement policy xe R™* is optimal if and only if there exists a
subgradienv.” (x*) of .#(x) at X such that

0.7 (X)) =l forx, >0 and 0.7(X)« <l forx, =0

whered.” (x")«, I« and X are thekth components of the vectads” (x*), | and x,
respectivelyk =1,2,--- m+Kk.

Proof. From the optimization of a convex function over a convexaagind Karush-
Kuhn-Tucker conditions of the problem (3), the theoremdia directly. O

It is known thatd.” (x) = 0.7 (x) when.”(X) is differentiable. Thus, when the
D’s joint distribution function is absolutely continuousfallows from Lemma 3 that

0.7
OXy

Sincef(x) = O(—IX' +.(x)) = 0. (x) — |, 0. (x) =1 (or 0.(x) — ) can be
viewed as the marginal expected profit vector of the invgngystem atx. It is
well-known that many continuous probability distributiogre absolutely continuous,
including the normal, exponential, uniform, etc. TherefoFheorem 5 implies that
a placement policx € R™* is optimal if and only if it take zero marginal expected
profits on its nonempty stock points and nonpositive matgrpected profits on its
empty stock points.

d.7(x*) in Theorem 5 can be decomposed into subgradier&§f D) for each
realization ofD. Because{x | .#(x) < w} = R¥™ it follows from Corollary 3.12
in [2] that 8.7 (x) = E4.7(x,D), for anyx € R™*. Because&SP(x,D) is a piecewise
linear concave function ir, EOSRx, D) is easier to compute thah”(x), which will
be used in the following algorithm finding optimal placempaoticies. In addition,
it is shown below thaEdSFx,D) is just the expectation of optimal dual value of
the problemSRx,D) = max{pZ | z> 0,MZ <X, NZ < D'}. TheSRx,D)’s dual
problem can be written as

2(x,D) = .

(X')=0S(X), kK=1,2,--- K+ m.

min XX+ 22D
:<<%'17 %'2)

st. M2ZY4+NZ2? > ¢ )
Z1>0 22>0.
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Let 2" and.2"?" denote the optimal values of the dual problem (7) correspaond
to x and D respectively. This implies th&8dSP(x,D) = EZ''". The following
theorem reveals this relationship and gives new necessarguficient conditions
to characterize an optimal placement policy.

Theorem 6. A placement policy x R™* is optimal if and only if there exists an
optimal solution(.2™1", 2°2") of the dual problen(x, D) (7) such that

EZY =l forx, >0 and EZ' <l forx,=0 (8)

where E2', denotes thecth component of 21" and | is thekth components of
the unit liquidation cost vector Ik =1,2,---  k+m.

Proof. SinceSRAx,D) has an optimal solution, so does its dual problem (7) and at

optimality their objective values are equal. Nam&@@x,D) = 21X + 272'D'.
Because of the existence of finitely many different optimadés for the dual

problem (7),(2°%", 272") can take finitely many different values for &l x € R™

and thus21'x + 2°2'D’ is piecewise linear. It follows th&dSPx,D) = EZ""".

Therefore, this theorem follows from Theorem 5. O

From linear program theory, the optimal dual val#&"" is the shadow prices of
the inventoryx under the demanB, and thusE.2™*" is the expected shadow prices
of the inventoryx. Therefore, Theorem 6 shows that a placement patiey RT* is
optimal if and only if, at each stock point, its inventory taasexpected shadow price
which is not greater than the inventory’s unit liquidati@ss when the inventory of
this stock point is placed on zero and equal to the inverdaupit liquidation loss
when the inventory of this stock point is nonempty. Theoreanl Theorem6 not
only characterize the optimal placement policies but ategide a method for finding
a optimal inventory placement policy. Next, we considerdlgorithms solving the
optimal inventory placement policies.

Since the inventory placement problem with continuous famitely discrete de-
mand requires some form of approximation and these appedians are built on the
algorithms of the finite demand’s realizations case (fomaxa, Monte Carlo sam-
pling approximation approach [see [2] and [9] for details})e here mainly focuses
on the algorithms for solving the inventory problem with findemand’s realiza-
tions. Letd! d? ---,d" denote the possible realizations of the dem&ndnd let
01,2, -+ ,0r be their probabilities. By using Lemma 3 and Theorem 5-6, are ¢
give the following algorithm for finding optimal inventorygcement policies, which
is really a modified L-shaped method of stochastic prograrmgrfor the special in-
ventory problem. It proceeds as follows.

Algorithm:
1°.Sett =¢=0.
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2°. Set¢ = ¢+ 1. Solve the following linear program

max f(x,e)=—Ix'+¢€
st. —HX+e<h,y=12---t 9)
x> 0.

Let (x5, &) be the optimal solution. When= 0, the constraint (9) is not considered
in the computation ox¢ ande¢ is set equal toto.

3°. Fork =1,2,---,T, solve the linear program

2(¢,d)=_ min )5&”1x<’+5&”2d”

=21, %2
st. M2ZY+NZ2?>p (10)
Z1>0 22>0.

Let 2°¢ = (2}, 22) be the optimal solution of Problemof type (10). Define
T T
Ht+l = z Ok - «%21, and ht+1 = Z Ok - %fczdw.
K=1 K=1

4°. Let w® = hy g +Hp 1 x©. If €€ < w®, stop;x¢ is an optimal solution. Other-
wise, set =t+ 1, add to the constraint set (9), and return to Step

For the continuous or infinitely discrete demand, based eratiove finite re-
alization algorithm, Monte Carlo sampling approximatigpeoach can be used to
solve the inventory problem. The basic ideas of the appreagho generates a fi-
nite number of samples according to the given demand disitvitv and then use the
above finite realization algorithm to obtain computableragpnation. Besides these
approaches, other methods may be also used to solve theéanyenoblem, such as
the bounding approximation approach, the subgradientodedind other nonlinear
convex optimization methods, which may be more effectivestome special cases.

5 Conclusions

This paper addresses a two-stage stochastic inventorylioodesingle-period
seasonal or fashion product inventory system consistinguafiple stocking ech-
elons in series and retailers. In the inventory system, dive fistribution of the
demands arriving retailers is a general distribution. Thst@mer demand arriving
at a retailer is first satisfied with the retailer’'s stock. bse a shortage occurs at
the retailer’s inventory, the excess demand can be pgriatisfied by shipping and
converting the upstream echelon’s inventory items baseti@nustomers’ different
willingness to wait. The objective is to seek initial stoakamtities placed at various
stock points so as to maximize the expected profit of theesyistem. By transform-
ing model, an equivalent two-stage stochastic linear piogmodel is developed to
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solve this nonlinear stochastic inventory problem, whicikes the inventory prob-
lem easier to analyze. We characterize an optimal placepaticy of this inventory
system, prove its existence and give its necessary andisoffimionditions. Finally,
we propose an effective algorithm for finding optimal plaestpolicies.

In a few cases, perhaps some retailers are allowed to ob&finished products
from its neighboring retailers. By some minor modificati¢msly adding some linear
parts of new shipping variables representing the shipmgetiseen these retailers
into the corresponding constraints and objective fungttonour inventory model,
our model can include this case and the results and algoptioposed in this paper
still hold.
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