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Abstract Real option analysis (ROA) is a way of valuing real assets by invoking option pricing
theory. In contrast to the traditional net present value approach, ROA makes it possible to explicitly
incorporating management flexibility. Because of such advantages, ROA has become an important
tool for project valuation and is widely used in practice.

In this paper, we develop a real option model with regime switching. In addition to stochastic
fluctuation over time, the value process also depends on a regime process described by a two-state
Markov chain. By extending standard approach based on Bellman equation and smooth pasting
condition, we investigate the optimal investment policy and value functions. Unlike the existing real
option models with single stochastic factor, two types of solution are possible according to model
parameters. We also develop numerical procedures to compute the optimal policy and provide some
numerical examples.
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1 Introduction
Real option analysis (ROA) is a way of valuing real assets such as projects and

real estate by invoking financial option pricing theory. In contrast to the traditional
approach to valuing investment projects based on the net present value, ROA makes it
possible to explicitly incorporating management flexibility in the analysis. Because
of this advantage, ROA has been an important and exciting area in the theory and
practice of financial engineering.

Many papers have studied the theory and application of real option models.
Types of option investigated so far include options to extend, defer, switch and others
[4, 7, 8, 9]. However, most literatures assume there is only single source of future
uncertainty. This assumption sometimes limits the applicability of ROA since in
reality it is often the case where two or more uncertainties could affect the project
value. If we assume that the value of the project is given as a product of two variables
both of which follow a geometric Brownian motion (GBM), then the problem can be
reduced to a single variable case since a product of GBM’s is a GBM even though
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they are correlated. However, if we assume other types of underlying processes, the
problem to find optimal policy becomes quite difficult.

In this paper, we propose a real option model with two types of future uncer-
tainty. The first uncertainty is modelled by a GBM as usual, and in addition to this,
there is another uncertainty represented by a two-state Markov chain. The state of
the Markov chain expresses the circumstance of investment, for example, market
condition and perspective of economy. By extending standard approach based on
Bellman equation and smooth pasting condition, we investigate the optimal invest-
ment policy and the structure of value functions. Unlike the existing real option
models which assume only single stochastic factor, it is shown that two types of opti-
mal solution are possible according to model parameters. We then develop numerical
procedures which enable us to compute all unknown coefficients of the value func-
tions. Some numerical examples are also provided to see how the optimal policy
changes by model parameters.

This paper is organized as follows. In Section 2, we formulate the optimal in-
vestment problem. Section 3 is devoted to identifying the optimal investment policy
and the structure of value functions. Computational procedures and numerical exam-
ples are given in Section 4. Finally in Section 5, we conclude this paper by giving
some remarks.

2 Formulation of an optimal investment problem
In this section, we describe an investment decision problem and formulate it as

an optimisation problem. Suppose there is a project to which we are thinking about
investing some amount of money. At any time point before investment has been
executed, we can choose either to invest now or to wait for future investment. If we
decide to invest at t, then we will receive payoff Vt − I where Vt is a value of the
project and I is an investment cost.

In this paper, we assume that the project value is given by Vt = RtUt . Concep-
tually, Ut represents the fundamental value of the project and Rt represents a circum-
stance of the project such as market condition and perspective of economy. As in
standard real option models, we assume that {Ut} fluctuates over time according to
the stochastic differential equation

dUt

Ut
= µdt +σdzt (1)

where drift µ and volatility σ are constant and {zt} is a standard Brownian motion.
It is well known that the solution of (1) is give as a geometric Brownian motion:

Ut = U0exp{(µ−σ 2/2)t +σzt}. (2)

On the other hand, {Rt} is a continuous time Markov chain on the state space S =
{r1,r2} whose transition rate matrix is given as

Q =
[ −α α

β −β

]
.
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We assume without loss of generality that 0 < r1 < r2. Thus, state 1 can be viewed as
a bad state while state 2 is a good state. We also assume {Ut} and {Rt} are mutually
independent. Furthermore, an investment cost I is assumed to be constant regardless
of time of investment, as in the most literatures on real options.

Let {Ft} be a filtration generated by {Ut} and {Rt}. That is, {Ft} contains
all information of {Ut} and {Rt} available at t. An investment decision problem can
now be formulated as

Fi(u) = sup
τ≥0

E [e−ρτ(RτUτ − I)|U0 = u,R0 = ri] (3)

where supremum is taken over all {Ft}-stopping times and ρ is a exogenously given
discount rate for a future payoff. To assure the existence of the expectation, we
assume throughout the paper that ρ > µ .

Before closing this section, we will introduce the solution when Rt = r is con-
stant. The problem in this case is to obtain

H(u;r) = sup
τ≥0

E[e−ρτ(rUτ − I)|U0 = u] (4)

(we specify the dependence of H(u;r) on r for later use). Then, as described in Dixit
and Pindyck [4], H(u;r) is given by

H(u;r) =
{ (

rυ−I
υξ

)
uξ , u < υ ,

ru− I, u≥ υ (5)

where υ = ξ I
(ξ−1)r and

ξ =
σ 2/2−µ +

√
(σ 2/2−µ)2 +2ρσ 2

σ 2 > 1.

Remark 1. In real option analysis, it is common to define the value function (3) by

sup
τ≥0

E [e−ρτ max(RτUτ − I,0)|U0 = u,R0 = ri] (6)

to clarify analogy of real option with financial call option. It is however obvious that
(3) and (6) lead to the same value function since it is never optimal to invest when
RtUt < I and, starting with any values of U0 and R0, RtUt > I occurs for some future
time t with probability 1.

3 Optimal investment policy
In this section, we identify the characteristics of the optimal investment policy.

First, we will show that the optimal policy is of threshold type.

Lemma 1. The optimal investment policy is of threshold type, i.e., according to the
regime state Rt , there exist threshold levels υ1,υ2 such that it is optimal to invest at
time t if Ut ≥ υi and Rt = ri and otherwise it is optimal to continue waiting.
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Proof. Fix R0 = i. Suppose to the contrary that there exist u < ũ such that it is optimal
to invest now when U0 = u while it is optimal to wait when U0 = ũ. Specifically,

riu− I ≥ E[e−ρτ(RτUτ − I)|U0 = u,R0 = ri] (7)

holds for any {Ft}-stopping time τ , and there exists a {Ft}-stopping time τ̃ satisfy-
ing

riũ− I < E[e−ρτ̃(Rτ̃Uτ̃ − I)|U0 = ũ,R0 = ri]. (8)

We adopt the following stochastic coupling argument. Fix arbitrary sample paths RA
t

and UA
t starting with U0 = ũ and R0 = ri (we call it sample path A) and let τ̃ be the

optimal investment time for sample path A. To construct a sample path starting with
U0 = u and R0 = ri (we call it sample path B), set RB

t = RA
t and UB

t = γUA
t for all t ≥ 0

with γ = u/ũ. Note from (2) that UB
t so constructed follows a GBM with U0 = u. If

one uses the policy to invest at τ̃ for sample path B, we then obtain

e−ρτ̃(RB
τ̃ UB

τ̃ − I) = γe−ρτ̃(RA
τ̃ UA

τ̃ − I)− (1− γ)I.

By taking the expectation on both sides and using (8), we get

E[e−ρτ̃(Rτ̃Uτ̃ − I)|U0 = u,R0 = i]
= γE[e−ρτ̃(Rτ̃Uτ̃ − I)|U0 = ũ,R0 = ri]− (1− γ)I
> γ(riũ− I)− (1− γ)I
= riu− I. (9)

Since (9) contradicts the fact that (7) holds for all τ , this completes the proof.

From Lemma 1, we obtain

Fi(u) > riu− I, 0 < u < υi,
Fi(u) = riu− I, u≥ υi.

The next result implies that an investment occurs at lower levels of Ut if Rt is in
a good state while if Rt is in a bad state we need to wait until Ut increases to a higher
level. Intuitively, if Rt is in a good state then there is an incentive to invest before Rt

drops into a bad state. A reversed argument applies if Rt is in a bad state.

Lemma 2. υ1 > υ2 under the assumption of 0 < r1 < r2.

Proof. Comparing with the value function (4) when Rt = r is constant, it is clear
that H(u;r1) ≤ F1(u) and F2(u) ≤ H(u;r2) for all u > 0. Note that F1(u) is contin-
uous and connects from above to the straight line r1u− I at u = υ1. Since H(u;r1)
connects from above to the same line at u = ξ I

(ξ−1)r1
, we have υ1 ≥ ξ I

(ξ−1)r1
. By a

similar argument, we obtain a reversed inequality υ2 ≤ ξ I
(ξ−1)r2

. Thus, we obtain

υ2 ≤ ξ I
(ξ−1)r2

< ξ I
(ξ−1)r1

≤ υ1, completing the proof.
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Now we will investigate the finiteness of υi’s. By the law of iterated logarithm
of a Brownian motion, limt→∞ zt/

√
2t ln ln t = 1, w.p.1. Thus, we see that

lim
t→∞

e−ρtRtUt = 0, w.p.1 (10)

for any initial values of R0 and U0. If υ2 = ∞, then υ1 = ∞ from Lemma 2 and
we never invest. This policy is not optimal since (10) implies the payoff RtUt − I
eventually goes to zero. Thus, υ2 < ∞.

On the other hand, υ1 = ∞ can be optimal. To see this, suppose R0 = r1,U0 = u
and compare 2 policies: (a) invest at t = 0, and (b) wait while Rt = r1 and invest when
Rt first becomes r2. The payoff of (a) is r1u− I and the expected payoff of (b) is

∫ ∞

0
αe−αte−ρt(r2ueµt − I)dt =

αr2u
α +ρ−µ

− α
α +ρ

I.

Now define two cases A and B as

case A: r1 >
αr2

α +ρ−µ
, case B: r1 ≤ αr2

α +ρ−µ
. (11)

Then, in case B, policy (b) is better than (a) for all u > 0. In other words, it is optimal
not to invest when Rt = r1 in case B. The next table summarises these observations.

case A
Rt 0 < u < υ2 υ2 ≤ u < υ1 υ1 ≤ u
r1 wait invest
r2 wait invest

case B
Rt 0 < u < υ2 υ2 ≤ u
r1 wait
r2 wait invest

To proceed further, we derive Bellman equation that the value functions satisfy.
Suppose that Rt = r1 and Ut < υi, i.e., the state is in the continuation region. Since
we will wait to invest in this case, we obtain by partitioning by the events in (t, t +dt)

F1(u) = e−ρdt{(1−αdt)E[F1(u+dUt)|U0 = u,R0 = r1]+αdtF2(u)}. (12)

Note that probability of concurrent transitions of Ut and Rt is o(dt). From Ito’s lemma
and (1), we have

F1(u+dUt) = F1(u)+ µuF ′
1(u)dt +σuF ′

1(u)dzt +
σ 2

2
F ′′

1 (u)dt. (13)

Taking expectation of (13) and substituting e−ρdt = 1− ρdt + o(dt) into (12), we
obtain Bellman equation of F1(u) as

− (α +ρ)F1(u)+ µuF ′
1(u)+

σ 2

2
F ′′

1 (u)+αF2(u) = 0, u < υ1. (14)

In the same way, F2(u) satisfies

− (β +ρ)F2(u)+ µuF ′
2(u)+

σ 2

2
F ′′

2 (u)+βF1(u) = 0, u < υ1. (15)
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It is noted here that the last terms in (14) and (15) show the effect caused by a regime
switch which does not appear when Rt is constant as in the standard real option
models.

Using these Bellman equations, we next derive the solution of F1(u) and F2(u).
As a preliminary, we state the following result whose proof can be found in a standard
textbook on differential equations.

Lemma 3. For a≤ 0 and c≥ 0, the solution of the ordinary differential equation

a f (u)+bu f ′(u)+ cu2 f ′′(u)+du+ e = 0

is given by

f (u) = k1uξ1 + k2uξ2 − d
a+b

− e
a

where

ξ1 =
c−b+

√
(c−b)2−4ac
2c

> 1,

ξ2 =
c−b−

√
(c−b)2−4ac
2c

< 0.

Coefficients k1,k2 are determined by boundary conditions.

For 0 < u < υ2, we will wait irrespective of Rt and both (14) and (15) hold.
Multiplying (14) and (15) by β and α respectively and summing up them, we obtain

−ρH1(u)+ µuH ′
1(u)+

σ 2

2
H ′′

1 (u) = 0

where
H1(u) = βF1(u)+αF2(u). (16)

From Lemma 3, the solution of (16) is

H1(u) = a1uη1 +a2uη2 (17)

where

η1 =
σ 2/2−µ +

√
(σ 2/2−µ)2 +2σ 2ρ

σ 2 > 1,

η2 =
σ 2/2−µ−

√
(σ 2/2−µ)2 +2σ 2ρ

σ 2 < 0.

Now, since limu→0 Fi(u) = 0 for i = 1,2, we obtain limu→0 H1(u) = 0. Thus, the
second term in (23) must vanish and

H1(u) = auη (18)

(we set a = a1 and η = η1 for simplicity).
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To obtain another solution, we subtract (14) from (15) to get

−(α +β +ρ)H2(u)+ µuH ′
2(u)+

σ 2

2
H ′′

2 (u) = 0

where
H2(u) =−F1(u)+F2(u). (19)

By a similar argument as above, a valid solution to (19) is

H2(u) = buθ (20)

where

θ =
σ 2/2−µ +

√
(σ 2/2−µ)2 +2σ 2(α +β +ρ)

σ 2 > 1.

From (18) and (20), we obtain F1(u) and F2(u) for 0 < u < υ2 as

F1a(u) = auη −αbuθ , (21)
F2a(u) = auη +βbuθ (22)

where we redefine a by a
α+β and b by b

α+β (we use subscript a and b for the solution
on 0 < u < υ2 and υ2 ≤ u < υ1, respectively).

For υ2 < u < υ1, it is optimal to invest for Rt = r2 and thus F2b(u) = r2u− I. On
the other hand, since waiting is optimal for Rt = r1, F1(u) satisfies (14). Substituting
F2(u) = r2u− I, we obtain from Lemma 3

F1b(u) = c1uζ1 + c2uζ2 +
αr2

α +ρ−µ
u− αI

α +ρ
(23)

where

ζ1 =
σ 2/2−µ +

√
(σ 2/2−µ)2 +2σ 2(α +ρ)

σ 2 > 1,

ζ2 =
σ 2/2−µ−

√
(σ 2/2−µ)2 +2σ 2(α +ρ)

σ 2 < 0.

(21)–(23) determines the form of the value functions in case A.
In case B, we need further investigation. Since it is optimal not to invest when

Rt = r1, we can show

F1(u) =
∫ ∞

0
αe−αte−ρtE[F2(Ut)|U0 = u,R0 = r1]dt. (24)

As u → ∞ in (24), E[F2(Ut)|U0 = u,R0 = r1]→ r2ueµt − I since, starting with large
u, Ut tends to exceed υ2 when Rt first becomes r2. Substituting this into (24), we see
that

F1(u)→ αr2

α +ρ−µ
u− αI

α +ρ
(u→ ∞). (25)
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To satisfy (25), c1 in (23) must be 0 and we have

F1c(u) = c2uζ2 +
αr2

α +ρ−µ
u− αI

α +ρ

for u > υ2 in case B. Thus, we obtain the following.

Theorem 4. The value function is given as follows:

case A
0 < u≤ υ2 υ2 < u≤ υ1 υ1 < u

F1(u) F1a(u) F1b(u) r1u− I
F2(u) F2a(u) r2u− I

case B
0 < u≤ υ2 υ2 < u

F1(u) F1a(u) F1c(u)
F2(u) F2a(u) r2u− I

To completely identify the value functions, we need to determine unknown co-
efficients of F1(u),F2(u) and threshold levels. For this purpose, we will use value
matching and smooth pasting conditions which are known as the optimality con-
ditions for a class of stopping problems and widely used in real option analysis
[3, 4, 6, 9].

Case A: There are 6 unknown parameters in case A, i.e., 2 threshold levels υ1,υ2

and 4 coefficients a,b,c1 and c2. The value matching conditions at u = υ1,υ2 respec-
tively are given as

F1a(υ2) = F1b(υ2), F1b(υ1) = r1υ1− I (26)
F2a(υ2) = r2υ2− I. (27)

Also, the smooth pasting conditions are

F ′
1a(υ2) = F ′

1b(υ2), F ′
1b(υ1) = r1 (28)

F ′
2a(υ2) = r2. (29)

We use these 6 equations to determine 6 unknown parameters.

Case B: As we already saw, υ1 = ∞ and c1 = 0 in case B. Therefore, we need to
calculate υ2,a,b and c2. The value matching and smooth pasting conditions at u = υ2

are

F1a(υ2) = F1c(υ2), F2a(υ2) = r2υ2− I, (30)
F ′

1a(υ2) = F ′
1c(υ2), F ′

2a(υ2) = r2. (31)

Unlike the single variable case in (5), it is not straightforward to solve these
nonlinear equations. In the next section, we will explain how to solve them and give
some numerical examples.
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4 Computation of value functions and numerical results
To develop numerical procedures for computing unknown coefficients, we will

consider 2 cases A and B separately.

Case A: From (27) and (29), we can derive
[

c1

c2

]
=

1

(ζ1−ζ2)υζ1+ζ2−1
1

[
d11υζ2

1 +d12υζ2−1
1

d21υζ1
1 +d22υζ1−1

1

]
(32)

where

d11 = (ζ2−1)(
αr2

α +ρ−µ
− r1), d12 = ζ2

ρI
α +ρ

,

d21 = (ζ1−1)(r1− αr2

α +ρ−µ
), d22 =−ζ1

ρI
α +ρ

.

We also derive from (26) and (28)
[

a
b

]
=

1
β (θ −η)υη+θ−1

2

[
β (θ −1)υθ

2 r2−βθυθ−1
2 I

−(η−1)υη
2 r2 +ηυη−1

2 I

]
. (33)

Combining (33) with (26) and (28), we can further show

[
c1

c2

]
=

1

(ζ1−ζ2)υζ1+ζ2−1
2

[
(e21−ζ2e11)υζ2

2 +(e22−ζ2e12)υζ2−1
2

(ζ1e11− e21)υζ1
2 +(ζ1e12− e22)υζ1−1

2

]
(34)

where

e11 =
{

β (θ −1)+α(η−1)
β (θ −η)

− α
α +ρ−µ

}
r2,

e12 =
{

α
α +ρ

− βθ +αη
β (θ −η)

}
I,

e21 =
{

βη(θ −1)+αθ(η−1)
β (θ −η)

− α
α +ρ−µ

}
r2,

e22 = −(α +β )ηθ
β (θ −η)

I.

Now let k = υ1/υ2, then k > 1 from Lemma 2. We then substitute υ1 = kυ2 into (32)
and equate it to (34). With some algebras, we can show

υ2 =
d12− (e22−ζ2e12)kζ1

(e21−ζ2e11)kζ1 −d11k
=

d22 +(e22−ζ1e12)kζ2

(ζ1e11− e21)kζ2 −d21k
. (35)

Since di j’s and ei j’s are known coefficients, (35) is a nonlinear equation of single
variable k which can easily be solved numerically. Once k is at hand, we can calculate
υ2 from (35), υ1 = kυ2, a and b from (33), c1 and c2 from (32).
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Case B: In this case, equations (30) and (31) can be solved explicitly. Specifically,
we obtain after some algebras

u2 =
(α +ρ−µ)((ζ2−η)βρθ +(ζ2−θ)(α +ρ +β )αη)I

(α +ρ)((ζ2−θ)(η−1)(α +ρ−µ +β )α +(ζ2−η)(ρ−µ)(θ −1)β )r2
.

Other parameters can be also calculated as

a =
(θ −1)βu2r2−θβ I

(θ −η)βuη
2

,

b =
(1−η)u2r2 +ηI

(θ −η)βuθ
2

,

c2 =
(η−1)(1+ β

α+ρ−µ )αr2u2− (1+ β
α+ρ )αηI

(ζ2−η)βuζ2
2

.

Note that r1 does not appear in the solution since we never invest when Rt = r1 in
case B.

In what follows, we will show some numerical results to demonstrate the above
procedures work properly. We use the parameters in Table 1 as a base case of the
numerical results. Roughly speaking, annual growth rate of the project value is 5%

Table 1: Parameters for the base case of numerical examples.
µ σ ρ α β r1 r2 I

0.05 0.1 0.1 0.1 0.1 1 1.4 1

with volatility 10%, and future payoff will be discounted 10% per year. The regime
process changes its state once a 10 year in average.

Table 2 shows how the ratio r2/r1 affects the threshold levels (we fix r1 = 1). For
the above parameters, case B in (11) is equivalent to r2 ≥ 1.5. In this case, υ1 = ∞ and
investment will be executed only when Rt = r2. υ2 decreases as r2 increases due to
stronger incentive to invest before the regime process drops into bad state. In fact, the
payoff obtained by investing at υ2 is around 1.95 for all values of r2 listed in Table
2. Figure 1 shows the value functions F1(u) and F2(u) for r2 = 1.2 and r2 = 2.0,

Table 2: r2 and threshold levels υ1 and υ2 (r1 = 1).
r2 1.2 1.4 1.6 1.8 2.0
υ1 3.61 10.8 ∞ ∞ ∞
υ2 1.64 1.40 1.22 1.08 0.97

respectively. As we explained in Section 3, each curve is composed of smoothly
pasted 2 or 3 different functions.

244 The Sixth International Symposium on Operations Research and Its Applications



0 1 2 3 4

0

2

4

6

8

0 1 2 3 4

0

2

4

6

8

Figure 1: Value functions F1(u) (dashed line) and F2(u) (solid line) for r2 = 1.2 (left
panel) and r2 = 2.0 (right panel). Other parameters are listed in Table 1.

Table 3 shows threshold levels when transition rates α and β of regime switch
range from 0.1 to 1.0 (from 10 years to 1 year in average). υ2 increases as α = β
increases since the possibility of risk to stay at a bad state for longer time decreases.
However, the difference is rather small in the current setting since it is almost unlikely
to occur to invest in a bad state.

Table 3: Rate of regime transitions and threshold levels.
α = β 0.1 0.2 0.5 1.0

υ1 10.8 ∞ ∞ ∞
υ2 1.40 1.43 1.48 1.51

5 Concluding remarks
In this paper, we consider an optimal investment problem with regime switch-

ing. In contrast to existing studies of real option analysis, project value is affected
by two uncertainties, i.e., its fundamental value and a Markovian regime process.
By investigating the optimal policy, we identify the form of the value functions and
develop numerical procedures to compute unknown coefficients of value functions.
Some numerical examples are also provided to see how optimal policy changes by
model parameters.

There are some possibilities to extend the results obtained so far. From practi-
cal viewpoint, it would be helpful if we could solve similar problems having more
general payoff functions. It is also interesting and challenging to solve a similar
problem with more than three regime states. Extensions along these directions are
under preparation and we expect them to widen practical applicability of real option
analysis since it is quite common in reality that a project value is affected by several
factors.
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