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Abstract One may employ Data Envelopment Analysis (DEA) to discriminate decision-making
units (DMUs) into efficient and inefficient ones base upon the multiple inputs and output perfor-
mance indices. In this paper we consider that there is a centralized decision maker (DM) who
‘owns’ or ‘supervises’ all the DMUs. In such intraorganizational scenario the DM has an interest
in discriminating the efficient DMUs (eDMUs). This paper presents a new method that determines
the most compromising set of weights for the indices’. The total of the new efficiency scores of
eDMUs with the most compromising set of indices’ weights has the least total gaps to the compro-
mised datum. The eDMUs that have efficiency score equal to one are located on the datum. The
other eDMUs are either located above or below the datum. The approach is analog to the ordinary
least-square method (OLS) of the residuals in statistical regression analysis. We compare the results
of an example with multiple inputs and single output under the proposed approach and regression
analysis.

Keywords data envelopment analysis; common weight; ranking; regression analysis; compro-
mising datum

1 Introduction
Charns, Cooper and Rhodes (CCR) (1978) introduce Data Envelopment Analy-

sis DEA that assess the comparative or relative efficiency of homogeneous operating
decision-making units (DMUs) such as schools, hospitals, or sales outlets. The as-
sessment of a DMU uses a set of resources referred to as input indices which it trans-
forms into a set of outcomes referred to as output indices. DEA deals with the ratio
between weighted sum of outputs and the weighted sum of inputs. DEA discrim-
inates DMUs into two categories: efficient DMUs (eDMUs) and inefficient DMUs
(iDMUs). The relative efficiency of an iDMU is reference to a set of eDMUs. One
cannot in general derive by means of DEA to have some absolute measure of effi-
ciency unless he/she makes additional assumptions that the DMUs being compared
include a ‘sufficient’ number of DMUs which are efficient in some absolute sense.
Each DMU in the efficient category is assigned a set of weights of indices so that its
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relative efficiency score is equal to one, the maximum. DEA cannot provide enough
information to rank the eDMUs with the same measure 1. If one further wants to
understand which the best is, he/she needs another indicator to discriminate among
the eDMUs.

Research about the idea of common weights and rankings has developed grad-
ually in recent years. Cook et al. (1990) first proposed the idea of common weights
in DEA. Andersen and Petersen (1993) developed procedures for ranking only the
efficient units in the DEA. Doyle and Green (1994) developed a rank scale method
utilizing the cross-efficiency matrix by ranking the average efficiency ratios of each
unit in the runs of all the other runs. Tofallis et al. (2001) combined data envelopment
analysis and regression to efficiency assessment. Liu and Peng (2004a) proposed
common weights analysis (CWA) model to rank DMUs in the category of efficient.
CWA determines an implicit datum under the assumption that the maximum effi-
ciency is equal 1 among the eDMUs. The efficiency of each DMU refer to the datum
is less or equal to one. Liu and Peng (2004b) proposed super common weights anal-
ysis (SCWA) model to rank DMUs in the category of efficient. SCWA determines an
implicit datum under the assumption that the minimum efficiency is equal 1 among
the eDMUs. The efficiency of each DMU refer to the datum at least is equal to one.

There are, however, situations in which all the DMUs fall under the umbrella
of a centralized decision-maker (DM) who oversees them. This type of situation
occurs whenever all the units belong to the same organization (public or private)
who provides the units with the resources necessary for obtaining their inputs. Many
of the traditional applications of DEA such as bank branches, hospitals, university
departments, police stations, etc., fall into this category. In this situation, the DM
is interest to rank eDMUs that is respect to the set of most compromising indices’
weights.

In this paper we propose a procedure to determine a set of weights for the in-
dices that is the most compromising among the eDMUs. The implicit efficiency
datum among the eDMUs is set to one. Employ the most compromising weights
(MCWs), eDMUs’ implicit efficiencies could be above, equal, or below the datum.
The total of gaps of the implicit efficiencies to the datum has been minimized. We
review the related literature such as: multiple regression analysis, data envelopment
analysis, common weight analysis, and super-common weight analysis in the second
section. In the third section, we develop the most compromising weights analysis
(MCWA) model. Then, the MCWA ranking rules are explained. At the same time,
the Two-Phase method is introduced to deal with the problem of possible alternative
solutions in the linear programming. In the fourth section, we compare the results of
an example with multiple inputs and single output under the proposed approach, re-
gression analysis, CWA and SCWA. Finally, the conclusion and future development
opportunities are suggested in the last paragraph.
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2 Literature Review
2.1 Multiple Regression Analysis

The following equation is the expression of multiple linear regression without
intercept model for m independent variables (indices) X1, X2, . . ., Xm to a dependent
variable (index) Y for DMU j

y j = β1x1 j +β2x2 j + ...+βmxm j + eR
j . (1)

The β1,β2, . . . , βmare called regression coefficients and eR
j is called the residual or

error term of the DMU j. The associated data set may be arranged as the following
table.

Table 1: Data Set of Multiple Regression

DMU
Input Indices Output Index
X1 X2 · · · Xm Y

1 x11 x21 · · · xm1 y1

2 x12
. . . xm2 y2

...
...

...
...

n x1n x2n · · · xmn yn

As shown in many regression text books, the problem of minimizing the sum of
squares of thesen residuals would find β̂1, β̂2, . . . ,β̂m, the least squares estimates of
β1, β2, . . . , βm or simply least squares regression coefficients. The fitted regression
model is then

Y = β̂1X1 + β̂2X2 + . . .+ β̂mXm (2)

gives a point estimate of the mean of Y for a particular data set as depicted in the
above table.

2.2 DEA Framework
Cooper et al. (1978) proposes that there are n DMUs to be assessed with m

inputs and s outputs indices. For each DMU, say DMU j, the given values on the
indices are denoted as (x1 j, x2 j, . . ., xm j) and (y1 j, y2 j, . . ., ys j), respectively. Given the
data, we measure the efficiency of each DMU once and hence need n optimizations,
one for each DMU to be evaluated. Let the DMU j being evaluated on any trial be
designated as DMUo where o ranges over 1,2,. . . ,n. We solve the following fractional
programming problem (P1) to obtain the relative input “weights” (vio, i = 1,2,. . . ,m)
and the relative output “weights” (uro, r = 1,2,. . . ,s) as variables. ε is a positive
Archimedean infinitesimal constant.
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(P1) DEA-FP

max θo =

s
∑

r=1
yrouro

m
∑
i=1

xiovio

s.t.

s
∑

r=1
yr juro

m
∑
i=1

xi jvio

≤ 1, j = 1, · · · ,n,

uro ≥ ε > 0, r = 1, · · · ,s,
vio ≥ ε > 0, i = 1, · · · ,m.

It is claimed that the object DMUo is efficient with the measure θ ∗o = 1. We define E
= { j|θ ∗j = 1, j = 1,. . . , n} to represent the set of eDMUs. DEA emphasizes the best
individual performance of the object DMUo. However, we always find situations
where there are some DMUs possessing the identical individual performance, for
example, those on the DEA efficient frontier.

2.3 Common Weight Analysis (CWA)
Liu & Peng (2004a) develop CWA that determines a common set of indices’

weights, (U1,. . . , Us, V1,. . . , Vm). It is assumed all the eDMUs are equally weighted
for determining the common set of weights. The implicit efficiencies’ datum is set to
one. Employing the common set of weights, eDMUs’ implicit efficiencies could be
equal one or less than one. The sum of the implicit efficiencies is the maximum, or
the total of the gaps to the datum is minimized.

(P2) CWA-FP

min ∑
j∈E

(
∆O

j +∆I
j

)

s.t.

s
∑

r=1
yr jUr +∆O

j

m
∑
i=1

xi jVi−∆I
j

= 1, j ∈ E,

∆O
j ,∆

I
j ≥ 0, j ∈ E,

Ur ≥ ε > 0, r = 1, · · · ,s,
Vi ≥ ε > 0, i = 1, · · · ,m.

ε is a very small positive coefficient to insure the fractional equation could be con-
verted to linear equation by multiplication.

Liu & Peng (2004b) introduce Super Common Weight Analysis (SCWA) that de-
termines a common set of indices’ weights. It is assumed all the eDMUs are equally
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weighted for determining the common set of weights. The implicit efficiencies’ da-
tum is set to one. Employing the common set of weights, eDMUs’ implicit efficien-
cies could be equal one or more than one. The sum of the implicit efficiencies is the
minimum, or the total of the gaps to datum is minimized.

(P3) SCWA-FP

min ∑
j∈E

(
∆O

j +∆I
j

)

s.t.

s
∑

r=1
yr jUr−∆O

j

m
∑
i=1

xi jVi +∆I
j

= 1, j ∈ E,

∆O
j ,∆

I
j ≥ 0, j ∈ E,

Ur ≥ ε > 0, r = 1, · · · ,s,
Vi ≥ ε > 0, i = 1, · · · ,m.

3 Our Methodology
3.1 The Most Compromising Set of Indices’ Weights Analysis

(MCWA)
This paper presents a method that determines the most compromising set of

indices’ weights. It is assumed all the eDMUs are equally weighted for the determi-
nation. The datum of implicit efficiency is set to one. Employing the set of weights,
eDMUs’ implicit efficiencies could be above, equal, or below the datum. The total
of the gaps to the datum is minimized.

The approach is analog to the ordinary least-square method (OLS) of the resid-
uals in statistical regression analysis.

Table 2: Data Set of MCWA

DMU
Input Indices Output Indices
X1 X2 · · · Xm Y1 Y2 · · · Ys

1 x11 x21 · · · xm1 y11 y21 · · · ys1

2 x12
. . . xm2 y12

. . . ys2
...

...
...

...
...

n x1n x2n · · · xmn y1n y2n · · · ysn

Table 2 depicts there are n DMUs and their performance on the indices X1, X2,
· · · , Xm and Y1, Y2, · · · , Ys are given and denoted as xi j, yr j (i = 1, · · · ,m; r = 1, · · · ,s;
j = 1, · · · ,n), respectively. Given an arbitrary set of specific weights solution (V #

i ,
i = 1, · · · ,m; U#

r , r = 1, · · · ,s), any DMU, say, DUM j’s coordination’s on the graph
are (Σ(i=1,...,m)xi jV #

i , Σ(r=1,...,s)yr jU#
r ). Suppose there is a DUM j holds Σ(i=1,...,m)xi jV #

i =
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Figure 1: Gaps to the datum line in MCWA

Σ(r=1,...,s)yr jU#
r . The line originates from the origin and pass the DUM j is called as

the datum line with slop equals 1, as depicted in Figure 1. The locations of DMUM

and DMUN and their projection points on the datum line, M’ and N’ are identified
as well. For DMUN locates above the datum line, its projection point locates on
(Σ(i=1,...,m)xiNV #

i + ∆I−#
N , Σ(r=1,...,s)yrNU#

r
⋂

∆O−#
N ). On the other hand, for DMUM lo-

cates below the datum line, its projection point locates on (Σ(i=1,...,m)xiMV #
i

⋂
∆I+#

M ,
Σ(r=1,...,s)yrMU#

r + ∆I+#
M ). In the viewpoint of L1-norm, its total gap is (∆O+#

M + ∆I+#
M ).

Similarly, DMUN that locates above the datum line, its total gap (∆O−#
N + ∆I−#

N ). For
any DMU, say DMU j, despite it locates below or above the datum line, its projec-
tion point location could be expressed as (Σ(i=1,...,m)xi jV #

i
⋂

∆I#
j , Σ(r=1,...,s)yr jU#

r +∆O#
j

), where ∆I#
j and ∆O#

j are free in sign.
Model (P4) is formulated to search an optimal datum line that would result a

minimum total gaps of the n DMUs. The optimal solution (V ∗
i , i = 1, · · · ,m; U∗

r ,
r = 1, · · · ,s) is the most compromised weights.

(P4) MCWA-FP 1

min ∑
j∈E

(|∆O
j |+ |∆I

j|
)

s.t.

s
∑

r=1
yr jUr +∆O

j

m
∑
i=1

xi jVi−∆I
j

= 1, j ∈ E,

Ur ≥ ε > 0, r = 1, · · · ,s,
Vi ≥ ε > 0, i = 1, · · · ,m,

∆O
j ,∆

I
j f ree, j ∈ E.

Here, capital letter Vi and Ur denote the most compromising weights of the i-th input
and the r-th output indices, respectively. It’s not the relative weights are defined
in traditional DEA models. ε is still a positive Archimedean infinitesimal constant;
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we do this to avoid a case of zero value of indices obtained by choosing the set of
zero weights. E denotes the set that composed by all the eDMUs. If ∆O

j and ∆I
j

are unequally weighted, the right-hand-side of the equality constraint is subject to
altered. We translate the above model (P4) to the following model (P5).

(P5) MCWA-FP 2

min
[(∆O+

j +∆O−
j )+(∆I+

j +∆I−
j )]

∑
j∈E

s.t.

s
∑

r=1
yr jUr +

(
∆O+

j −∆O−
j

)

m
∑
i=1

xi jVi−
(
∆I+

j −∆I−
j

) = 1, j ∈ E,

Ur ≥ ε > 0, r = 1, · · · ,s,
Vi ≥ ε > 0, i = 1, · · · ,m,

∆O+
j , ∆O−

j ,∆I+
j ,∆I−

j ≥ 0, j ∈ E.

Then we translate the above fractional model to the following linear programming
model (P6).

(P6) MCWA-LP 1

min ∑
j∈E

[(
∆O+

j + ∆O−
j

)
+

(
∆I+

j +∆I−
j

)]

s.t.
s

∑
r=1

yr jUr−
m

∑
i=1

xi jVi +
(
∆O+

j −∆O−
j

)
+

(
∆I+

j −∆I−
j

)
= 0, j ∈ E,

Ur ≥ ε > 0, r = 1, · · · ,s,
Vi ≥ ε > 0, i = 1, · · · ,m,

∆O+
j ,∆O−

j ,∆I+
j ,∆I−

j ≥ 0, j ∈ E.

In order to decrease the complexity of linear programming (P6), we can reduce the
number of variables by combining the gaps of inputs and outputs into one integrated
gap ∆+

j = ∆O+
j + ∆I+

j , ∆−j = ∆O−
j + ∆I−

j , respectively. Then, one can easily simplify
(P6) to the following model (P7).

(P7) MCWA-LP 2

∆∗ = min ∆ = ∑
j∈E

(∆+
j +∆−j )

s.t.
s

∑
r=1

yr jUr−
m

∑
i=1

xi jVi +∆+
j −∆−j = 0, j ∈ E,

Ur ≥ ε > 0, r = 1, · · · ,s,
Vi ≥ ε > 0, i = 1, · · · ,m,

∆+
j ,∆−j ≥ 0, j ∈ E.
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Then we translate the above linear programming model to the following dual model,
named MCWA-DLP model (P8).

(P8) MCWA-DLP 1

max ε

(
s

∑
r=1

Pr+
m

∑
i=1

Qi

)

s.t. ∑
j∈E

yr jπ j +Pr = 0, r = 1, · · · ,s,

∑
j∈E

xi jπ j−Qi = 0, i = 1, · · · ,m,

∑
j∈E

π j ≤ 1,

−∑
j∈E

π j ≤ 1,

Pr ≥ 0, r = 1, · · · ,s,
Qi ≥ 0, i = 1, · · · ,m,

π j free, j ∈ E.

We can combine the above constraints to obtain the following dual model (P9).
(P9) MCWA-DLP 2

max ε

(
s

∑
r=1

Pr+
m

∑
i=1

Qi

)

s.t. ∑
j∈E

yr jπ j +Pr = 0, r = 1, · · · ,s,

∑
j∈E

xi jπ j−Qi = 0, i = 1, · · · ,m,

−1≤ ∑
j∈E

π j ≤ 1,

Pr ≥ 0, r = 1, · · · ,s,
Qi ≥ 0, i = 1, · · · ,m,

π j free, j ∈ E.

Analyzing model (P9), we observe that the setting of parameter ε can be any arbi-
trary positive number. In other words, we will obtain the equivalent results no matter
what the value of parameter ε is. It is convenient to set the parameter ε = 1. Further-
more, we can take advantage of (P9) to make some appropriate illustrations about
the improvement of low-ranking DMUs. Pr and Qi are separately the total difference
of all DMUs to the datum line corresponding in the r-th output and the i-th input.
Furthermore, Pr and Qi can be partitioned as Pr = ∑( j∈E) pr j and Qi = ∑( j∈E) qi j

in (P10). pr j and qi j are the difference of DMU j in r-th the output and i-th input,
respectively, to the datum line.
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(P10) MCWA-DLP 2

max

(
s
∑

r=1
pr j+

m
∑

i=1
qi j

)

∑
j∈E

s.t. ∑
j∈E

yr jπ j =−∑
j∈E

pr j, r = 1, · · · ,s,

∑
j∈E

xi jπ j = ∑
j∈E

qi j, i = 1, · · · ,m,

−1≤ ∑
j∈E

π j ≤ 1,

pr j ≥ 0, r = 1, · · · ,s, j ∈ E,

qi j ≥ 0, i = 1, · · · ,m, j ∈ E,

π j free, j ∈ E.

The superscript * sign denotes the optimal solutions of the decision variable in linear
programming models. The solution of (P10) could be obtained indirectly by the
following theorem.

Theorem 1. The difference p∗r j and q∗i j of DMU j to the datum line corresponding to
the output index r and input index i are [P∗r (∆+∗

j −∆−∗j )/ ∆∗] and [Q∗
i (∆+∗

j −∆−∗j )/
∆∗].

Proof. We claim that

s

∑
r=1

U∗
r

(
yr j +P∗r

∆+∗
j −∆−∗j

∆∗

)/
m

∑
i=1

V ∗
i

(
xi j +Q∗

i

∆+∗
j −∆−∗j

∆∗

)
= 1 (3)

It is convenient to analyze this from two parts, the numerator and denominator. We
can simplify the numerator

s

∑
r=1

U∗
r

(
yr j +P∗r

∆+∗
j −∆−∗j

∆∗

)
(4)

as
s

∑
r=1

U∗
r yr j +

s

∑
r=1

U∗
r P∗r

∆+∗
j −∆−∗j

∆∗
(5)

and the denominator
m

∑
i=1

V ∗
i

(
xi j +Q∗

i

∆+∗
j −∆−∗j

∆∗

)
(6)

as
m

∑
i=1

V ∗
i xi j +

m

∑
i=1

V ∗
i Q∗

i

∆+∗
j −∆−∗j

∆∗
(7)
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Since

∆∗ =
s

∑
r=1

U∗
r P∗r +

m

∑
i=1

V ∗
i Q∗

i , (8)

s

∑
r=1

U∗
r yr j +

s

∑
r=1

U∗
r P∗r

∆+∗
j −∆−∗j

∆∗
−

m

∑
i=1

V ∗
i xi j +

m

∑
i=1

V ∗
i Q∗

i

∆+∗
j −∆−∗j

∆∗
(9)

=
s

∑
r=1

U∗
r yr j−

m

∑
i=1

V ∗
i xi j +

∆+∗
j −∆−∗j

∆∗

(
s

∑
r=1

U∗
r P∗r +

m

∑
i=1

V ∗
i Q∗

i

)
(10)

=
s

∑
r=1

U∗
r yr j−

m

∑
i=1

V ∗
i xi j +∆+∗

j −∆−∗j = 0 (11)

This follows the constraint condition of (P7). Hence,

s

∑
r=1

U∗
r

(
yr j +P∗r

∆+∗
j −∆−∗j

∆∗

)/
m

∑
i=1

V ∗
i

(
xi j +Q∗

i

∆+∗
j −∆−∗j

∆∗

)
= 1 (12)

3.2 Ranking Rules of MCWA
In this section, we introduce the MCWA ranking rules. First, the MCWA-

efficiency score of DMU j is defined as the following equation.

θ M∗
j =

s
∑

r=1
U∗

r yr j

m
∑
i=1

V ∗
i xi j

, j ∈ E (13)

Before defining the ranking, we first distinguish the DMUs as three separate groups.

Definition 1. DMU j locates on the datum line iff ∆+∗
j + ∆−∗j = 0 or θ M∗

j = 1. And
DMU j locates above the datum line iff θ M∗

j > 1. Otherwise, DMU j locates below the
datum line.

It is necessary to establish this rule in order to distinguish DMUs. We can finish
the ranking by the following principles.

Definition 2. The performance of DMU j1 is better than DMU j2 iff the efficiency
score θ M∗

j1 > θ M∗
j2 .

Definition 3. If θ M∗
j1 = θ M∗

j2 < 1, DMU j1 outperforms DMU j2 iff ∆+∗
j1 +∆−∗j1 < ∆+∗

j2 +
∆−∗j2 . If θ M∗

j1 = θ M∗
j2 > 1, DMU j1 outperforms DMU j2 iff ∆+∗

j1 +∆−∗j1 > ∆+∗
j2 +∆−∗j2 .

It is not necessary to presume the imaginary goal as our datum line. In fact, we
can take the DMU which locates on the datum line as the standard. Therefore, we
have to ensure that there is at least one DMU locates on the datum line.
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Theorem 2. There is at least one DMU locates on the datum line.

Proof. It is claimed that we get the optimal criteria value with variables common
weight U∗

r ,V ∗
i and ∆+∗

j ,∆−∗j where ∆+∗
j ,∆−∗j > 0 for all j ∈ E in P(7). Then, if none

of the DMUs is on the datum line, we have two cases
Case 1: We can set the number k j such that

s

∑
r=1

k jyr jU∗
r /

m

∑
i=1

xi jV ∗
i = 1, ∀ j ∈ those DMUs under datum line and k j > 1 (14)

Let K= min {k j , j ∈ those DMUs under datum line}.
The new set of common weights KU∗

r and invariant V ∗
i will decrease the ∆+∗

j of
the DMUs under the datum line and increase the ∆−∗j of the DMUs above the datum
line.

Case 2: We can set the number k j such that
s

∑
r=1

k jyr jU∗
r /

m

∑
i=1

xi jV ∗
i = 1, ∀ j ∈ those DMUs above datum line and k j < 1 (15)

Let K= max {k j , j ∈ those DMUs above datum line}.
The new variables KU∗

r and invariant V ∗
i will increase the ∆+∗

j of the DMUs
under the datum line and decrease the ∆−∗j of the DMUs above the datum line.

Either case 1 or case 2 will result in smaller criteria values and contradicts the
fact that the current criteria value has been optimized. We can get another set of
common weights KU∗

r and V ∗
i with at least one ∆+∗

j +∆−∗j = 0. Hence, there is at least
one DMU locates on the datum line.

Definition 4. If θ M∗
j1 = θ M∗

j2 = 1, i.e. they are both MCWA-datum, DMU j1 outper-
forms DMU j2 iff the shadow price π∗j1 < π∗j2.

The variable π j in (P9) is the shadow price, Dantzig et al. (1997), corresponding
to each constraint of (P7). The following equation shows that if the right-hand side
of the j-th constraint increases 1 unit.

s

∑
r=1

yr jUr−
m

∑
i=1

xi jVi +∆+
j −∆−j = 0+1 (16)

By the definition of shadow price, the criteria, following expression, in (P7) will get
the variation π j. (

∑
j∈E

(
∆+∗

j +∆−∗j

)
)

+π∗j (0+1) (17)

In this case, π∗j means the impact to total gaps resulted by that the j-th MCWA-datum
DMUs desire to raise its efficiency. Therefore we can obtain the different changed
values from each MCWA-datum DMUs. By the way, if we have multiple MCWA-
datum DMUs, π∗j will appeal the good information which one has the most influence
on the total gaps to assess them. By the above definitions, the eDMUs could be
ranked.
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3.3 Application of MCWATwo-Phased Method
(P7) usually results alternative solutions. The alternative sets of index weights

lead to different ranking. In order to select a set of appropriate unique set of weights,
the two-phased method is necessary.

Phase 1
Solve (P11) and obtain the optimal value ∆∗.
(P11)

∆∗ = min ∆ = ∑
j∈E

(∆+
j +∆−j )

s.t.
s

∑
r=1

yr jUr−
m

∑
i=1

xi jVi +∆+
j −∆−j = 0, j ∈ E,

Ur ≥ ε, r = 1, · · · ,s,
Vi ≥ ε, i = 1, · · · ,m,

∆+
j ,∆−j ≥ 0, j ∈ E.

In model (P9), the value of ε would not effect the decision variables. We set ε in the
range of 10−6 to 10+6 in our numerical examples and obtained same results.

Phase 2
Solve the following linear programming (P12) to obtain the set of unique com-

mon weights.
(P12)

min
s

∑
r=1

Ur−
m

∑
i=1

Vi

s.t.
s

∑
r=1

yr jUr−
m

∑
i=1

xi jVi +∆+
j −∆−j = 0, j ∈ E,

∑
j∈E

(∆+
j +∆−j ) = ∆∗

Ur ≥ ε, r = 1, · · · ,s,
Vi ≥ ε, i = 1, · · · ,m,

∆+
j ,∆−j ≥ 0, j ∈ E.

Now, a brief explanation of phase 2 follows. Obata and Ishii (2003) proposed that,
regarding output data, it is better to adopt the smaller weights vector to obtain the
product while the same product exists. This means that preference of the same prod-
uct resulted from the data rather than from the weights. Similarly, it is better to use
the larger weights vector for input data. This paper decides the scale of weights vector
from the viewpoint of L1-norm. We cannot prove that the weights vector is absolutely
unique. But we have reduced the probability of alternative optimal weights as much
as possible.
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3.4 The Relation Between MCWA and Multiple Regression
For the special case, DMUs are assessed with two inputs and one output, the

constraint in (P7) becomes:

y jU1− x1 jV1− x2 jV2 +∆+
j −∆−j = 0, j ∈ E (18)

It is transformed as:

y j = x1 j
V1

U1
+ x2 j

V2

U1
− ∆+

j

U1
+

∆−j
U1

= 0, j ∈ E (19)

Let V1/U1 = α1, V2/U1 = α2, and −∆+
j /U1 + ∆−j /U1 = eM

j , the constraint is rewrote
as:

y j = α1x1 j +α2x2 j (20)

The equation has same form of multiple regression equation (2).

4 Numerical Example
4.1 Data and Results

We use the Solver in Microsoft EXCEL to carry out the calculation of linear
programming models. Firstly, we use CCR or BCC model to assess DMUs into
efficient and inefficient ones. Secondly, we use MCWA model to determine the most
compromising indices’ weights for those eDMUs. Finally, we rank those eDMUs.

Consider following simple illustrative problem consisting of five DMUs with
two inputs and one output. The data set is exhibited in the next table. Note DMU E
has extra large scale size.

Table 3: Example Data 1
DMU j x1 j x2 j y j

A 5 12 2
B 18 16 5
C 15 9 3
D 10 12 3
E 50 59 15

Employ BCC-DEA model, these five DMUs are BCC-efficient. According to
MCWA, DMUE’s efficiency is equal to 1. In the following table, one observes that
DMUE is the datum. The set of the most compromising weights is strongly affected
by the DMUs with large scale. But they are not guaranteed to be a datum.

The ranks of other DMUs are listed in the following table. Furthermore, the
differences of each DMU to the datum line to its reference in all indices are listed.
Therefore, we have to note that the DMU ranked first is not sure the best reference of
all DMUs.
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Table 4: The Ranking to the Performance of BCC-eDMUs
Rank DMU j θ M∗

j ∆+∗
j ∆−∗j Shadow price π∗j p∗1 j q∗1 j q∗2 j

1 B 1.069 0 2.333 -0.056 0 0.648 1.685
2 E 1 0 0 0.056 0 0 0
3 D 0.991 0.2 0 0.056 0 0.056 0.144
4 C 0.908 2.2 0 0.056 0 0.611 1.589
5 A 0.855 2.467 0 0.056 0 0.685 1.781

4.2 Comparison between MCWA and Regression Analysis
In the following two tables, we can find that the results of MCWA and Regres-

sion Analysis are similar, and the difference might result from diverse slopes between
datum line and regression line.

Table 5: Summary of MCWA and Multiple Regression Results

DMU j
MCWA Regression

∆+∗
j /U∗

1 ∆−∗j /U∗
1 eM

j eR
j

A 0.339 0 -0.339 -0.117
B 0 0.321 0.321 0.356
C 0.303 0 -0.303 -0.294
D 0.028 0 -0.028 0.105
E 0 0 0 -0.049

sum ∑ j |eM
j |= 0.991 ∑ j |eR

j |= 0.921

Table 6: The Parameters of MCWA and Multiple Regression
MCWA Regression

α1 = V ∗
1 /U∗

1 0.138 β̂1 0.156
α2 = V ∗

2 /U∗
1 0.138 β̂2 0.126

The MCWA equation is

y j = α1x1 j +α2x2 j + eM
j = 0.138x1 j +0.138x2 j + eM

j .

The regression equation is

y j = β̂1x1 j + β̂2x2 j + eR
j = 0.156x1 j +0.126x2 j + eR

j .

4.3 Comparison of CWA, SCWA and MCWA
Consider following illustrative problem consisting of fifteen DMUs with two

inputs and two outputs. The data set is exhibited in the following table.
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Table 7: Example Data 2
DMU j x1 j x2 j y1 j y2 j

A 8 3 20 45
B 33 2 33 52
C 6 2 2 31
D 25 4 63 52
E 2 36 52 1
F 6 38 30 49
G 9 3 40 3
H 35 12 88 44
I 15 133 223 32
J 100 61 15 333
K 33 11 66 99
L 553 111 55 321
M 22 13 95 22
N 51 5 94 11
O 4 7 9 3

In the following table, we obtain different ranking for CWA, SCWA and MCWA.
But we can find that DMU A outperforms the others and DMUL possesses the worst
performance among the three methods.

5 Conclusion
This paper proposes a model to discriminate the efficient DMUs in DEA models.

This new ranking method based on the DEA framework helps the decision maker
(DM) in the task of assessment. We provide the ranking rule as a convenient guide for
DM to judge which DMU the best is. In the cases of identical individual performance,
we rank the contributions of each DMU to the total gaps. Simultaneously, we provide
the difference of each input and output index to the datum line for the DMUs not on
the datum line.

There are a number of future research issues that remain to be addressed. One of
them is that how to extend the full ranking to the DEA-iDMUs. There is no guarantee
that MCWA will result in eDMUs earning good ranking, simply because MCWA is
not emphasized in the individual performance. Hence, there remains the critical issue
of how to further balance both the optimization of individual performance and overall
performance at the same time.
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