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Abstract The sum of square roots of integers problem is to find the minimum nonzero difference
between two sums of square roots of integers. Let r(n,k) denote the minimum nonzero positive
value: |∑k

i=1
√

ai −∑k
i=1

√
bi|, where ai and bi are positive integers not larger than integer n. We

prove by an explicit construction that r(n,k) = O(n−2k+ 3
2 ) for fixed k and any n. Our result implies

that in order to compare two sums of k square roots of integers with at most d digits per integer,
one might need precision of as many as (2k− 3

2 )d digits. We also prove that this bound is optimal
for a wide range of integers, i.e., r(n,k) = Θ(n−2k+ 3

2 ) for fixed k and for those integers in the form
of n =

(2k−1
2i

)2
(n′+2i)+

(2k−1
2i+1

)2
(n′+2i+1), where n′ is any integer satisfied the above form and i

is any integer in range [0,2k−1].

1 Introduction
In order to find the optimal solution in an optimization problems, one frequently

needs to compare the values of two arithmetic expressions. Each arithmetic expres-
sion represents a possible choice. This is actually similar to evaluate branch condi-
tions in a computer program. As a consequence of incorrect result, a computation
may follow an incorrect path. This may lead to catastrophic errors. For example in
operations research, in order to design an efficient dispatch scheme for a taxi com-
pany in a city, one needs to compare the lengths of different routes, which is a geo-
metric problem. In the realm of geometric computations, a route is a polygonal path.
Moreover, paths are usually represented by sums of square roots of integers, where
vertices are represented by integer coordinates. It is justified since in practice, integer
coordinates of points are widely used in the implementation of geometric algorithms.
In order to quickly determine the longer one of two such polygonal paths, one natural
way is to compute them numerically. The correctness of this computation relies on
the correct precision needed for identifying the difference. In complexity aspect, the

∗This work is supported by NSERC grant OPG0041629.
†Correspondent author. E-mail: wang@cs.mun.ca

The Sixth International Symposium on Operations Research and Its Applications (ISORA’06)
Xinjiang, China, August 8–12, 2006
Copyright © 2006 ORSC & APORC§pp. 206–211



significance of this problem was indicated by David Eppstein [2]: “A major bottle-
neck in proving NP-completeness for geometric problems is a mismatch between the
real-number and Turing machine models of computation: one is good for geometric
algorithms but bad for reductions, and the other vice versa. Specifically, it is not
known on Turing machines how to quickly compare a sum of distances (square roots
of integers) with an integer or other similar sums, so even (decision versions of) easy
problems such as the minimum spanning tree are not known to be in NP.” Therefore,
this becomes a fundamental open problem in computational geometry [1].

The problem can be expressed in number-theoretic terms: what is the smallest
nonzero number that is the difference of two sums of k roots of integers not larger
than some bound n? More precisely, find tight lower and upper bounds on r(n,k), the
minimum positive value of ∣∣∣∣∣

k

∑
i=1

√
ai−

k

∑
i=1

√
bi

∣∣∣∣∣ ,

where ai and bi are integers not larger than n.
Examples [1] are:

r(20,2)≈.0002 =
√

10+
√

11−
√

5−
√

18,

r(20,3)≈.000005 =
√

5+
√

6+
√

18−
√

4−
√

12−
√

12.

Historically speaking, the problem was formally posed by Joseph O’Rourke in
1981 [3], but it is likely an older problem since Ronald Graham had discussed it in
some public lectures before. The problem is now included in “The Open Problems
Project" as Problem 33: Sum of Square Roots [1].

Of particular importance is whether lg 1
r(n,k) is bounded above by a polynomial

in k and lgn. If this statement is true, then we can compare two sums of square
roots of integers in polynomial time. Note that even though lg 1

r(n,k) is not bounded
by a polynomial in k and lgn, there may still exist polynomial-time algorithms to
compare such two sums by other means.

A lower bound is implied through root-separation bounds [4]. When k is fixed,
the bound is that

r(n,k) = Ω(n
1
2−22k−2

).

To the authors’ best knowledge, the only known upper bound is O(n−k+ 1
2 ) for

fixed k due to Ronald Graham [2], as an application of Prouhet-Tarry-Escott problem
in number theory.

2 Our Results
Our idea for constructing this O(n−2k+ 3

2 ) bound is based on the Taylor expan-
sion, but we avoid using the solution of Prouhet-Tarry-Escott problem, which is hard
to solve itself.

We can prove the following results.
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Lemma 1. Let m(≥ 1) and n′ be integers. We have that
∣∣∣∣∣

m

∑
i=0

(
m
i

)
(−1)i

√
n′+ i

∣∣∣∣∣ <
(2m−3)!!

2mn′m−
1
2

,

where (2m−3)!! = 1 ·3 · ... · (2m−3). (we regard (−1)!! as 1.)

Proof. First we prove the following recursive equality for k≥ 1, using combinatorial
identity i

(m
i

)
= m

(m−1
i−1

)
: Let s(m, j) = ∑m

i=0

(m
i

)
(−1)ii j for integers m≥ 1 and j ≥ 0.

s(m,k) =
m

∑
i=1

i
(

m
i

)
(−1)iik−1

=m
m

∑
i=1

(
m−1
i−1

)
(−1)iik−1

=m
m

∑
i=1

(
m−1
i−1

)
(−1)i((i−1)+1)k−1

=m
m

∑
i=1

(
m−1
i−1

)
(−1)i(

k−1

∑
j=0

(
k−1

j

)
(i−1) j) (binomial expansion)

=−m
m−1

∑
l=0

(
m−1

l

)
(−1)l(

k−1

∑
j=0

(
k−1

j

)
l j) (let l = i−1)

=−m
k−1

∑
j=0

(
k−1

j

)
(

m−1

∑
l=0

(
m−1

l

)
(−1)ll j)

=−m
k−1

∑
j=0

(
k−1

j

)
s(m−1, j).

Now we prove ome combinatorial identities:
(1) for 0≤ j ≤ m−1, we have s(m, j) = 0 (00 is regarded as 1);
(2) s(m,m) = (−1)mm!.
For (1), we prove it by induction on j. When j = 0, s(m,0) = ∑m

i=0

(m
i

)
(−1)i is

exactly the binomial expansion of (1−1)m, thus (1) holds for m≥ 1. We assume that
s(m, j) = 0 holds for 0 ≤ j ≤ k− 1 and m ≥ k, then for j = k and m ≥ k + 1 by the
recursive equality above we have

s(m,k) =−m
k−1

∑
j=0

(
k−1

j

)
s(m−1, j) = 0.

This proves (1).
Also by the recursive equality above:

s(m,m) =−m
m−1

∑
j=0

(
m−1

j

)
s(m−1, j) = (−m) · s(m−1,m−1).
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From this and the fact that s(1,1) =−1 we have

s(m,m) = (−1)mm!.

Thus (2) is also proved.
For the proof of Lemma 1, let

f (n) =
1√
n
(

m

∑
i=0

(
m
i

)
(−1)i

√
n+ i) =

m

∑
i=0

(
m
i

)
(−1)i

√
1+

i
n
.

Our idea is to prove that in its Taylor(or Maclaurin) expansion of 1/n, all coefficients
of the first m−1 terms are zero.

Function
√

1+ x can be expanded by Taylor’s formula as:

√
1+ x =1− 1

2
x+

1
8

x2− 1
16

x3 + · · ·

+(−1)m−1 (2m−5)!!
(2m−2)!!

xm−1 +(−1)m (2m−3)!!
(2m)!!

ξ m

=
m−1

∑
j=0

(−1) j (2 j−3)!!
(2 j)!!

x j +(−1)m (2m−3)!!
(2m)!!

ξ m,

where 0 < ξ < x, (2m−3)!! = 1 ·3 · ... · (2m−3) and (2m)!! = 2 ·4 · ... · (2m).
For 0≤ j ≤m, let c j denote the coefficient of the j-th term in the Taylor expan-

sion of
√

1+ x, i.e. c j = (−1) j (2 j−3)!!
(2 j)!! . Let M > n be some constant so that 0≤ i

M ≤ i
n .

By Taylor’s formula we can expand f (n) as

f (n) =
m

∑
i=0

(
m
i

)
(−1)i(

m−1

∑
j=0

c j(
i
n
) j)+

m

∑
i=0

(
m
i

)
(−1)icm(

i
M

)m

=
m−1

∑
j=0

c j(
m

∑
i=0

(
m
i

)
(−1)ii j)

1
n j

+
m

∑
i=0

(
m
i

)
(−1)iimcm

1
Mm

=
m−1

∑
j=0

c js(m, j)
1
n j

+
cms(m,m)

Mm

=
cm(−1)mm!

Mm
.

Thus we obtain

|
m

∑
i=0

(
m
i

)
(−1)i

√
n+ i|=√

n| f (n)|=√
n
|cm|m!

Mm

<
|cm|m!
nm− 1

2
=

m!(2m−3)!!
(2m)!!nm− 1

2
=

(2m−3)!!
2mnm− 1

2
.
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Using Lemma 1, we can prove the following theorem.

Theorem 2.
∣∣∑m

i=0

(m
i

)
(−1)i

√
n′+ i

∣∣ = O((n′)−m+ 1
2 ) for fixed m≥ 1.

In Theorem 1, let m = 2k−1, we have
∣∣∣∣∣

2k−1

∑
i=0

(
2k−1

i

)
(−1)i

√
n′+ i

∣∣∣∣∣

=

∣∣∣∣∣(
k−1

∑
i=0

(
2k−1

2i

)√
n′+2i)− (

k−1

∑
i=0

(
2k−1
2i+1

)√
n′+2i+1)

∣∣∣∣∣
=O((n′)−2k+ 3

2 ).

(1)

By the definition of r(n,k) and let ai =
(2k−1

2i

)2
(n′ + 2i) and bi =

(2k−1
2i+1

)2
(n′ +

2i+1) in (1) and note n = O(n′), we obtain the main result in this paper:

Theorem 3. r(n,k) = O(n−2k+ 3
2 ) for fixed k ≥ 1.

Note that the requirement that ‘integer ai and bi are not larger than n is satisfied
as long as k is fixed and i is in range [0,2k−1], and n′ is satisfied that ai =

(2k−1
2i

)2
(n′+

2i) and bi =
(2k−1

2i+1

)2
(n′+2i+1).

One might wonder whether the upper bound of Theorem 2 can be improved by
a more sophisticated type of linear combination in form of ∑m

i=0 xi
√

n′+ai.
The following theorem shows that such an improvement is impossible, which

also implies that this bound is the best possible for the problem with the above men-
tioned specific type of integers.

Theorem 4. Let m ≥ 1 be a fixed integer, and let x0,x1, ...,xm and a0,a1, ...,am be
real numbers such that ai 6= a j for 0 ≤ i 6= j ≤ m. Let g(n′) = ∑m

i=0 xi
√

n′+ai. Then
|g(n′)|= o((n′)−m+ 1

2 )(= o(n−m+ 1
2 )) if and only if xi = 0 for 0≤ i≤ m.

Proof. The ‘If’ part is trivial. Now we prove the ‘Only If’ part. Assume that |g(n)|=
|∑m

i=0 xi
√

n+ai|= o(n−m+ 1
2 ), we shall show xi = 0 for 0≤ i≤ m.

As in the proof of Lemma 1, for 0 ≤ j ≤ m, let c j denote the coefficient of the
j-th term in the Taylor series of

√
1+ x, i.e.

√
1+ x =

m

∑
j=0

c jx j +O(xm+1).

We now can express g(n)/
√

n as Taylor expansion of ai/n to its m-th term:

g(n)√
n

=
m

∑
i=0

xi

√
1+

ai

n

=
m

∑
i=0

xi(
m

∑
j=0

c j(
ai

n
) j +O(

1
nm+1 ))
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=
m

∑
j=0

c j(
m

∑
i=0

xiai
j)

1
n j

+O(
1

nm+1 )

By the assumption that |g(n)|= o(n−m+ 1
2 ), or equivalently |g(n)/

√
n|= o(n−m),

we have that
m

∑
i=0

xiai
j = 0

for 0≤ j ≤ m.
We can regard them as a group of m + 1 equations for variables (x0,x1, ...,xm),

they have a non-zero solution if and only if the coefficient determinant |ai
j|0≤i, j≤m is

zero. But this is impossible since |ai
j|0≤i, j≤m is exactly the Vandermonde Determinant

of (a0,a1, ...,am), it is zero if and only if ai = a j for some 0≤ i 6= j≤m. If ai = a j for
some 0≤ i 6= j≤m, then g(n) cannot be bounded above by o(n−m+ 1

2 ), a contradiction.
Thus all xi must be zero.
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