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1 Introduction
The problem we consider in this paper is as follows: Determine whether there

is an integer point in P given by

P = {x ∈ Rn | Ax≤ b},
where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an+1,1 an+1,2 · · · an+1,n




with every entry being an integer and b = (b1,b2, · · · ,bn+1)>. The problem is an
NP-complete problem (e.g., Nemhauser and Wolsey, 1988; Schrijver, 1998). We
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assume throughout this paper that P is bounded and has an interior point. Then,
P is an n-dimensional simplex, there is a vector ρ = (ρ1,ρ2, · · · ,ρn+1)> > 0 such
that ρ>A = 0, and any n× n submatrix of A is nonsingular. The problem is very
general though it looks special. In fact, finding an integer point of a polytope can
be reduced in polynomial-time to finding an integer point of a simplex by applying
aggregation techniques (e.g., Glover and Babayev, 1995; Kannan, 1983; Zhu and
Broughan, 1998). Such an aggregation procedure is given in the appendix of this
paper.

Recently, stimulated by the work in Scarf (1981), a simplicial approach was
developed for computing an integer point of an n-dimensional simplex in Dang and
Maaren (1998, 1999, 2001). The idea of the approach comes from simplicial meth-
ods, which were originated in Scarf (1967) for computing fixed points of continuous
or upper-semi continuous mappings. Scarf’s work was built on his elegant primitive
sets, but subsequential substantial developments of simplicial methods were based
on triangulations (e.g., Allgower and Georg, 2000; Dang, 1991, 1995; Eaves, 1972,
1984; Eaves and Saigal, 1972; Forster, 1995; Garcia and Zangwill, 1981; Kojima and
Yamamoto, 1984; Kuhn, 1968; van der Laan and Talman, 1979, 1981; Merrill, 1972;
Scarf, 1973; Todd, 1976; Wright, 1981; Yamamoto, 1984).

In this paper, a new arbitrary starting variable dimension algorithm is developed
for computing an integer point of an n-dimensional simplex. The algorithm is derived
from an introduction of an integer labeling rule and an application of a triangulation
of the space and is composed of two phases, one of which forms a variable dimension
algorithm, which is derived from a modification of the 2-ray algorithm for computing
fixed points in Yamamoto (1984), and the other a full-dimension pivoting procedure,
which comes from Dang and Maaren (1999). Starting at an arbitrary integer point,
the algorithm interchanges from one phase to the other if necessary and follows a
finite simplicial path that either leads to an integer point of the simplex or proves that
no such points exist. An advantage of the algorithm is that all the existing superior
triangulations can be its underlying triangulations without any modification.

The rest of this paper is organized as follows. An integer labeling rule is intro-
duced and its properties are discussed in Section 2. Based on the integer labeling rule
and a triangulation of the space, a new arbitrary starting variable dimension algorithm
is developed in Section 3.

2 An Integer Labeling Rule and Its Properties
The definition of an (n+1)×n matrix in canonical form was given in Dang and

Maaren (1998), which is as follows.

Definition 1. An (n+1)×n matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an+1,1 an+1,2 · · · an+1,n
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is in canonical form if aii > 0, i = 1,2, · · · ,n, and ai j ≤ 0 for any i and j with i 6= j.

We assume throughout this paper that A is in the canonical form and (a1n, a2n,
· · · , an−1,n)> < 0. If A is an arbitrary integer (n+1)×n matrix satisfying that there is
a positive vector ρ with ρ>A = 0 and that any n×n submatrix of A is nonsingular, a
procedure given in Pnueli (1968) shows that, applying the following three elementary
column operations to A,

1. interchange two columns,
2. multiply a column by −1,
3. add any integer times a column to another column,

one can transform A in polynomial-time into a matrix in the canonical form and
(a1n,a2n, · · · ,an−1,n)> < 0. Such a unimodular transformation procedure is given in
the appendix of this paper.

Let a>i denote the ith row of A for i = 1,2, · · · ,n+1. Let N = {1,2, · · · ,n} and
N0 = {1,2, · · · ,n+1}. For k = 1,2, · · · ,n, let

Akk =




a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk


 .

The following theorem was proved in Pnueli (1968) and can also be found in the
unimodular transformation procedure in the appendix of this paper.

Theorem 1. For k = 1,2, · · · ,n, Akk is invertible, the determinant of Akk is positive,
and A−1

kk ≥ 0. For k = 2,3, · · · ,n,

akk− (ak1,ak2, · · · ,ak,k−1)A−1
k−1,k−1(a1k,a2k, · · · ,ak−1,k)> > 0.

Let η be an arbitrary integer point of Rn, which will be the starting point of the
algorithm. Let I(0) = /0, and, for any h ∈ N, let I(h) = {1,2, · · · ,h}. For α ∈ {−1,1}
and h ∈ N, let

X(η ,h,α) = {x ∈ Rn | α(xh−ηh)≥ 0 and xk = ηk, k ∈ N\I(h)}.
Let T be a triangulation of Rn such that every integer unit cube is subdivided into
integer simplices, where an integer unit cube is a unit cube with only integer vertices
and an integer simplex is a simplex with only integer vertices. Such triangulations in-
clude the K1-triangulation in Freudenthal (1942), the J1-triangulation in Todd (1976),
the D1-triangulation in Dang (1991), the D′

1-triangulation in Todd and Tunçel (1993),
the D1(m)-triangulation in Dang (2005), etc. A q-dimensional simplex of T with
vertices y0,y1, · · · ,yq is denoted by < y0,y1, · · · ,yq >. Let T be the set of faces of
simplices of T .

For σ ∈ T , let grid(σ) = max{‖x− y‖ | x ∈ σ and y ∈ σ}, where ‖ · ‖ stands
for the infinity norm. We define mesh(T ) = maxσ∈T grid(σ). Then, mesh(T ) = 1.
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Definition 2. For x ∈ Rn, we assign to x an integer label l(x) given by

l(x) =

{
min{k | a>k x > bk} if x /∈ P,
0 otherwise.

Given this integer labeling rule, we can define h-completeness, almost h-com-
pleteness, completeness, and almost completeness, which are as follows.

Definition 3.

1. For h = 0,1, · · · ,n, a simplex σ =< y0,y1, · · · ,yh > is h-complete if σ carries
h+1 different nonzero integer labels and h of these labels are in I(h).

2. For h = 1,2, · · · ,n, a simplex σ =< y0,y1, · · · ,yh > is almost h-complete if
σ carries either only all the integer labels in I(h), or all the integer labels in
I(h−1), no integer labels 0 and h, and at least one integer label in N\I(h).

3. A simplex σ =< y0,y1, · · · ,yq > is complete if σ carries q+1 different nonzero
integer labels.

4. A simplex σ =< y0,y1, · · · ,yq > is almost complete if σ carries exactly q dif-
ferent nonzero integer labels.

We remark that an n-complete simplex is the same as a complete n-dimensional
simplex and viceversa.

Lemma 2. There are finitely many n-complete simplices.

Proof. Let σ =< y0,y1, · · · ,yn > be an arbitrary n-complete simplex. Without loss
of generality, we assume that l(y0) = n + 1 and l(yi) = i, i = 1,2, · · · ,n. For i =
1,2, · · · ,n, we define

fi(x) = a>i x−bi.

Let x be an arbitrary point of σ . Then, for i = 1,2, · · · ,n, since fi(y0)≤ 0 and fi(yi) >
0,

fi(x) = fi(x)− fi(y0)+ fi(y0)≤ fi(x)− fi(y0) = a>i (x− y0)

and
fi(x) = fi(x)− fi(yi)+ fi(yi) > fi(x)− fi(y) = a>i (x− yi).

From mesh(T ) = 1, we obtain that −e ≤ x− yi ≤ e, i = 0,1, · · · ,n, where e = (1, 1,
· · · , 1)> ∈ Rn. Thus, for i = 1,2, · · · ,n,

min
−e≤y≤e

a>i y≤ fi(x)≤ max
−e≤y≤e

a>i y.

Let
∆ = {x ∈ Rn | min

−e≤y≤e
a>i y≤ fi(x)≤ max

−e≤y≤e
a>i y, i = 1,2, · · · ,n}.

Then, all the n-complete simplices are contained in ∆. Clearly, f (x) = ( f1(x), f2(x),
· · · , fn(x))> is bounded on ∆. Let b−(n+1) = (b1,b2, · · · ,bn)>. Since Ann is invertible,
hence, for any x ∈ ∆,

x = A−1
nn ( f (x)+b−(n+1)).
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Thus, for any x ∈ ∆,

‖x‖= ‖A−1
nn ( f (x)+b−(n+1))‖ ≤ ‖A−1

nn ‖(‖ f (x)‖+‖b−(n+1)‖).
Therefore, ∆ is bounded. The lemma follows.

Lemma 3. There are finitely many almost h-complete simplices carrying only all the
integer labels in I(h) and contained in X(η ,h,−1)

Proof. Let σ =< y0,y1, · · · ,yh > be an arbitrary almost h-complete simplex carrying
only all the integer labels in I(h) and contained in X(η ,h,−1). Without loss of
generality, we assume that l(yi) = i, i = 1,2, · · · ,h. For i = 1,2, · · · ,h, we define

fi(x) = a>i x−bi.

Let x be an arbitrary point of σ . Then, for i = 1,2, · · · ,h− 1, since fi(yi) > 0 and
fi(yh)≤ 0,

fi(x) = fi(x)− fi(yh)+ fi(yh)≤ fi(x)− fi(yh) = a>i (x− yh)

and
fi(x) = fi(x)− fi(yi)+ fi(yi) > fi(x)− fi(yi) = a>i (x− yi),

and, since fh(yh) > 0,

fh(x) = fh(x)− fh(yh)+ fh(yh) > fh(x)− fh(yh) = a>h (x− yh).

From mesh(T ) = 1, we obtain that −e ≤ x− yi ≤ e, i = 1,2, · · · ,h, where e = (1, 1,
· · · , 1)> ∈ Rn. Thus, for i = 1,2, · · · ,h−1,

min
−e≤y≤e

a>i y≤ fi(x)≤ max
−e≤y≤e

a>i y,

and
min
−e≤y≤e

a>h y≤ fh(x).

Therefore, σ is contained in

Λ =
{

x ∈ X(η ,h,−1)
∣∣∣∣

min−e≤y≤e a>i y≤ fi(x)≤max−e≤y≤e a>i y,
i = 1,2, · · · ,h−1, and min−e≤y≤e a>h y≤ fh(x)

}
.

Let f̂ (x) = ( f1(x), f2(x), · · · , fh−1(x))>. Then, f̂ (x) is bounded on Λ. Let x̂ = (x1,
x2, · · · , xh−1)>, â = (a1h,a2h, · · · ,ah−1,h)>, b̂ = (b1,b2, · · · ,bh−1)>, ā = (ah1, ah2, · · · ,
ah,h−1), d̂ = (ah,h+1,ah,h+2, · · · ,ahn)>, ê = (1,1, · · · ,1)> ∈ Rn−h, and

Bh−1,n−h =




a1,h+1 a1,h+2 · · · a1n

a2,h+1 a2,h+2 · · · a2n
...

...
. . .

...
ah−1,h+1 ah−1,h+2 · · · ah−1,n


 .

188 The Sixth International Symposium on Operations Research and Its Applications



Since Ah−1,h−1 is invertible, hence, for any x = (x̂>,xh,η ê>)> ∈ Λ,

x̂ = A−1
h−1,h−1( f̂ (x)+ b̂−ηBh−1,n−hê)−A−1

h−1,h−1âxh.

Substituting x = (x̂>,xh,η ê>)> into min−e≤y≤e a>h y≤ fh(x), we obtain that

min
−e≤y≤e

a>h y≤ āA−1
h−1,h−1( f̂ (x)+ b̂−ηBh−1,n−hê)+η d̂>ê+(ahh− āA−1

h−1,h−1â)xh.

From ahh− āA−1
h−1,h−1â > 0 and x ∈ X(η ,h,−1), we obtain that

min−e≤y≤e a>n y− āA−1
h−1,h−1( f̂ (x)+ b̂−ηBh−1,n−hê)−η d̂>ê

ahh− āA−1
h−1,h−1â

≤ xh ≤ ηh.

Since f̂ (x) is bounded on Λ, hence, xh is bounded on Λ. Therefore, Λ is bounded.
The lemma follows.

Lemma 4. There are finitely many almost h-complete simplices contained in X(η ,
h, 1) and carrying all the integer labels in I(h−1), no integer labels 0 and h, and at
least one integer label in N\{I(h)}.

Proof. Let σ =< y0,y1, · · · ,yh > be an arbitrary almost h-complete simplices con-
tained in X(η ,h,1) and carrying all the integer labels in I(h− 1), no integer labels
0 and h, and at least one integer label in N\{I(h)}. Without loss of generality, we
assume that l(yi) = i, i = 1,2, · · · ,h− 1, and l(yh) = q > h. For i = 1,2, · · · ,h, we
define

fi(x) = a>i x−bi.

Then, for i = 1,2, · · · ,h−1, since fi(yi) > 0 and fi(yh)≤ 0,

fi(x) = fi(x)− fi(yh)+ fi(yh)≤ fi(x)− fi(yh) = a>i (x− yh)

and
fi(x) = fi(x)− fi(yi)+ fi(yi) > fi(x)− fi(yi) = a>i (x− yi),

and, since fh(yh)≤ 0,

fh(x) = fh(x)− fh(yh)+ fh(yh)≤ fh(x)− fh(yh) = a>h (x− yh).

From mesh(T ) = 1, we obtain that −e ≤ x− yi ≤ e, i = 1,2, · · · ,h, where e = (1, 1,
· · · , 1)> ∈ Rn. Thus, for i = 1,2, · · · ,h−1,

min
−e≤y≤e

a>i y≤ fi(x)≤ max
−e≤y≤e

a>i y,

and
fh(x)≤ max

−e≤y≤e
a>h y.
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Therefore, σ is contained in

Λ =
{

x ∈ X(η ,h,1)
∣∣∣∣

min−e≤y≤e a>i y≤ fi(x)≤max−e≤y≤e a>i y,
i = 1,2, · · · ,h−1, and fh(x)≤max−e≤y≤e a>h y

}
.

Let f̂ (x) = ( f1(x), f2(x), · · · , fh−1(x))>. Then, f̂ (x) is bounded on Λ. Let x̂ = (x1,
x2, · · · , xh−1)>, â = (a1h,a2h, · · · ,ah−1,h)>, b̂ = (b1,b2, · · · ,bh−1)>, ā = (ah1, ah2, · · · ,
ah,h−1), d̂ = (ah,h+1,ah,h+2, · · · ,ahn)>, ê = (1,1, · · · ,1)> ∈ Rn−h, and

Bh−1,n−h =




a1,h+1 a1,h+2 · · · a1n

a2,h+1 a2,h+2 · · · a2n
...

...
. . .

...
ah−1,h+1 ah−1,h+2 · · · ah−1,n


 .

Since Ah−1,h−1 is invertible, hence, for any x = (x̂>,xh,η ê>)> ∈ Λ,

x̂ = A−1
h−1,h−1( f̂ (x)+ b̂−ηBh−1,n−hê)−A−1

h−1,h−1âxh.

Substituting x = (x̂>,xh,η ê>)> ∈ Λ into max−e≤y≤e a>h y≥ fh(x), we obtain that

max
−e≤y≤e

a>h y≥ āA−1
h−1,h−1( f̂ (x)+ b̂−ηBh−1,n−hê)+η d̂>ê+(ahh− āA−1

h−1,h−1â)xh.

From ahh− āA−1
h−1,h−1â > 0 and x ∈ X(η ,h,1), we obtain that

max−e≤y≤e a>n y− āA−1
h−1,h−1( f̂ (x)+ b̂−ηBh−1,n−hê)−η d̂>ê

ahh− āA−1
h−1,h−1â

≥ xh ≥ ηh.

Since f̂ (x) is bounded on Λ, hence, xh is bounded on Λ. Therefore, Λ is bounded.
The lemma follows.

For any ξ ∈ Rn and K ⊆ N, we define

H(ξ ,K) = {ξ + x | 0≤ xi, i ∈ K, and xi = 0, i /∈ K}.
The following lemma can be found in Dang and Maaren (1998).

Lemma 5. If z0 is an integer point in P, then, for any K ⊆N, each point of ∈H(z0,K)
carries either integer label 0 or an integer label in K.

As a corollary of Lemma 5, we obtain

Corollary 6. If z0 is an integer point in P, there is no n-complete simplex in H(z0,N),
and, for any j ∈N, there is no complete (n−1)-dimensional simplex in H(z0,N\{ j})
carrying only integer labels in N.

Lemma 7. If z0 is an integer point in P, there are finitely many almost complete
n-dimensional simplices carrying all the integer labels in N and contained in Rn \
H(z0,N).
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Proof. Let σ =< y0,y1, · · · ,yn > be an arbitrary almost complete n-dimensional sim-
plex carrying all the integer labels in N. Without loss of generality, we assume that
l(yi) = i, i = 1,2, · · · ,n. For i = 1,2, · · · ,n, we define

fi(x) = a>i x−bi.

Let x be an arbitrary point of σ . Then, for i = 1,2, · · · ,n− 1, since fi(yi) > 0 and
fi(yn)≤ 0,

fi(x) = fi(x)− fi(yn)+ fi(yn)≤ fi(x)− fi(yn) = ai(x− yn)

and
fi(x) = fi(x)− fi(yi)+ fi(yi) > fi(x)− fi(yi) = ai(x− yi),

and, since fn(yn) > 0,

fn(x) = fn(x)− fn(yn)+ fn(yn) > fn(x)− fn(yn) = a>n (x− yn).

From mesh(T ) = 1, we obtain that −e ≤ x− yi ≤ e, i = 1,2, · · · ,n, where e = (1, 1,
· · · , 1)> ∈ Rn. Thus, for i = 1,2, · · · ,n−1,

min
−e≤y≤e

a>i y≤ fi(x)≤ max
−e≤y≤e

a>i y,

and
min
−e≤y≤e

a>n y≤ fn(x).

Let

Λ =
{

x ∈ Rn

∣∣∣∣
min−e≤y≤e a>i y≤ fi(x)≤max−e≤y≤e a>i y,
i = 1,2, · · · ,n−1, and min−e≤y≤e a>n y≤ fn(x)

}
.

Then, all the almost complete n-dimensional simplices carrying all the integer labels
in N are contained in Λ.

Let f̂ (x) = ( f1(x), f2(x), · · · , fn−1(x))>. Clearly, f̂ (x) is bounded on Λ. Let
x̂ = (x1,x2, · · · ,xn−1)>, â = (a1n,a2n, · · · ,an−1,n)>, b̂ = (b1,b2, · · · ,bn−1)>, and ā =
(an1,an2, · · · ,an,n−1). Since An−1,n−1 is invertible, hence, for any x = (x̂>,xn)> ∈ Λ,

x̂ = A−1
n−1,n−1( f̂ (x)+ b̂)−A−1

n−1,n−1âxn.

Substituting x = (x̂>,xn)> ∈ Λ into min−e≤y≤e a>n y≤ fn(x), we obtain

min
−e≤y≤e

a>n y≤ āA−1
n−1,n−1( f̂ (x)+ b̂)+(ann− āA−1

n−1,n−1â)xn.

From ann− āA−1
n−1,n−1â > 0, we get

min−e≤y≤e a>n y− āA−1
n−1,n−1( f̂ (x)+ b̂)

ann− āA−1
n−1,n−1â

≤ xn.

Since f̂ (x) is bounded on Λ and −A−1
n−1,n−1â > 0, hence, Λ\H(z0,N) is bounded,

where −A−1
n−1,n−1â > 0 comes from â < 0 and A−1

n−1,n−1 ≤ 0. The lemma follows.
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3 An Arbitrary Starting Variable Dimension Algorithm
In this section, based on the results in Section 2, we develop an algorithm for

computing an integer point in P. As a result of the assumption on A, we obtain

Lemma 8. If x1 = (x1
1,x

1
2, · · · ,x1

n)
> ∈ P and x2 = (x2

1,x
2
2, · · · ,x2

n)
> ∈ P,

x̄ = (x̄1, x̄2, · · · , x̄n)> = (max{x1
1,x

2
1},max{x1

2,x
2
2}, · · · ,max{x1

n,x
2
n})> ∈ P.

Proof. Since an+1 ≤ 0,
a>n+1x̄≤ a>n+1x1 ≤ bn+1.

For any given i ∈ N, without loss of generality, we assume that x̄i = x1
i . Then, from

aii > 0 and aik ≤ 0 for any k 6= i, we obtain that

a>i x̄ = aiix̄i +∑
k 6=i

aikx̄k = aiix1
i +∑

k 6=i

aikx̄k ≤ aiix1
i +∑

k 6=i

aikx1
k = a>i x1 ≤ bi.

Thus, x̄ ∈ P.

Let xmax denote the unique solution of

max
x∈P

e>x,

where e = (1,1, · · · ,1)> ∈ Rn.

Lemma 9. For any point x ∈ P, x≤ xmax.

Proof. Suppose that there is a point x̂ = (x̂1, x̂2, · · · , x̂n)> ∈ P satisfying x̂q > xmax
q for

some q ∈ N. Then, from Lemma 8, we obtain that

x̄ = (max{x̂1,xmax
1 },max{x̂2,xmax

2 }, · · · ,max{x̂n,xmax
n })> ∈ P.

Clearly, e>x̄ > e>xmax, which contradicts that e>xmax = maxx∈P e>x. The lemma fol-
lows.

Since P has an interior point, hence, xmax is the unique solution of

Annx = (b1,b2, · · · ,bn)>.

For any number α , let bαc denote the greatest integer less than or equal to α .
We define xu = (xu

1,x
u
2, . . . ,x

u
n)
> with xu

i = bxmax
i c for i = 1,2, . . . ,n. Then, bxc =

(bx1c,bx2c, · · · ,bxnc)> ≤ xu for any x ∈ P. If xu ∈ P, an integer point of P has been
found. We assume that xu /∈ P.

Given the integer labeling rule in Section 2 and a triangulation T of the space, an
arbitrary starting variable dimension algorithm is developed for computing an integer
point of an n-dimensional simplex, which is as follows.
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Initialization: Compute l(η). If l(η) = 0, the algorithm terminates, and an integer
point of P has been found. Otherwise, let maxK = l(η), h = 1,

α =

{
−1 if h = maxK,
1 otherwise,

τ0 =< η >, σ0 be the unique h-dimensional simplex in X(η ,h,α) having τ0 as
a facet, y+ be the vertex of σ0 opposite to τ0, p = 1, and k = 0. Go to Step 1.

Step 1: Compute l(y+). If l(y+) = 0, the algorithm terminates, and an integer point
of P has been found. If either l(y+) = h and maxK > h or l(y+) > h and maxK =
h, then σk is h-complete and go to Step 3. Otherwise, do as follows: Let y− be
the unique vertex of τk such that

l(y−) =

{
l(y+) if l(y+)≤ h,
maxK otherwise,

and τk+1 the facet of σk opposite to y−. Let maxK = l(y+) if l(y+) > h, and go
to Step 2.

Step 2: If τk+1 ⊂ X(η ,h−1,α) for some α ∈ {−1,1}, go to Step 4. Otherwise, do
as follows: Let σk+1 be the unique simplex that is adjacent to σk and has τk+1

as a facet. Let y+ be the vertex of σk+1 opposite to τk+1 and k = k + 1. Go to
Step 1.

Step 3: If h = n then go to Step 5. Otherwise, do as follows: Let maxK = l(y+) if
l(y+) > h. Let h = h+1, τk+1 = σk, and

α =

{
−1 if h = maxK,
1 otherwise.

Let σk+1 be the unique h-dimensional simplex in X(η ,h,α) having τk+1 as a
facet, and y+ be the vertex of σk+1 opposite to τk+1. Let k = k + 1, and go to
Step 1.

Step 4: Let σk+1 = τk+1, y− be the unique vertex of σk+1 such that

l(y−) =

{
h−1 if α = 1,
maxK otherwise,

and τk+2 the facet of σk+1 opposite to y−. Let maxK = h− 1 if α = −1. Let
h = h−1 and k = k +1, and go to Step 2.

Step 5: If p is even, let p = p+1, α ∈ {−1,1} satisfying σk ⊂ X(η ,n,α), y− be the
unique vertex of σk such that

l(y−) =

{
n if α = 1,
n+1 otherwise,
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τk+1 the facet of σk opposite to y−,

maxK =

{
n+1 if α = 1,
n otherwise,

h = n, and go to Step 2. If p is odd, do as follows: Let p = p + 1, y− be the
vertex of σk carrying integer label n+1 and τk+1 the facet of σk opposite to y−.
Go to Step 6.

Step 6: Let σk+1 be the unique simplex that is adjacent to σk and has τk+1 as a facet,
and y+ the vertex of σk+1 opposite to τk+1. Let k = k +1 and go to Step 7.

Step 7: Compute l(y+). If l(y+) = 0, the algorithm terminates, and an integer point
of P has been found. If xu ≤ y+, the algorithm terminates, and there is no
integer point in P. If l(y+) = n+1, go to Step 5. If l(y+) 6= n+1, let y− be the
vertex of σk other than y+ and carrying integer label l(y+), and τk+1 the facet
of σk opposite to y−. Go to Step 6.

We remark that the algorithm is composed of two phases, one of which consists of
Steps 1-4 of the algorithm and the other Steps 6-7 of the algorithm. Step 5 of the
algorithm is a bridge for interchanging between these two phases. Steps 1-4 of the
algorithm forms a variable dimension algorithm, which comes from a modification
of the 2-ray algorithm in Yamamoto (1984), and Steps 6-7 of the algorithm a full-
dimension pivoting procedure, which comes from Dang and Maaren (1999).

Theorem 10. Within a finite number of iterations, the algorithm either yields an
integer point in P or proves that no such points exist.

Proof. As that in Dang and Maaren (1999), by constructing an undirected graph and
following a standard argument, one can show that the algorithm will never cycle.
When Steps 1-4 of the algorithm are implemented, Lemma 3 and Lemma 4 imply
that, within a finite number of iterations, either an integer point in P is found or an
n-complete simplex is generated. If an n-complete simplex is generated in Steps 1-4
of the algorithm, Steps 6-7 of the algorithm will be implemented. When Steps 6-7 of
the algorithm are implemented, Lemma 7 implies that, within a finite number of iter-
ations, one of the following events will occur: an n-complete simplex is generated, an
integer point in P is found, or an integer point greater than or equal to xu is met. If an
n-complete simplex is generated in Steps 6-7 of the algorithm, Steps 1-4 of the algo-
rithm will be implemented. The algorithm interchanges between two phases. From
Lemma 2, we know that there are finitely many n-complete simplices. Therefore, the
algorithm interchanges between two phases at most finitely many times.

From Corollary 6, we know that, if z0 is an integer point in P, there is no n-
complete simplex in H(z0,N) and no (n−1)-dimensional complete simplex carrying
only integer labels in N and contained in the boundary of H(z0,N), ∪ j∈NH(z0,N\{ j}).
Thus, if P has an integer point, when Steps 6-7 are implemented in the algorithm,
within a finite number of iterations, the algorithm will either generate an n-complete
simplex or find an integer point in P since any integer point in P is less than or equal
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to xu. Therefore, when Steps 6-7 are implemented in the algorithm, the algorithm
meets an integer point greater than or equal to xu, which implies that P has no integer
point. The theorem follows.

The following example shows how the algorithm works when n = 2.

Example 1. Consider
P = {x = (x1,x2)> | Ax≤ b},

where

A =




2 −1
−1 3
−1 −1


 and b =




1/2
1/2
1/2


 .

Let η = (−2,2)>. Computing l(η), we obtain l(η) = 2. Let maxK = 2, h = 1, α = 1,
τ0 =< η >, y0 = η , y1 = (−1,2)>, σ =< y0,y1 >, and y+ = y1.

Iteration 1: Computing l(y+), we obtain l(y+) = 2. Let y− = y0, τ1 =< y1 >, y0 =
(0,2)>, σ1 =< y0,y1 >, and y+ = y0.

Iteration 2: Computing l(y+), we obtain l(y+) = 2. Let y− = y1, τ2 =< y0 >, y1 =
(1,2)>, σ2 =< y0,y1 >, and y+ = y1.

Iteration 3: Computing l(y+), we obtain l(y+) = 2. Let y− = y0, τ3 =< y1 >, y0 =
(2,2)>, σ3 =< y0,y1 >, and y+ = y0.

Iteration 4: Computing l(y+), we obtain l(y+) = 1. Let h = h + 1 = 2, τ4 =<
y0,y1 >, α =−1, y2 = (2,1), σ4 =< y0,y1,y2 >, and y+ = y2.

Iteration 5: Computing l(y+), we obtain l(y+) = 1. Let y− = y0, τ5 =< y1,y2 >,
y0 = (1,1), σ5 =< y0,y1,y2 >, and y+ = y0.

Iteration 6: Computing l(y+), we obtain l(y+) = 1. Let y− = y2, τ6 =< y0,y1 >,
y2 = (0,1), σ6 =< y0,y1,y2 >, and y+ = y2.

Iteration 7: Computing l(y+), we obtain l(y+) = 2. Let y− = y1, τ7 =< y0,y2 >,
y1 = (1,0), σ7 =< y0,y1,y2 >, and y+ = y1.

Iteration 8: Computing l(y+), we obtain l(y+) = 1. Let y− = y0, τ8 =< y1,y2 >,
y0 = (0,0), σ8 =< y0,y1,y2 >, and y+ = y0.

Iteration 9: Computing l(y+), we obtain l(y+) = 0. An integer point of P has been
obtained.
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Appendix A Aggregations
In this section, we consider how to find two relatively prime integers t1 and t2

satisfying that the set of nonnegative integer solutions of

n−1

∑
j=1

a1 jx j = b1,
n−1

∑
j=1

a2 jx j = b2,
n−1

∑
j=1

x j ≤ u, (A.1)

is equal to the set of nonnegative integer solutions of

n−1

∑
j=1

(t1a1 j + t2a2 j)x j = t1b1 + t2b2,
n−1

∑
j=1

x j ≤ u, (A.2)
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where 0 < u. The results in this section follow those in Zhu (1998).
Assume that 0 ≤ b1, 0 ≤ b2, and 0 < b1 + b2. Let µ j = b1a2 j − b2a1 j for j =

1,2, · · · ,n−1.

Lemma A.1. The set of nonnegative integer solutions of

n−1

∑
j=1

a1 jx j = b1,
n−1

∑
j=1

a2 jx j = b2,
n−1

∑
j=1

x j ≤ u,

is equal to the set of nonnegative integer solutions of

n−1

∑
j=1

(t1a1 j + t2a2 j)x j = t1b1 + t2b2,
n−1

∑
j=1

x j ≤ u,

where t1 and t2 are two relatively prime integers satisfying

t1b1 + t2b2 > u max
1≤ j≤n−1

|µ j|.

Proof. Assume that x is a nonnegative integer solution of (A.2). Then,

t1

n−1

∑
j=1

a1 jx j = t1b1 + t2b2− t2

n−1

∑
j=1

a2 jx j.

Thus,
n−1

∑
j=1

a1 jx j = b1 + t2(b2−
n−1

∑
j=1

a2 jx j)/t1.

Let q = (b2−∑n−1
j=1 a2 jx j)/t1. Then, q is an integer since t1 and t2 are relatively prime.

Therefore,
n−1

∑
j=1

a2 jx j = b2 + t1(b1−
n−1

∑
j=1

a1 jx j)/t2 = b2− t1q.

Observe that

t1b1 + t2b2 >u max
1≤ j≤n−1

|µ j|

≥ max
1≤ j≤n−1

|µ j|
n−1

∑
j=1

x j

≥|
n−1

∑
j=1

µ jx j|

=|
n−1

∑
j=1

(b1a2 j−b2a1 j)x j|

=|b1

n−1

∑
j=1

a2 jx j−b2

n−1

∑
j=1

a1 jx j|
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=|b1(b2− t1q)−b2(b1 + t2q)|
=(t1b1 + t2b2)|q|.

Then, |q|< 1. Thus, q = 0. The lemma follows.

One solution of t1 and t2 is given by t1 = p and t2 = p+1, where p is the smallest
integer satisfying

p >
umax1≤ j≤n−1 |µ j|−b2

b1 +b2
.

Let r = t1b1 + t2b2, c j = t1a1 j + t2a2 j for j = 1,2, · · · ,n−1, and cn = 0. Consider

n

∑
j=1

c jx j = r,
n

∑
j=1

x j = u, 0≤ x. (A.3)

Let k be an index satisfying

ck = min
1≤ j≤n

c j

and l an index satisfying
cl = max

1≤ j≤n
c j.

Let ρ j = r−uc j for j = 1,2, · · · ,n.

Lemma A.2. The set of integer solutions of

n

∑
j=1

c jx j = r,
n

∑
j=1

x j = u, 0≤ x,

is equal to the set of integer solutions of

n

∑
j=1

(s1c j + s2)x j = s1r + s2u, 0≤ x, (A.4)

where s1 and s2 are two relatively prime integers satisfying

s1ck + s2 > max{0,ρk}, s1cl + s2 > max{0,−ρl}, s1r + s2u 6= 0.

Proof. Assume that x is an integer solution of (A.4). Then, there is an integer q
satisfying

n

∑
j=1

c jx j = r + s2q.

Thus,
n

∑
j=1

x j = u− s1q.
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Using s1ck + s2 > max{0,ρk} and s1cl + s2 > max{0,−ρl}, we obtain

s1c j + s2 > 0, j = 1,2, · · · ,n.

If s1r+s2u < 0, then both (A.3) and (A.4) are infeasible. So, we only need to consider

s1r + s2u > 0.

Then,

(s1r + s2u)(s1ck + s2) > (s1r + s2u)max{0,ρk} ≥ (s1r + s2u)(r−uck)

and

(s1r + s2u)(s1cl + s2) > (s1r + s2u)max{0,−ρl} ≥ (s1r + s2u)(ucl − r).

Let
f (α) =

r−uα
s1α + s2

.

Then,
d f
dα

=
−u(s1α + s2)− s1(r−uα)

(s1α + s2)2 =− s1r + s2u
(s1α + s2)2 < 0.

Thus,

s1r + s2u > (s1r + s2u)
r−uck

s1ck + s2

= (s1r + s2u) max
1≤p≤n

r−ucp

s1cp + s2

=
n

∑
j=1

(s1c j + s2)x j max
1≤p≤n

r−ucp

s1cp + s2

≥
n

∑
j=1

(s1c j + s2)(
r−uc j

s1c j + s2
)x j

=
n

∑
j=1

(r−uc j)x j

and

s1r + s2u > (s1r + s2u)
ucl − r

s1cl + s2

= (s1r + s2u) max
1≤p≤n

ucp− r
s1cp + s2

=
n

∑
j=1

(s1c j + s2)x j max
1≤p≤n

ucp− r
s1cp + s2

≥
n

∑
j=1

(s1c j + s2)(
uc j− r

s1c j + s2
)x j
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=−
n

∑
j=1

(r−uc j)x j.

Combining these two inequalities together, we obtain

s1r + s2u > |
n

∑
j=1

(r−uc j)x j|

= |r
n

∑
j=1

x j−u
n

∑
j=1

c jx j|

= |r(u− s1q)−u(r + s2q)|
= (s1r + s2u)|q|.

Then, |q|< 1. Thus, q = 0. The lemma follows.

One solution of s1 and s2 is given by s1 = 1 and s2 being equal to the smallest
integer satisfying

s2 > max{max{0,ρk}− ck, max{0,−ρl}− cl} and r + s2u 6= 0.

Let d j = s1c j +s2 for j = 1,2, · · · ,n, and h = s1r+s2u. Then, 0 < d j for j = 1,2, · · · ,n,
and

n

∑
j=1

d jx j = h, 0≤ x.

Repeating the above procedure, one can aggregate a polytope into a simplex.

Appendix B Extended GCD via Lattice Basis Reduction
Let p> = (p1, p2, · · · , pm) with every component being an integer. The extended

GCD via lattice basis reduction (Havas et al., 1998) generates a unimodular matrix
U such that a>U = (0,0, · · · ,0,GCD(p))>, where GCD(p) is the greatest common
devisor of p1, i = 1,2, · · · ,m and which can be stated as follows.

Initialization: For i = 1,2, · · · ,m, let u>i be the ith row of the m×m identity matrix
Im. For r = 2,3, · · · ,m, let λrs = 0 for s = 1,2, · · · ,r− 1. Let Di = 1, i =
0,1, · · · ,m, m1 = 3, n1 = 4, and k = 2. Go to Step 1.

Step 1: Implement Reduce(k,k− 1). If either pk−1 6= 0 or it holds that pk−1 = 0,
pk = 0 and n1(Dk−2Dk + λ 2

k,k−1) < m1D2
k−1, implement Swap(k), let k = k− 1

when k > 2, and go to Step 2. Otherwise, for i = k−2,k−3, · · · ,1, implement
Reduce(k, i), let k = k +1, and go to Step 2.

Step 2: If k ≤ m, go to Step 1. Otherwise, stop. If pm < 0, let pm = −pm and
um =−um.

In the procedure of the extended GCD via lattice basis reduction, for any k and
i, Reduce(k, i) and Swap(k) are given as follows:
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Reduce(k, i): If pi 6= 0, let q = dpk/pic, where dθc denotes the nearest integer
to θ with dθc = θ − 1

2 for θ being a half integer. Otherwise, if 2|λki| > Di, let
q = dλki/Dic, and if 2|λki| ≤ Di, let q = 0. If q 6= 0, let pk = pk−qpi, uk = uk−qui,
λki = λki−qDi, and λk j = λk j−qλi j for j = 1,2, · · · , i−1.

Swap(k): Let h = pk, pk = pk−1, pk−1 = h, g = uk, uk = uk−1, and uk−1 = g.
For j = 1,2, · · · ,k−2, let h = λk j, λk j = λk−1, j, and λk−1, j = h. For i = k +1, · · · ,m,
t = λi,k−1Dk−λikλk,k−1, λi,k−1 = (λi,k−1λk,k−1 +λikDk−2)/Dk−1, and λik = t/Dk−1. Let
Dk−1 = (Dk−2Dk +λ 2

k,k−1)/Dk−1.
Consider

a>x = d, 0≤ x, (B.1)

where a> = (a1,a2, · · · ,an+1) > 0 and every component of a is an integer. Apply the
procedure of the extended GCD via lattice basis reduction to obtain a unimodular
matrix U such that a>U = (0,0, · · · ,0,GCD(a)). Let x = Uy and ui denote the ith
column of U for i = 1,2, · · · ,n + 1. U = (u1,u2, · · · ,un+1). Substituting x = Uy into
(B.1), we obtain that 0≤Uy and GCD(a)yn+1 = d. Let yn+1 = d/GCD(a). Then,

−(y1u1 + y2u2 + · · ·+ ynun)≤ (d/GCD(a))un+1.

Let A = (−u1,−u2, · · · ,−un), b = (d/rn)un+1, and z = (y1,y2, · · · ,yn)>. Then,

Az≤ b,

where A is an (n+1)×n matrix with every component being an integer. If d/GCD(a)
is not an integer, the equation (B.1) has no integer solutions.

Appendix C Canonical Form
Definition C.1. An (n+1)×n matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an+1,1 an+1,2 · · · an+1,n




is in canonical form if aii > 0, i = 1,2, · · · ,n, and ai j ≤ 0 for any i and j with i 6= j.

Let A be an arbitrary (n+1)×n matrix satisfying that there is a positive vector
ρ = (ρ1,ρ2, · · · ,ρn+1)> such that ρ>A = 0 and that any n×n submatrix of A is non-
singular. In order to transform A into a matrix in the canonical form, the following
three elementary column operations can be applied:

• interchange two columns,
• multiply a column by −1, and
• add an integer times a column to another column.
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Theorem C.1. (Pnueli, 1968) Let A be an (n+1)×n matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an+1,1 an+1,2 · · · an+1,n




satisfying that there is a positive vector ρ > 0 with ρ>A = 0 and every n×n submatrix
of A is nonsingular. Then, applying three elementary column operations to A, one can
transform A in polynomial-time into a matrix in the canonical form.

Let In be the n×n identity matrix and

W =
(

A
In

)
.

For i = 1,2, · · · ,2n+1 and j = 1,2, · · · ,n, let wi j denote the entry of W in the ith row
and the jth column, and, for i = 1,2, · · · ,n, let wi denote the ith column of W .

Backward Reduction Procedure:

Initialization: Let h = n+1, m = n,

p> = (p1, p2, · · · , pm) = (wn+1,1,wn+1,2, · · · ,wn+1,n),

Wh = (w1,w2, · · · ,wm), and W\Wh = (wm+1,wm+2, · · · ,wn). Go to Step 1.
Step 1: Apply the procedure of the extended GCD via lattice basis reduction to p.

Let Um denote the unimodular matrix generated by the procedure, Wh = WhU>
m ,

and W = (Wh,W\Wh). Go to Step 2.
Step 2: Let h = h−1. If h > 2, let m = h−1,

p> = (p1, p2, · · · , pm) = (wh,1,wh,2, · · · ,wh,m),

Wh = (w1, · · · ,wm), and W\Wh = (wm+1,wm+2, · · · ,wn), and go to Step 1. Oth-
erwise, stop. Let W =−W .

Forward Reduction Procedure: Let Wk denote the (2n + 1)× k submatrix
formed by the first k columns of W , i.e.,

Wk =




w11 w12 · · · w1k

w21 w11 · · · w2k
...

...
. . .

...
w2n+1,1 w2n+1,2 · · · w2n+1,k


 .

Initialization: Let k = 2 and D1 = W1. Go to Step 1.
Step 1: Use the diagonal positive entries, dhh, h = 1,2, · · · ,k− 1, of the first k− 1

rows of Dk−1 to reduce the first k− 1 entries of the kth column of W , wk, to
nonpositive entries with |whk| < dhh: For h = 1,2, · · · ,k− 1, if whk > 0, let
wk = wk−dwhk/dhhedh, and if −whk ≥ dhh, wk = wk−b−whk/dhhcdh, where dh

is the hth column of Dk−1. Let Dk = (Dk−1,wk). Go to Step 2
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Step 2: If k < n, implement LTM(Dk), let k = k + 1, and go to Step 2. Otherwise,
stop.

LTM(Dk):

Initialization: Let h = 1 and go to Step 1.
Step 1: If dhk = 0, go to Step 3; if |dhk| < dhh, go to Step 2; and otherwise, let

dk = dk−ddhk/dhhcdh and go to Step 2.
Step 2: If dhk = 0, go to Step 3. Otherwise, do as follows: Let g = dh, dh = dk, and

dk = g. If dhh < 0, let dh =−dh. Go to Step 1.
Step 3: Let h = h+1. If h≤ k, go to Step 1. Otherwise, stop.

If one wants A to satisfy that |ai j|< aii for any i and j with i 6= j, the following
reduction procedure can be applied. If |ak j| ≥ akk, add b |ak j |

akk
c times the kth column to

the jth column. Repeat this procedure till that, for k = 1,2, · · · ,n, |ak j|< akk for any
j 6= k.

Appendix D The D1-Triangulation of Rn

A simplex of the D1-triangulation of Rn is the convex hull of n + 1 vectors,
y0, y1, . . . , yn, given as follows: If p = 0 then y0 = y and yk = y + sπ(k)uπ(k), k =
1,2, · · · ,n, and, if p ≥ 1 then y0 = y + s, yk = yk−1 − sπ(k)uπ(k), k = 1,2, · · · , p− 1,
and yk = y + sπ(k)uπ(k), k = p, p + 1, · · · ,n, where y is an integer point of Rn with
every component being an even number, π = (π(1),π(2), · · · ,π(n)) a permutation of
elements of N = {1,2, · · · ,n}, s a sign vector with every component being a number
in {−1,1}, and p an integer with 0 ≤ p ≤ n− 1. Let D1 be the set of all such
simplices. Since a simplex of the D1-triangulation is determined by y, π , s, and
p, we use D1(y,π,s, p) to denote it.

We say that two simplices of D1 are adjacent if they share a common facet. We
show how to generate all the adjacent simplices of a simplex of the D1-triangulation
of Rn in the following. For a given simplex σ = D1(y,π,s, p) with the vertices y0,
y1, . . . , yn, its adjacent simplex opposite to a vertex, say yi, is given by D1(ȳ, π̄, s̄, p̄),
where ȳ, π̄ , s̄, and p̄ are generated according to the pivot rules given in the following
table.

Pivot Rules of the D1-Triangulation of Rn

i ȳ s̄ π̄ p̄
0 n = 1 y+2sπ(1)uπ(1) s−2sπ(1)uπ(1) π p

n≥ 2 p = 0 y s π 1
p = 1 y s π 0
2≤ p y s−2sπ(1)uπ(1) π p

1≤ i p = 0 y s−2sπ(i)uπ(i) π p
i < p−1 y s π1 p
i = p−1 y s π p−1

p−1 < i 1≤ p < n−1 y s π2 p+1
i = n−1 1≤ p = n−1 y+2sπ(n)uπ(n) s−2sπ(n)uπ(n) π p
i = n 1≤ p = n−1 y+2sπ(n−1)uπ(n−1) s−2sπ(n−1)uπ(n−1) π p

π1 = (π(1), · · · ,π(i+1),π(i), · · · ,π(n)),
π2 = (π(1), · · · ,π(p−1),π(i),π(p), · · · ,π(i−1),π(i+1), · · · ,π(n)).
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It is clear that D1 +η is still a triangulation of Rn. Let D1 +η be the set of faces
of simplices of D1 +η . A q-dimensional simplex of D1 +η with vertices y0, y1, . . . ,
yq is denoted by < y0,y1, . . . ,yq >. The restriction of D1 + η on X(η ,h,α) for any
h ∈ N is given by

D1 +η |X(η ,h,α) = {σ ∈D1 +η | σ ⊂ X(η ,h,α) and dim(σ) = h}.

Obviously, D1 +η |X(η ,h,α) is a triangulation of X(η ,h,α).
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