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Abstract This paper presents two interval parameter fuzzy programming models for the planning
of petroleum solid waste management systems under uncertainty. In these models, fixed violation
limits are introduced to relax the critical constraints so that the results produced by these models
give more useful information to decision makers. These two models are also applied to a hypo-
thetical planning problem of waste flow allocation and treatment/disposal facilities expansion. The
results provide a number of decision alternatives under various system conditions. It is helpful for
decision makers to make tradeoffs between system benefit and reliability.
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1 Introduction
The high demand for oil as fuel and feedstock has led to intensive crude oil

exploration and production activities. At the same time, increased activities create
more oil waste. Since the pollution from petroleum solid waste such as residual oil,
disused catalysts, and rotten tanks and pipes may pose a variety of impacts, risks, and
liabilities, petroleum solid waste management (PSWM) has been of much concern in
recent years.

In PSWM, many system parameters and their interactions generally show high
degrees of intrinsic variability and uncertainty. For dealing with uncertainties, Huang
et al. (1993) proposed interval parameter fuzzy programming. This model can be
solved by an interactive two-step solution algorithm (Huang et al., 1993). However,
this solutions may not be satisfying to decision makers. Recently, Huang et al. (2002)
extended this model to an interval fuzzy violation analysis model that provides more
tradeoff information between system benefits and reliability. But in this method,

∗E-mail: suzhe200@uregina.ca
†E-mail: boting@cs.uregina.ca
‡E-mail: gordon.huang@uregina.ca

The Sixth International Symposium on Operations Research and Its Applications (ISORA’06)
Xinjiang, China, August 8–12, 2006
Copyright © 2006 ORSC & APORC§pp. 168–183



the values of violation variables can only be controlled by the total violation. This
method has two drawbacks: (1) the sum of violation variables may satisfy the total
violation, but a single violation variable may exceed its own violation limit; (2) since
each constraint reflects different aspects in PSWM, it is difficult to explain the sum-
mation of all violation variables. For example, in the application of the hypothetical
problem in section 3, the constraints denote system cost, system capacity, and the
daily waste generation rate respectively. It would be difficult to understand the sum
of the violations for these constraints.

In this paper, two new interval fuzzy violation analysis models are developed
to improve the existing models. In both models, a set of fixed violation limits with
parameters are introduced to substitute violation variables in constraints. The solu-
tions to these models under different violation levels of system constraints can help
decision makers to identify and evaluate alternative system designs and to determine
which design can most efficiently achieve the desired system objectives. These two
models will be employed in a hypothetical PSWM system to demonstrate its potential
usefulness.

This paper is organized as follows. In Section 2, we describe the two interval
parameter fuzzy programming models. In Section 3, we apply these two models
to a hypothetical planning problem of waste flow allocation and treatment/disposal
facilities expansion. In Section 4, we analyze the results obtained from Section 3.
Finally, we conclude the paper in Section 5.

2 Methodology
We first consider an interval-parameter linear program (ILP) as follows:

minimize f± = C±X±

subject to A±X± ≤ B±

X± ≥ 0

where A± ∈ {R±}m×n, B± ∈ {R±}m×1, C± ∈ {R±}1×n and X± ∈ {R±}n×1. We useR±
to denote a set of interval numbers. In this model, the interval numbers are introduced
to express uncertainties. However, when the model stipulations are very uncertain,
the outputs will lead to little use or no use for decision makers (Huang et al. 1993).

When we incorporate the flexible fuzzy linear programming and interval pro-
gramming into the one framework, we could formulate this interval-parameter fuzzy
linear programming as follows (Huang et.al.,1993):

maximize λ±

subject to C±X± ≤ f +
opt1−λ±[ f +

opt1− f−opt1]
A±X± ≤ B+−λ±[B+−B−]

0≤ λ± ≤ 1
X± ≥ 0

Fuzzy Programming Models for Petroleum Solid Waste Management 169



where f−opt1 and f +
opt1 denote the least and most desirable system objectives respec-

tively, and λ± is a control variable corresponding to the degree to which the model’s
solution fulfills the fuzzy goal or constraints. According to the solution algorithm
provided by Huang et al. (1993), this model could be solved by dividing it into two
submodels. Let the interval solution be denoted as X±

opt = (x±1opt ,x
±
2opt , . . . ,x

±
mopt)

T ,
x±jopt = [x−jopt ,x

+
jopt ], j = 1,2, . . . ,m, f±opt = [ f−opt , f +

opt ] and λ±
opt = [λ−

opt ,λ +
opt ]. However,

decision makers may not be satisfied with these simply solutions. Instead, they may
desire tradeoff information between system reliability (with low risk) and system
benefit (with low net cost). Thus, information could be presented by different risk
levels of violating system constraints (Huang et al. 2002). To deal with this issue, an
interval parameter fuzzy programming with violation variables model was proposed.
In this model, a set of violation variables were introduced to relax the constraints and
to facilitate violation analysis. This related model can be rewritten as follows (Huang
et al. 2002):

maximize λ−

subject to C+X+−Vf ≤ f +
opt1−λ−[ f +

opt1− f−opt1]
A−X+−V ≤ B+−λ−[B+−B−]

Vf +∑m
i=1 Vi ≤ λ−TV

0≤ λ− ≤ 1
X+ ≥ 0

where Vf is a violation variable for the objective function; V = (V1,V2, . . . ,Vm)T is the
vector of violation variables for each constraint; TV is the total tolerable violation
limit; and m is the number of constraints. With varied TV levels, different λ− values
could be generated. These solutions are useful for analyzing tradeoffs between the
system satisfaction levels and the associated risks (of violating the fuzzy goal and
constraints) (Huang et al. 2002). Unfortunately, there are two drawbacks in the
this method. First, some violation variables value may exceed their own violation
limit, although the sum may satisfy the total violation. And secondly, since each
constraint reflects different aspects, it is difficult to explain the meaning of adding
all violation variables together. In order to deal with this concern, we propose the
following model:

maximize λ−

subject to C+X+− (1−λ−)U0 ≤ f +
opt1−λ−[ f +

opt1− f−opt1]
A−X+− (1−λ−)U ≤ B+−λ−[B+−B−]

0≤ λ− ≤ 1
X+ ≥ 0

In this model, U0 is a fixed violation limit for the objective function; U = (U1, U2, . . .,
Um)T is the vector of fixed violation limit for each constraint; and (1−λ−) represents
the percentage of violation limit (i.e. violation amount for each constraint). From this
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model, we will see, when λ− equals 1, the model will be reduced to an original inter-
val fuzzy linear programming model. The corresponding solution can be interpreted
the lowest system cost, the lowest reliability in fulfilling system requirements, and
the highest risk. Conversely, when λ− equals 0, the violation values will reach their
limits. By solving this model, the solutions will provide useful alternatives for deci-
sion makers. This model is easy to implement, however, since all constraints use the
same λ , this may make some constraints over-satisfied and leave others not well sat-
isfied. We propose another model that introduces a set of parameters αl (0≤ αl ≤ 1)
to the constraints. This model can be described as follows:

maximize λ−

subject to C+X+− (1−α0)U0 ≤ f +
opt1−λ−[ f +

opt1− f−opt1]

A−X+−




(1−α1)U1
...

(1−αm)Um


≤ B+−λ−[B+−B−]

∑m
l=0 αl/(m+1)≥ λ−

0≤ λ− ≤ 1
0≤ αl ≤ 1, l = 0,1,2, . . . ,m

X+ ≥ 0

where m is the numbers of original constraints.

3 Application
We apply the two new models of the previous section to a hypothetical study

area. The hypothetical region includes two oil refinery plants, one oil production site
and three waste management facilities (one landfill and two incinerators), as show
in Figure 1. All kinds of liquid and solid waste from industries such as residual oil,

incinerator 1

landfill

incinerator 2

oil production site

refinery 2refinery 1

Residue from incinerator

Petroleum solid waste

Figure 1: A hypothetical case of PSWM system

dismissed catalysts, rotten tanks and pipes are transported to the incinerators or the
landfill. The waste generation rates for two oil refinery plants and one oil production
site in different periods are showed in Table 1.
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Table 1: Waste generation rates
time period

k=1 k=2 k=3
Refinery 1 (WG1k) [200,250] [225,275] [250,300]
Refinery 2 (WG2k) [350,400] [375,425] [400,450]

Oil production site (WG3k) [275,325] [300,350] [325,375]

Table 2: Data for the costs of transportation and operation
time period

k = 1 k = 2 k = 3
Cost of transportation to landfill($/ton)

Refinery 1 (c±11k) [12.1,16.1] [13.3,17.7] [14.6,19.5]
Refinery 2 (c±21k) [10.5,14.0] [11.6,15.4] [12.8,16.9]

Oil production site (c±31k) [12.7,17.0] [14.0,18.7] [15.4,20.6]
Cost of transportation to incinerator 1 ($/ton)

Refinery 1 (c±12k) [12.8,19.6] [10.6,14.1] [11.7,15.5]
Refinery 2 (c±22k) [10.1,13.4] [11.1,14.7] [12.2,16.2]

Oil production site (c±32k) [8.80,11.7] [9.7,12.8] [10.6,14.0]
Cost of transportation to incinerator 2 ($/ton)

Refinery 1 (c±13k) [12.1,16.1] [13.3,17.7] [14.6,19.5]
Refinery 2 (c±23k) [12.8,17.2] [14.1,18.8] [15.5,20.7]

Oil production site (c±33k) [4.2,5.6] [4.6,6.2] [5.1,6.8]
Cost of residue transportation to landfill ($/ton)

Incinerator 1 (d±2k) [4.7,6.3] [5.2,6.9] [5.7,7.6]
Incinerator 2 (d±3k) [13.4,17.9] [14.7,19.7] [16.2,21.7]

Revenue from incinerators ($/ton)
RE±

k [15,25] [15,25] [15,25]
Facility operating costs ($/ton)

T E±
1k (landfill) [30,45] [40,60] [50,80]

T E±
2k (incinerator 1) [55,75] [60,85] [65,95]

T E±
3k (incinerator 2) [50,70] [60,80] [65,85]

The assumed planning horizon is 15 years that is considered as three equal peri-
ods (5 years for each). The landfill has a capacity of [0.625,0.775]∗106 tons, and the
two waste-to-energy facilities have treatment capacities of [100,125] and [200,225]
tons/day, respectively. The incinerators generate residues of 20% - 30% of the to-
tal incoming wastestream, and the residues will be transported to the landfill and
disposed immediately. The revenues from the incinerators are 15−25$ per ton com-
busted. Table 2 lists transportation costs and relevant operation costs for the three
resources in the three time periods.

According to the region’s environmental policy, during the planning horizon,
the landfill can be incremented by [1.55,2.5]∗106 tons. And the incinerators can be
expanded once by any of three options in each time period. Table 3 gives the detailed
expansion options and the relevant costs for the expansion.
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Table 3: Capacity expansion options for PSWM facilities
time period

k = 1 k = 2 k = 3
Capacity expansion option for

two incinerators (ton/day)
Option 1 (∆TC1) 100 100 100
Option 2 (∆TC2) 150 150 150
Option 3 (∆TC3) 200 200 200

Capacity expansion option
for landfill (106ton)

∆TC [1.55,2.50] [1.55,2.50] [1.55,2.50]
Capital cost for landfill expansion

($106 present value)
FLCk [13,15] [13,15] [13,15]

Capacity cost for incinerator
expansion, j = 2,3 (106 ton)

Option 1 (FTC j1k) 10.5 8.3 6.5
Option 2 (FTC j2k) 15.2 11.9 9.3
Option 3 (FTC j3k) 19.8 15.5 12.2

Therefore, the problem under consideration is how to effectively distribute the
waste flows from these three resources and select appropriate capacity expansion
schemes to minimize net system cost. Since uncertainties exist in the system compo-
nents, the above problem can be formulated as an interval fuzzy mixed integer linear
programming (IFMILP) as follows.

maximize λ±

subject to

1825
3

∑
i=1

3

∑
k=1

[(c±i1k +T E±
1k) · x±i1k +

3

∑
j=2

((c±i jk +T E±
jk) · x±i jk−RE±

k · x±i jk

+RF± · (d±jk +T E±
1k) · x±i jk)]+

3

∑
j=2

3

∑
m=1

3

∑
k=1

(FTC±
jmk ·Z±jmk +

3

∑
k=1

(FLC±
k ·Y±

k )

≤ f +
opt1−λ± · ( f +

opt1− f−opt1), (system cost constraint);

1825
3

∑
i=1

k′

∑
k=1

(x±i1k +RF± ·
3

∑
j=2

x±i jk)≤ T L−−λ±(T L+−T L−)+ M TC ·
k′

∑
k=1

Y±
k ,

k′ = 1,2,3, (landfill capacity constraints);

3

∑
i=1

x±i jk′ ≤WT E+
j −λ± · (WT E+

j −WT E−
j )+

3

∑
m=1

k′

∑
k=1

(Z±jmk· M TCm),

j = 2,3;k′ = 1,2,3, (incinerator capacity constraints);

Fuzzy Programming Models for Petroleum Solid Waste Management 173



3

∑
j=1

x±i jk ≥WG+
ik −λ± · (WG+

ik −WG−
ik),

i = 1,2,3;k = 1,2,3, (waste disposal constraints);

3

∑
k=1

Y±
k ≤ 1, (landfill expansion constraints);

3

∑
m=1

Z jmk ≤ 1, j = 2,3;k = 1,2,3, (incinerator expansion constraints);

Yk = 0 or 1, and Z jmk = 0 or 1, j = 2,3;k = 1,2,3;m = 1,2,3;

0≤ λ± ≤ 1, (membership degree);

x±i jk ≥ 0, i = 1,2,3, j = 2,3;k = 1,2,3.

In the above formula, the coefficient 1825 = 365× 5, which means the total
days in a period of five years; λ± is a control variable corresponding to the degree
(membership grade) of satisfaction for the constraints and objective function; f−opt1
and f +

opt1 is the most and least desirable system objective function value; i is the index
for three resources, i = 1 (refinery 1), i = 2 (refinery 2) and i = 3 (oil production site);
j is the index for PSWM facilities, j = 1 (landfill), j = 2 (incinerator 1) and j = 3
(incinerator 2); k is the index for periods, k = 1 (0 ∼ 5 years), k = 2 (6 ∼ 10 years)
and k = 3 (11 ∼ 15 years); m is the index for facility capacity expansion type; RF±

is the residue flow rate from incinerators to landfill (ton/day); x±i jk is the solid waste
stream from resource i to facility j in period k (ton/day); ∆TC± is the total amount of
landfill expansion capacity for landfill (ton); Y±

k is the binary variable for expansion
of landfill in period k; T L± is the capacity of landfill (ton); WT E±

j is the capacity
of incinerator j ( j = 2,3) (ton/day); Z±jmk is the binary variable for expansion option
m of incinerator j in period k; ∆TCm is the amount of capacity expansion option m
for incinerators (ton/day); C±

i jk is the waste transportation cost from resources i to
facility j in period k ($/ton); d±jk is the residue transportation cost from incinerator j
to landfill in period k ($/ton); T E±

jk is the operating cost of PSWM facility j in period
k ($/ton); RE±

k is the revenue of unit PSW incinerated in period k ($/ton); FLC±
k is

unit capacity expansion cost for landfill in period k($/ton); FTC±
jmk is the unit cost

of capacity expansion option m for incinerator j in period k ($/ton); WG±
ik is the daily

generation rate of solid waste for resource i in period k (ton/day).
From Section 2, our first constraint-relaxed IFMILP model, denoted by model

A, can be formulated as follows.

maximize λ−

subject to

1825
3

∑
i=1

3

∑
k=1

[(c+
i1k +T E+

1k) · x+
i1k +

3

∑
j=2

((c+
i jk +T E+

jk) · x+
i jk−RE−

k · x+
i jk

+RF+ · (d+
jk +T E+

1k · x+
i jk)]+

3

∑
j=2

3

∑
m=1

3

∑
k=1

(FTC+
jmk ·Z jmk)+

3

∑
k=1

(FLC+
k ·Y +

k )

− (1−λ−)U0 ≤ f +
opt1−λ− · ( f +

opt1− f−opt1), (system cost constraint with violation);

174 The Sixth International Symposium on Operations Research and Its Applications



1825
3

∑
i=1

k′

∑
k=1

[x+
i1k +RF+ ·

3

∑
j=2

x+
i jk]− (1−λ−)Uk′ ≤ T L−−λ−(T L+−T L−)+ M TC ·

k′

∑
k=1

Y±
k ,

k′ = 1,2,3, (landfill capacity constraints with violation);

3

∑
i=1

x+
i jk′ − (1−λ−)Uk′+3( j−1) ≤WT E+

j −λ−(WT E+
j −WT E−

j )+
3

∑
m=1

k′

∑
k=1

(Z jmk· M TCm),

j = 2,3;k′ = 1,2,3, (incinerator capacity constraints with violation);

3

∑
j=1

x+
i jk +(1−λ−) ·Uk+3(i−1)+9 ≥WG+

ik −λ− · (WG+
ik −WG−

ik),

i = 1,2,3;k = 1,2,3 (waste disposal constraints with violation);

3

∑
k=1

Yk ≤ 1, (landfill expansion constraints);

3

∑
m=1

Z jmk ≤ 1, j = 2,3;k = 1,2,3, (incinerator expansion constraints);

Yk = 0 or 1, and Z jmk = 0 or 1, j = 2,3;k = 1,2,3;m = 1,2,3;

0≤ λ− ≤ 1, (membership degree);

x+
i jk ≥ x−i jkopt

, i = 1,2,3, j = 2,3;k = 1,2,3.

where U0 is a fixed violation limit for the original objective function, and U ′
k,

Uk′+3( j−1), and Uk+3(i−1)+9 (i = 1,2,3, j = 2,3, k = 1,2,3, k′ = 1,2,3) are violation
limits for constraints.

From Section 2, our second constraint-relaxed IFMILP model, denoted by
model B, can be formulated as follows.

maximize λ−

subject to

1825
3

∑
i=1

3

∑
k=1

[(c+
i1k +T E+

1k) · x+
i1k +

3

∑
j=2

((c+
i jk +T E+

jk) · x+
i jk−RE−

k · x+
i jk

+RF+(d+
jk +T E+

1k · x+
i jk)]+

3

∑
j=2

3

∑
m=1

3

∑
k=1

(FTC+
jmk ·Z jmk)+

3

∑
k=1

(FLC+
k ·Y +

k )

− (1−α0)U0 ≤ f +
opt1−λ− · ( f +

opt1− f−opt1), (system cost constraint with violation);

1825
3

∑
i=1

k′

∑
k=1

[x+
i1k +RF+ ·

3

∑
j=2

x+
i jk]− (1−αk′)Uk′ ≤ T L−−λ−(T L+−T L−)

+ M TC ·
k′

∑
k=1

Y±
k ,k′ = 1,2,3, (landfill capacity constraints with violation);
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3

∑
i=1

x+
i jk′ − (1−αk′+3( j−1))Uk′+3( j−1)

≤WT E+
j −λ− · (WT E+

j −WT E−
j )+

3

∑
m=1

k′

∑
k=1

(Z jmk· M TCm),

j = 2,3;k′ = 1,2,3, (incinerator capacity constraints with violation);

3

∑
j=1

x+
i jk +(1−αk+3(i−1)+9)Uk+3(i−1)+9 ≥WG+

ik −λ− · (WG+
ik −WG−

ik),

i = 1,2,3;k = 1,2,3, (waste disposal constraints with violation);

m

∑
l=0

αl/(m+1)≥ λ−, (average αl constraint);

3

∑
k=1

Yk ≤ 1, (landfill expansion constraints);

3

∑
m=1

Z jmk ≤ 1, j = 2,3;k = 1,2,3, (incinerator expansion constraints);

Yk = 0 or 1, and Z jmk = 0 or 1, j = 2,3;k = 1,2,3;m = 1,2,3;

0≤ λ− ≤ 1, (membership degree);

0≤ αl ≤ 1, l = 0,1, . . . ,m;

x+
i jk ≥ x−i jkopt

, i = 1,2,3, j = 2,3;k = 1,2,3.

where U0 is a fixed violation limit for the original objective function, U ′
k, Uk′+3( j−1),

and Uk+3(i−1)+9, (i = 1,2,3, j = 2,3, k = 1,2,3, k′ = 1,2,3), are violation limits for
each constraints, and (1−αl) (l = 0,1, . . . ,m) are parameters for the percentage of
the fixed violation limits.

4 Result analysis
4.1 IFMILP model

Table 4 shows the solutions to the IFMIP model. The net system cost is [300.96,
576.534], and corresponding λ− value ranges [0.035, 0.959]. Since λ− is a control
variable corresponding to the membership degree, a low λ− value (= 0.035) implies
a relatively low possibility for satisfying the objective function and constraints.

The solutions for integer variables are that, when λ− has a higher value, the
expansion of the landfill should be taken in period 2; in comparison, when λ− has a
lower value, the landfill will be expanded in period 1 corresponding to a high flow
rate; both incinerators 1 and 2 should be expanded in period 1, with an incremental
capacity of 200 tons/day and 150 tons/day respectively.
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Table 4: Solutions to IFMIP model
Resource Facility Period Variable Solution

Oil refinery flow to 1 x±111 [128,174]
plant 1 landfill 2 x±112 [0,46]

(ton/day) 3 x±113 [0,46]
flow to 1 x±121 [0,0]

incinerator 1 2 x±122 [227,227]
(ton/day) 3 x±123 [228,228]
flow to 1 x±131 [74,74]

incinerator 2 2 x±132 [0,0]
(ton/day) 3 x±133 [24,24]

Oil refinery flow to 1 x±211 [54,100]
plant 2 landfill 2 x±212 [303,349]

(ton/day) 3 x±213 [329,375]
flow to 1 x±221 [298,298]

incinerator 1 2 x±222 [74,74]
(ton/day) 3 x±223 [73,73]
flow to 1 x±231 [0,0]

incinerator 2 2 x±232 [0,0]
(ton/day) 3 x±233 [0,0]

Oil production flow to 1 x±311 [0,46]
site landfill 2 x±312 [0,46]

(ton/day) 3 x±313 [0,32]
flow to 1 x±321 [0,0]

incinerator 1 2 x±322 [0,0]
(ton/day) 3 x±323 [0,0]
flow to 1 x±331 [277,277]

incinerator 2 2 x±332 [302,302]
(ton/day) 3 x±333 [327,341]

λ± [0.035,0.959]
System cost( 106) [300.96, 576.534]

4.2 Model A
Since the system capacities and system cost are interval numbers, the violation

limit used in this paper is a percentage of the mean value of the right hand side
for each constraint and original objective function. In this paper, the largest violation
limit is 30% of the whole system capacity or system cost because it will be impossible
in practice if violation limits exceed 30%.

Solving the new constraint-relaxed IFMIP model A, the relationship between λ−

and the system cost can be obtained, under the various violation limits. These results,
showed in table 5, indicate that with an increasing λ−, the system cost decreases, but
the risk of violating the system constraints increases; in comparison, with a lower
λ− level, the system cost is high, but the reliability in fulfilling system requirements
increases.

Table 5 also shows how the type of expansion capacity changes with the different
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Table 5: System cost, violation amount and λ− levels
Violation limits

(% system capacity) 2 3 5 8 10 15 20 30
λ− levels 0.1841 0.2236 0.3095 0.3919 0.4441 0.5382 0.5989 0.6864

System costs ($million) 538.66 532.51 512.62 495.04 483.00 461.83 449.11 429.90
Violation amount
Landfill (106 ton) 0.0114 0.0163 0.0242 0.0340 0.0389 0.0485 0.0562 0.0658

Incinerator 1 (ton/day) 1.83 2.62 3.88 5.47 6.25 7.79 9.03 10.58
Incinerator 2 (ton/day) 3.47 4.95 7.34 10.33 11.81 14.72 17.05 19.99
Binary variables with

value 1 for:
Landfill Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1

Incinerator 1 Z211

Incinerator 2 Z321 Z311,Z332 Z331 Z311,Z312 Z321 Z311 Z311 Z313

Table 6: Reduced system cost under different λ− levels
Violation limits

(% system capacity) 1 3 4 5 8 10 15 20 30
λ− levels λ−

0 λ−
1 λ−

2 λ−
3 λ−

4 λ−
5 λ−

6 λ−
7 λ−

8
0.134 0.224 0.267 0.310 0.392 0.444 0.538 0.599 0.686

System costs c0 c1 c2 c3 c4 c5 c6 c7 c8

($million) 551.98 532.51 522.64 512.62 495.04 483.00 461.82 449.11 429.90
System costs ∆c1 ∆c2 ∆c3 ∆c4 ∆c5 ∆c6 ∆c7 ∆c8

reduction ($million) 19.47 29.34 39.36 56.94 68.98 90.16 102.87 122.08
∆λ− ∆λ−

1 ∆λ−
2 ∆λ−

3 ∆λ−
4 ∆λ−

5 ∆λ−
6 ∆λ−

7 ∆λ−
8

0.09 0.133 0.176 0.258 0.31 0.404 0.465 0.552
∆c/∆λ− ($million 216.33 220.6 223.64 220.7 222.51 223.16 221.22 221.16

per unit of λ−)

λ−. With a increased λ− value, the capacity expansion will generally decrease and
expansion time will be delayed. The reason is that due to a increased λ−, the right
hand sides of constraints decrease, which would force a low flow rate, so that the
capacity expansion would decrease or lag behind. At the same time the system cost
will be low.

We use 9 scenarios to analyze the variations of system cost reduction under
different λ− levels. We use λ−

0 =0.134 (the violation limit is 1%) as the reference
scenario. The data for the ratio of system costs reduction (∆cm) to λ− value varia-
tion (∆λ−

m ) is listed in Table 6. In this table, ∆cm = c0 − cm and ∆λ−
m = λ−

m − λ−
0 ,

m = 1,2, . . . ,8. These results indicate that the ratio (∆c/∆λ−) generally increases
as violation limits increase. When the λ− value is low (less than or equal to 0.31),
∆c/∆λ− increases faster than the ratio with a high λ− value. As a result, a conclu-
sion can be drawn that λ− ≤ 0.31 is not a good choice for decision makers. However,
with a high λ− value, the risk of violating system constraints increases. Thus, de-
cision makers should be very careful to make a good compromise between system
benefit and environmental objectives.
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Table 7: λ− levels, system costs and violation amount under mixed violation limit
(violation limits vary only for waste generation constraints)

Violation limits (%capacity) 3 5 10 15 20
λ− levels 0.3388 0.3686 0.4441 0.4951 0.5476

System costs($million) 518.126 508.184 483.00 465.978 448.471
Violation amount for
waste generation rate 6.4467 10.26 18.07 24.61 29.41

Table 8: System costs and λ− levels (violation limit is 5% of capacity/system cost)
Average αl 10λ− 8λ− 5λ− 3λ− λ− 0.5λ− 0.25λ−

λ− levels λ−
0 λ−

1 λ−
2 λ−

3 λ−
4 λ−

5 λ−
6

0.0989 0.1222 0.1886 0.2678 0.3981 0.3993 0.4131
System costs c0 c1 c2 c3 c4 c5 c6

($million) 562.9501 560.8542 554.4566 531.54 493.8291 493.4884 489.4913
∆c 2.0958 8.4935 31.41 69.1209 69.4616 73.4587

∆λ− 0.0233 0.0897 0.1689 0.2992 0.3004 0.3142
∆c/∆λ− 89.833 94.688 185.968 231.02 231.23 233.796

In this method, decision makers can also choose violation limits as the different
percentage of system capacity or system cost according to the actual desire. We
analyze how system cost, violation amount and λ− will change when only violation
limits for waste generation constraints are different. These results are presented in
Table 7. These provide useful information for decision makers: when they select the
waste allocation patterns, what economy and the risk they should face.

4.3 Model B
We will continue to use the percentage of the mean value of the right hand side

as violation limit for each constraint and original objective function. In this paper,
the largest violation limit is 20% of the whole system capacity or system cost. We
present Tables 8, 9 and 10 to analyze the relationship between system cost and λ−

levels. In these three tables, the violation limits are 5%, 10% and 15% of system
cost or system capacity respectively. The three tables indicate that system cost will
decrease with an increased λ− level. We present the ratio of system cost reduction
(∆ci) to λ− value variation (∆λ−

i ) under three different violation limit (i.e., 5%, 10%
and 15%). In these table, ∆ci = c0− ci and ∆λ−

i = λ−
i −λ−

0 (i = 1,2, . . . ,6). These
results indicate that the ratio (∆c/∆λ−) will increase when λ− increases. When λ−

is less than 0.2, different violation limits have little influence on it. After that, the
ratio shows that, with an increased violation limit, the ratio will decrease. The reason
is that large violation amounts will lead to a high λ− value and a low system cost.
Therefore, decision makers should be more careful: if they want to choose a low
system cost, that means they must face a high risk of violating system constraints.

The violation amount for each constraint at a certain λ− level can be quantified
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Table 9: System costs and λ− levels (violation limit is 10% of capacity/system cost)
Average αl 10λ− 8λ− 5λ− 3λ− λ− 0.5λ− 0.25λ−

λ− levels λ−
0 λ−

1 λ−
2 λ−

3 λ−
4 λ−

5 λ−
6

0.0994 0.1236 0.1944 0.3137 0.6093 0.7135 0.7184
System costs c0 c1 c2 c3 c4 c5 c6

($million) 562.902 560.702 554.4 540.373 454.842 424.674 423.263
∆c 2.2 8.502 22.529 108.082 138.228 139.639

∆λ− 0.0241 0.095 0.2143 0.5099 0.6141 0.619
∆c/∆λ− 91.13 89.523 105.128 211.98 225 225.588

Table 10: System costs and λ− levels (violation limit is 15% of capacity/system cost)
Average αl 10λ− 8λ− 5λ− 3λ− λ− 0.5λ− 0.25λ−

λ− levels λ−
0 λ−

1 λ−
2 λ−

3 λ−
4 λ−

5 λ−
6

0.0994 0.124 0.1962 0.3209 0.7413 0.9766 1
System costs c0 c1 c2 c3 c4 c5 c6

($million) 562.885 560.69 554.24 541.05 439.15 370.68 363.90
∆c 2.194 8.645 21.835 123.735 192.20 198.99

∆λ− 0.0246 0.0968 0.2215 0.6419 0.8772 0.9
∆c/∆λ− 89.16 89.34 98.59 192.77 219.13 221.1

by solving this model. Table 11 lists the relationship among λ− levels, system costs
and violation amount when the violation limit is 15% of the system cost or system
capacity (in this table we only show the value of αl that is not equal to 1, because, if
αl = 1, then there is no violation amount on that constraint). This table shows that λ−

will increase when the violation amount is increased. The violation amount will be
used in the following order: first, the violation amount for the system cost constraint
will be used; when it reaches to its limit, the violation amount for the daily waste
generation constraints begin to join it; then the violation amount for the capacity of
landfill constraint in period 3 will be added; and finally, the violation amount for
some incinerator constraints will be added.

Table 11 also lists the change of the capacity expansion type with the different
λ− levels and the corresponding violation amount. With the greater violation amount
needed by constraints, λ− level will increase and the right hand side will decrease.
This will force the left hand side (flow rate) to decrease too. Therefore, the expan-
sion of capacity will decrease or lag behind. This conclusion is the same as the one
obtained by model A.

In model B, we also could find that λ− value has a certain upper bound depend
on violation limits. Here, we use the violation limit of 5% of system cost/system
capacity for all constraints as an example. In Table 12, since almost all violation
amounts, which reach their limits, are used, λ− obtains an upper bound of value
0.4131 at this situation.

Since the original objective function is to minimize the system cost, the best
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Table 11: System costs, αl values and λ− levels (violation limit is 15% of capac-
ity/system cost. The capacity expansion for landfill will occur in period 1)

Average αl 10λ− 8λ− 5λ− 3λ− λ− 0.5λ− 0.25λ−

λ− levels 0.0994 0.124 0.1962 0.3209 0.7413 0.9766 1
System costs

($million) 562.885 560.69 554.24 541.05 439.15 370.68 363.90
Binary variables

with value 1 Z232,Z321 Z232,Z321 Z232,Z321 Z212,Z331 Z311

αl α1 =0.892 α1 =0.85 α1 =0.64 α1 =0.29 α1 =0 α1 =0 α1,α4 =0
α13 =0.26 α11 =0.28 α8 =0.8
α14 =0.96 α12,α13 =0 α7,α9 =0
α15,α16 =0 α14,α15 =0 α10,α11 =0
α18 =0.87 α16,α17 =0 α12,α13 =0

α19 =0 α18,α19 =0 α14,α15 =0
α16,α17 =0
α18,α19 =0

Table 12: Relationship between λ− and αl (violation limit is 5% of the capac-
ity/system cost)

Average λl 10λ− 5λ− λ− 0.5λ− 0.25λ− 0.2λ−

λ− levels 0.0989 0.1886 0.3981 0.3993 0.4131 0.4131
αl α1 =0.79 α1 =0 α1,α4 =0 α1,α4 =0 α1,α4,α5 =0 α1,α4,α5 =0

α16 =0.92 α10 =0.56 α9 =0.79 α2 =0.96 α2 =0.96
α11,α12 =0 α6,α7 =0 α6,α7 =0 α6,α7 =0
α13,α14 =0 α8α10 =0 α8,α9 =0 α8,α9 =0
α15,α16 =0 α11,α12 =0 α10,α11 =0 α10,α11 =0
α17,α18 =0 α13,α14 =0 α12,α13 =0 α12,α13 =0

α19 α15,α16 =0 α14,α15 =0 α14,α15 =0
α17,α18 =0 α16,α17 =0 α16,α17 =0

α19 =0 α18,α19 =0 α18,α19 =0

choice for decision makers is to reduce the violation limit for the system cost con-
straint. Using model B, we can solve different violation limits for each constraints
to achieve the best results. Table 13 shows the solutions based on a violation limit
of 15% of system capacity, 5% of system cost, and 10% of daily generation rate for
waste generation constraints.

Tables 10 and 13 indicate that λ− will decrease and the corresponding system
cost will increase, since violation limit are cut down. It means that if decision makers
want a low risk of violating system constraints, they may face a high system cost. The
three tables also present that, since the violation limits decrease, more constraints will
need the violation amount.

4.4 Comparison of the two new IFMIP models
Generally speaking, the results from these two new models are consistent. When

the violations amount increase, λ− will increase, the system cost will decrease and
the expansion for capacity will decrease or defer. However, model B allows more
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Table 13: System costs and λ− levels (violation limits are 15% of capacity, 5% of
system cost and 10% of waste generation rate. The capacity expansion for landfill
will occur in period 1)

Average αl 10λ− 8λ− 5λ− 2λ− λ− 0.5λ− 0.2λ−

λ− levels 0.0989 0.1222 0.1890 0.3829 0.5473 0.6162 0.6198
System costs

($million) 562.950 560.854 554.349 498.224 450.657 430.723 429.691
Binary variables

with value 1 Z232,Z321 Z232,Z321 Z232,Z321 Z311,Z332 Z311 Z313 Z313

αl α1 =0.79 α1 =0.58 α1 =0 α1 =0 α1 =0 α1,α4 =0 α1,α4 =0
α16 =0.95 α13 =0.55 α4 =0.69 α8 =0.85 α5 =0.36

α15,α16 =0 α12,α13 =0 α9,α10 =0 α6,α7 =0
α19 =0 α14,α15 =0 α11,α12 =0 α8,α9 =0

α16 =0 α13,α14 =0 α10,α11 =0
α17 =0.71 α15,α16 =0 α12,α13 =0
α18,α19 =0 α17,α18 =0 α14,α15 =0

α19 =0 α16,α17 =0
α18,α19 =0

depth in which to analyze the information for violations than model A. Since model
A only uses one λ−, it would make every constraint have violation amount, even if
some of them did not need violation amount at all. For example, in table 13, when the
average αl is greater than or equal to λ−, since the landfill has a capacity expansion
at period 1, there is no violation amount for the landfill constraint in period 1 and
2 (i.e. α2 = 1 and α3 = 1), and there is only violation amount (0.0328 ∗ 106 ton) at
period 3. At the same situation, since incinerator 2 has a expansion of 100 tons/day
in period 1, three constraints for incinerator 2 have no violation amount.

5 Conclusions
In this study, we reviewed some interval parameter programming models. We

then proposed two new interval parameter fuzzy programming models based on the
interval parameter violation analysis approach. In these models, the fixed violation
limit is introduced for each constraint. Then we applied these models to the hypo-
thetical case of PSWM system. After solving this problem, a number of decision
alternatives under various system conditions were generated. These results provided
useful information for decision makers to help them to identify desirable waste flow
allocation patterns. They also provided the relationship between system benefit and
reliability as well as the risk they may have to face. And also, we compared the two
models, the conclusion is that these two models have the same trend for analyzing
the generated alternatives. However model B allows decision makers to get more
in-depth information.
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