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Abstract We are concerned with a variation of the assignment problem, where the assignment
costs differ between assigners and assignees. We formulate this as a min-max optimization prob-
lem, present a surrogate relaxation approach to derive lower and upper bounds quickly, and show
that the pegging test can be successfully applied to this problem. Next, we make use of the special
structure of the assignment problem to shorten the computation time for pegging significantly. Fi-
nally, through numerical experiments we show that the developed method solves larger instances
to optimality faster than conventional methods.
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1 Introduction
The assignment problem is a classical combinatorial optimization problem that

can be solved efficiently by polynomial time algorithms [7]. Here we assign, for
example, n workers to n jobs and want to minimize the total cost of assignment. In
this article, we are concerned with a variation of this problem, where the perceived
cost of assignment differs between workers and job managers. Let p1

i j and p2
i j denote,

respectively, the worker’s and manager’s cost of assigning worker i to job j, and xi j

is the decision variable that takes value 1 in this assignment and 0 otherwise. Then,
for k = 1,2

zk(x) :=
n

∑
i=1

n

∑
j=1

pk
i jxi j (1)

is the workers’ (resp., managers’) total cost of assignment x = (xi j), and thus we have
two objective functions to minimize. Such a bi-objective assignment problem has
been investigated under the framework of stable marriage problem [5] or assigmnent
game [10].
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An alternative approach is the mini-max optimization, where we minimize the
maximum of zk(x), k = 1,2. Thus, we formulate the bilateral assignment problem as

BAP:

minimize z(x) := max

{
n

∑
i=1

n

∑
j=1

p1
i jxi j,

n

∑
i=1

n

∑
j=1

p2
i jxi j

}
(2)

subject to
n

∑
j=1

xi j = 1, i = 1, . . . ,n, (3)

n

∑
i=1

xi j = 1, j = 1, . . . ,n, (4)

xi j ∈ {0,1}, ∀i, j. (5)

Rewriting this as the following linear 0-1 programming problem, we may solve small
instances using free or commercial IP solvers.

BAP[:

minimize v (6)

subject to
n

∑
i=1

n

∑
j=1

pk
i jxi j ≤ v, k = 1,2, (7)

(3), (4), (5).

BAP was originally formulated by Kouvelis and Yu [6] as a robust optimiza-
tion problem with K ≥ 2 objective functions. They also proved that the problem
is N P-hard, constructed a branch-and-boud algorithm based on a surrogate relax-
ation method, and solved some test problems with n ≤ 40 and K ≤ 30. A heuristic
algorithm for BAP was given by Sakakibara and Nakamori [9], where problems with
n≤ 200 were solved approximately.

In this paper, we also take the surrogate relaxation approach to derive lower and
upper bounds quickly. Then, making use of these bounds we apply the pegging test
[8] to reduce the size of the problem. For BAP we can further improve the pegging
test and reduce the computing time significantly. Combining these, we are often able
to solve problems with n≤ 1000 exactly in reasonable CPU time.

2 Lower and upper bounds
This section derives an upper bound by applying the surrogate relaxation [4] to

BAP. At the same time, we obtain an approximate solution and thus a lower bound to
BAP.
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2.1 Surrogate relaxation
Let λ be an arbitrary value satisfying 0≤ λ ≤ 1. By replacing (7) with a single

constraint

λ
n

∑
i=1

n

∑
j=1

p1
i jxi j +(1−λ )

n

∑
i=1

n

∑
j=1

p2
i jxi j ≤ v

and eliminating v in BAP[ we obtain the surrogate relaxation problem [4]

SRP(λ ):

minimize
n

∑
i=1

n

∑
j=1

p̄i j(λ )xi j (8)

subject to (3), (4), (5),

where

p̄i j(λ ) := λ p1
i j +(1−λ )p2

i j. (9)

Note that for a fixed λ ∈ [0,1], SRP(λ ) is a standard assignment problem which
can be efficiently solved by, e.g., the Hungarian method [7]. By x(λ ) = (xi j(λ )) we
denote an optimal solution to SRP(λ ) with the corresponding objective value z(λ ) :=
z(x(λ )). Then, analogous to the case of Lagrangian relaxation [2], the followings can
be easily shown.

Proposition 1.

(i) For an arbitrary λ ∈ [0,1], z(λ ) gives a lower bound to BAP, i.e., the optimal
objective value z? to BAP satisfies

z? ≥ z(λ ).

(ii) z(λ ) is a piecewise-linear, concave function of λ .
(iii) If z(λ ) is differentiable at λ ,

dz(λ )/dλ = z1(x(λ ))− z2(x(λ )). (10)

To find a lower bound with z(λ ) as large as possible, we solve the following
surrogate dual problem [4]

SDP:

maximize z(λ )
subject to λ ∈ [0,1].

Let the solution to this problem be λ † with the corresponding optimal lower bound
z := z(λ†). Using (10) this can be easily obtained by the standard bisection method.
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2.2 Upper bound
Solving SRP(λ ) at an arbitrary λ ∈ [0,1] to obtain the lower bound z(λ ), we get

an upper bound
z̄(λ ) := max{z1(x(λ )),z2(x(λ ))} (11)

simultaneously, since the solution x(λ ) is also feasible to BAP. The smallest z̄(λ )
encountered in the bisection process gives the best upper bound z̄, and together with
z these are fed to the reduction algorithm of Section 3.

3 Reduction of BAP
3.1 Pegging test for 0-1 programming problem

Here we briefly summarize some basic results on pegging test [8] for readers’
convenience. For simplicity of notation, let us consider the following 0-1 program-
ming problem.

P:

minimize z(x) :=
s

∑
j=1

c jx j (12)

subject to
s

∑
j=1

ai jx j = b j, i = 1, . . . ,r, (13)

x j ∈ {0,1}, j = 1, . . . ,s. (14)

Let x? = (x?
j) ∈ Rs be an optimal solution to P with the objective value z? := z(x?).

First, we relax P by replacing (14) with

0≤ x j ≤ 1, ∀ j.

The resulting linear programming problem is denoted as C(P). Solving this yields
an optimal solution x with the corresponding objective value z := z(x), which gives
a lower bound to P. Next, assume that we have a feasible solution x̄ ∈ Rs to P. This
gives an upper bound z̄ := z(x̄). Thus we have

z≤ z? ≤ z̄.

Let an optimal feasible canonical form (FCF) of C(P) be

b̄i = xB(i) + ∑
j∈N

αi jx j, (15)

z = z+ ∑
j∈N

α0 jx j, (16)

where N is the index set of non-basic variables, and B(i) denotes the index of ith
basic variable. From optimality of this form we have

α0 j ≥ 0, ∀ j ∈ N, (17)
0≤ b̄i ≤ 1, i = 1, · · · ,r. (18)
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For i = 1,2, . . . ,r we define

PUi := min{−α0 j/αi j | j ∈ N,αi j < 0}(1− b̄i),
PLi := min{α0 j/αi j | j ∈ N,αi j > 0}b̄i.

Here, if the defining set is empty, we set min{· | /0} := ∞. Then, we have [8]

Proposition 2.

(i) For basic variable xB(i) (i = 1, . . . ,r) in (15),

PUi > z̄− z ⇒ x?
B(i) = 0,

PLi > z̄− z ⇒ x?
B(i) = 1.

(ii) For non-basic variable x j ( j ∈ N) in (16),

α0 j > z̄− z ⇒ x?
j = 0.

3.2 Pegging test for BAP
Since SRP(λ †) is an assignment problem, without loss of generality, we can re-

lax the 0-1 constraint (5) to non-negativity requirement, and thus the problem can
be regarded as a linear programming (LP) problem. Then, although SRP(λ †) is not
just a continuous relaxation of the original BAP as opposed to C(P) (it is actually a
surrogate relaxation plus continuous relaxation of BAP), Proposition 2 is still valid,
and we can make use of this to reduce the problem size, provided that we have an op-
timal FCF for SRP(λ †). However, in solving SRP(λ †) we usually use such efficient
algorithm as the Hungarian method, because it is much faster than LP algorithms
such as the revised simplex method. Then, to apply Proposition 2, we need to recon-
struct an optimal FCF associated with the optimal solution to SRP(λ †). This can be
accomplished in the following way.

In the Hungarian method we solve the following dual of SRP(λ †), where for
simplicity we write p̄i j := p̄i j(λ †).

DSR(λ †):

maximize
n

∑
i=1

ui +
n

∑
j=1

v j (19)

subject to ui + v j ≤ p̄i j, ∀i, j. (20)

For an arbitrary feasible solution (u,v) to DSR(λ †), H(u,v) denotes the undirected
bipartite graph consisting of the left and right sets of nodes L = {l1, l2, . . . , ln}, R =
{r1,r2, . . . ,rn} and the set of arcs A(u,v) = {(li,r j) ∈ L×R | ui + v j = p̄i j}. By the
Hungarian method, we obtain an optimal solution x† = x(λ †) to SRP(λ †), as well as
an optimal solution (u†,u†) to DSR(λ †). These satisfy the following complementary
slackness condition

x†
i j = 1⇒ u†

i + v†
j = p̄i j, (21)
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and include a perfect matching M = {(li,r j) ∈ L×R | x†
i j = 1} in H(u†,v†).

If H(u†,v†) is unconnected, we can modify (u†,v†) by executing the following
steps repeatedly until finally the graph is connected. Let us consider the connected
components of H(u†,v†), and by comp(·) we denote the component to which node ·
belongs.

DUAL_UPDATING

a) Decompose H(u†,v†) into connected components.
b) Find α := min{p̄i j−u†

i −v†
j | (li,r j)∈ L×R, comp(li) 6= comp(r j)},

and let (li,r j) be a pair where the minimum is attained.
c) Modify (u†,v†) according to:

u†
i ← u†

i −α, for all li ∈ comp(r j),

v†
j ← v†

j +α, for all r j ∈ comp(r j).

Note that each component of H(u†,v†) includes identical number of left and
right nodes, due to the existence of the perfect matching M. Then, after
DUAL_UPDATING the objective value (19) remains unchanged, and (20) and com-
plementary slackness condition (21) are kept satisfied. Thus, the updated (u†,v†) is
still optimal to DSR(λ †), and the number of arcs in H(u†,v†) is increased at least by
1. After repeating DUAL_UPDATING at most n− 1 times, we obtain a connected
H(u†,v†). Here, let T be a spanning tree of H(u†,v†). Without loss of generality, we
assume that the perfect matching M is included in T .

Now, consider the simplex tableau corresponding to SRP(λ †) which can be writ-
ten as

BxB +Nxn = 1,

cBxB + cNxN = z.

We can take the set of optimal basic variables as those corresponding to the arcs of
T , and xB and xN represent, respectively, those basic and non-basic variables. Here
the incidence matrix of SRP(λ †) is correspondingly partitioned as (B,N), and the
cost vector (p̄i j) is written as (cB,cN).

If we arrange the rows and columns of the tableau in the order of nodes and arcs
as encountered in the breadth-first traverse of T starting from node l1, B necessarily
becomes an upper triangular matrix, which is easily inverted. Thus from the optimal
matching obtained by the Hungarian method we have reconstructed an optimal FCF
for SRP(λ †) as

xB +B−1NxN = B−11,

(cN − cBB−1N)xN = z− cBB−11.
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3.3 An improved reduction method for BAP
A difficulty with the pegging test of section 3.2 is the reconstruction of an op-

timal FCF for SPR(λ †). For the problem of size n, after obtaining the basis matrix
B and its inverse B−1, computing all the elements of B−1N is almost prohibitive for
problems with large n, since N is a matrix of (2n−1)× (n2−2n+1). However, we
show here that a very small portion of B−1N suffices to carry out the pegging test,
which enables us a drastic speed-up of computation.

For simplicity, let us consider the optimal FCF given in (15) and (16). In addi-
tion to (17), from the unimodularity of the coefficient matrix (B,N) in the assignment
problem SRP(λ †) we have the following for i = 1,2, . . . ,r.

αi j ∈ {−1,0,1}, ∀ j ∈ N, (22)
b̄i ∈ {0,1}. (23)

Let

N+ := { j ∈ N | α0 j > z̄− z}, N− := { j ∈ N | α0 j ≤ z̄− z}.

Then, we have

Theorem 3.

(i) If b̄i = 1, { j ∈ N− | αi j = 1}= /0 implies x?
B(i) = 1,

(ii) If b̄i = 0, { j ∈ N− | αi j =−1}= /0 implies x?
B(i) = 0.

Proof. (i) From (22), PLi = min{α0 j | αi j = 1, j ∈ N} = min{PL+
i ,PL−i }, where

PL±i := min{α0 j | αi j = 1, j ∈N±}, respectively. By definition of N+, we have PL+
i >

z̄− z and PL−i ≤ z̄− z. Then, PLi > z̄− z ⇔ { j ∈ N− | αi j = 1} = /0; hence from
Proposition 2, (i) is proved. (ii) is proved analogously.

An important implication of this theorem is that, in carrying out the pegging
test, we only need columns in N−, and see if { j ∈ N− | αi j = ±1} = /0 is satisfied.
Frequently, |N−| is much smaller than |N|, and if this is the case pegging test by
Theorem 1 is far more faster than the direct application of Proposition 2.

4 Numerical Experiments
4.1 Design of experiments

For BAP with n = 200 ∼ 1000, we evaluate the performance of the ‘surrogate
relaxation + pegging’ approach stated in previous sections. We follow [6] in prepar-
ing test problems as follows. First, nominal assignment cost p0

i j is determined as a
uniform random integer over [1,1000]. Then, the assignment cost is

pk
i j : uniformly random integer over [(1−δ )p0

i j,(1+δ )p0
i j],
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for k = 1,2, where δ is a parameter to control the degree of correlation between dif-
ferent scenarios. Note that assignment costs are more strongly correlated for smaller
δ , and we examine the cases of δ = 0.3, 0.6 and 0.9.

To compute upper and lower bounds as well as for doing pegging test, we im-
plemented the algorithm in ANSI C language on an IBM RS/6000 SP 44 Model
270 workstation (CPU: POWER 3-II, 375Mhz), and to solve the reduced problem
XPRESS-IVE Ver. 1.13.30 [1] was run on an DELL 8400 computer (Pentium (R),
3.40GHz).

4.2 Bounds and reduction
Table 1 gives the results of computation of the upper and lower bounds, as well

as that of pegging test. In addition to the bounds z and z̄, the table includes
gap : = z̄− z,
assgn : the number of the Hungarian methods solved to obtain the bounds,
rerr : relative error given by 100 · (z̄− z)/z (%),
fix1 : the number of decision variables fixed at 1,
n′ : the number of unfixed variables (out of n2 variables),
reduc : the ratio of unfixed variables defined as 100 ·n′/n2 (%),
CPU1 : the time in seconds to evaluate the bounds,
CPU2 : the time to reconstruct an optimal FCF and carry out the pegging test.
Each row is the average over 10 randomly generated instances.

Table 1: Lower and upper bounds with pegging test.
δ n z z̄ gap assgn rerr fix1 n′ reduc CPU1 CPU2

0.3 200 1459.1 1464.0 4.9 6.1 0.34 89.8 355.8 0.89 0.1 0.2
400 1408.1 1411.5 3.4 5.7 0.24 140.5 954.0 0.60 0.5 0.6
600 1328.4 1330.6 2.2 5.9 0.17 167.3 1427.8 0.40 1.4 2.1
800 1236.1 1237.9 1.8 5.2 0.15 327.9 1806.6 0.28 2.4 4.2

1000 1132.9 1135.3 2.4 5.4 0.21 275.4 3627.9 0.36 4.0 10.2
0.6 200 1384.2 1393.2 9.0 6.1 0.65 63.2 581.8 1.45 0.1 0.2

400 1329.1 1333.6 4.5 7.2 0.34 92.2 1221.0 0.76 0.6 0.9
600 1252.9 1255.5 2.6 6.5 0.21 301.6 1381.9 0.38 1.6 0.9
800 1146.3 1149.6 3.3 6.7 0.29 213.6 3047.2 0.48 2.9 6.6

1000 1036.5 1039.8 3.3 6.2 0.32 332.8 4546.5 0.45 4.7 5.2
0.9 200 1195.8 1204.9 9.1 7.5 0.76 47.8 679.4 1.70 0.1 0.2

400 1100.5 1103.7 3.2 7.2 0.29 112.6 1047.9 0.65 0.6 0.8
600 989.7 999.4 9.7 6.9 0.98 48.5 5207.0 1.47 1.6 2.5
800 881.9 887.0 5.1 6.5 0.58 97.2 5099.3 0.80 2.9 6.0

1000 789.0 793.3 4.3 7.4 0.55 229.1 6445.3 0.64 5.4 10.2

From these tables, we observe the following.
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1. By the surrogate relaxation method we get a heuristic solution and a lower
bound in reasonably small CPU time. The relative error between these bounds
is usually less than 1.0%.

2. By the pegging test, problem is reduced remarkably in size. The reduced prob-
lem is usually less than 2% in size of the original.

3. CPU time to compute lower and upper bounds (CPU1) increases with n, but
this is rather insensitive to δ .

4. CPU time for the reconstruction of optimal FCF and for pegging test (CPU2)
increases with n, but increase of this with δ is relatively small.

5. As n increases, reconstruction of optimal FCF grows to be a dominant part of
CPU time.

4.3 Exact solution
Table 2 summerizes the result of computation of exact solutions. We compare

here (i) the direct solution of BAP[ using XPRESS-IVE, and (ii) application of the
pegging test based on Theorem 1, followed by XPRESS-IVE to solve the reduced
problem. The latter is henceforth referred to as the PEG-METHOD. For each values
of δ and n, we computed the same 10 instances as in section 4.2, and the average of
these are shown in these tables. We truncated XPRESS-IVE at the time limit of 600
seconds. All the rows, except for those marked (−), are the average of 10 runs which
are successfully completed within this time limit. In all cases, whenever solved by
both methods, we obtained the identical objective value z?. In these tables, ‘BBN’ is
the number of the branch-and-bound nodes generated by XPRESS-IVE, CPU3 is the
time to solve the reduced problem (on a DELL computer), and CPUT is the total time
needed to solve problem exactly by our method, i.e., CPUT =CPU1 +CPU2 +CPU3.

From these tables, we conclude that PEG-METHOD is able to solve larger in-
stances in considerably smaller CPU time. However, increase of parameter δ makes
problem harder to solve.

5 Conclusion
We have introduced the surrogate relaxation method to BAP, and showed that

this gives a lower bound as well as a heuristic solution of high accuracy in relatively
small CPU time. Also, we have shown that the pegging test is effectively applied
to reduce the size of the problem. In numerical experiments, we were able to solve
larger problems in much smaller computation time than the direct application of a
commercial IP solver.
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