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Abstract In subjective performance measurement, paired comparison data or successive cate-
gories data are often utilized. The AHP or conjoint analysis is not very appropriate for aggregated
evaluation of these data, but Dual Scaling aims preferably aggregated evaluation. Application and
easy formulation of Dual Scaling for these data are proposed.
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1 Introduction
In subjective performance measurement, paired comparison data or successive

categories data are often utilized. Individual evaluation can be obtained by the AHP
(Analytic Hierarchy Process), conjoint analysis and so on. However, these methods
are not appropriate for aggregated evaluation, that is, overall evaluation.

Dual scaling aims preferably aggregated evaluation. Formulation of dual scal-
ing for successive categories data proposed by Nishisato is troublesome. However, in
mathematical programming system successiveness is presented easily as constraints.
Merits of mathematical programming system are easiness of addition and modifica-
tion on objective functions and constraints. Thus mathematical programming models
with various objective functions are proposed. Also a model which treats fuzzy num-
bers is proposed for the purpose of presenting lack of assurance or vagueness in
answers.

EspeciallyI I propose methods of analyzing paired comparison data or succes-
sive categories data

2 Dual scaling for successive data
In this section a method proposed by Nishisato (1980) is shown. Let us consider

the situation where each of N subjects evaluates M objects. Evaluation is done by
selection of a category, where K categories are put in order, the category K shows
the best one and the category 1 shows the worst one. Moreover, suppose that there
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is a boundary value, τk, between category k and category (k+1), where a relation
(τk ≤ τk+1) must be hold. If a value, µn, given for object On satisfies a relation (τk <
µn ≤ τk+1), object On belongs to category k.

A component, fik, of a data matrix, F , with N rows and {M(K−1)} columns is
given by

fi, j(K−1)+h =

{
1 subject i evaluates as µ j < τh

−1 subject i evaluates as µ j > τh

Suppose that there are three objects, O1, O2 and O3. If subject i evaluates ob-
jects, O1, O2 and O3 as category 1, 2 and 3 respectively, the i-th row of matrix F
is

1 1 | −1 1 | −1 −1

The design matrix, A, with {M(K− 1)} rows and {M + (K− 1)} columns is
given by

A =




Im −1m 0m · · · 0m

Im 0m −1m · · · 0m

Im 0m 0m · · · 0m
...

...
...

. . .
...

Im 0m 0m · · · −1m




1
2
3
...

M

m m+1 m+2 · · · m+M

(1)

where m = K−1, Im = m×m unit matrix, −1m and 0m: column vectors with all of m
elements equal to (-1) and 0, respectively. Let a parameter vector be

x = (τ1,τ2, · · · ,τK−1,µ1,µ2, · · · ,µM)t .

The first block of m elements of Ax is

(τ1−µ1,τ2−µ1, · · · ,τK−1−µ1)t .

The h-th block of m elements of Ax is

(τ1−µh,τ2−µh, · · · ,τK−1−µh)t .

This means that Ax can be used at evaluation between τk and µh. In order to use at
evaluation among τk or among µh matrices Fa and Aa are also introduced. A parameter
vector, x, is obtained as an eigenvector corresponding to the maximum eigenvalue of
E tE where

E =
[
F,Fa

][
A
Aa

]
(2)

This formulation means derivation of the maximum between-group variance under
constant total variance of x. A vector presenting subjects

y = (y1,y2, ...,yN)t
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is obtained as an eigenvector corresponding to the maximum eigenvalue of EE t . Be-
tween x and y the relations

x = aE ty; y = bEx (a,b : scalar) (3)

hold.

3 Formulation as mathematical programming for succes-
sive data
Table 1 is used as an example for explanation. Suppose that subject i is given a

value, yi, object j is given a value, x j and category k is given a value, tk. Let ei j be
a value as which subject i evaluates object j. For example, since subject 1 evaluated
object A(=1) as category 2 and object B(=2) as category 3, e11 = t2 and e12 = t3. Then,
the following formulations can be considered.
Formulation 1

max
N

∑
i=1

(yi−µ)2 (4)

s.t.
N

∑
i=1

yi/N = µ = 0; yi =
M

∑
j=1

ei j/M (5)

N

∑
i=1

M

∑
j=1

(ei j−µ)2/(NM) = 1 (6)

t2− t1 ≥C, t3− t2 ≥C, · · · , tK − tK−1 ≥C (7)
µ : grand mean; C : a nonnegative constant

Here, let hik be a number of objects which subject i evaluates as category k. Then

yi =
K

∑
k=1

hiktk/M. (8)

Objective, max ∑N
i=1 (yi−µ)2 + kC2, may be used, instead of max ∑N

i=1 (yi−µ)2.
Formulation 2

max
M

∑
j=1

(x j−µ)2 (9)

s.t.
M

∑
j=1

x j/M = µ = 0; x j =
N

∑
i=1

ei j/N (10)

N

∑
i=1

M

∑
j=1

(ei j−µ)2/(NM) = 1 (11)

t2− t1 ≥C, t3− t2 ≥C, · · · , tK − tK−1 ≥C (12)
µ : grand mean; C : a nonnegative constant
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If values tk (k = 1, · · · ,K) which are obtained under Formulation 1 are substi-
tuted into Eq.10, x different from Formulation 2 is obtained. Inversely, if values tk

(k = 1, · · · ,K) which are obtained under Formulation 2 are substituted into Eq.5, y
different from Formulation 1 is obtained. This means that there may be various solu-
tions according objectives and constraints. Compounded objectives for x and y may
be desired. The following objectives can be considered.

(i) max
M

∑
j=1

(x j−µ)2/M +
N

∑
i=1

(yi−µ)2/N (13)

(ii) max w1

M

∑
j=1

(x j−µ)2/M +w2

N

∑
i=1

(yi−µ)2/N (14)

(iii) max
M

∑
j=1

(x j−µ)2/M;
N

∑
i=1

(yi−µ)2/N ≥C1 (15)

(iv) max
N

∑
i=1

(yi−µ)2/N;
M

∑
j=1

(x j−µ)2/M ≥C2 (16)

(v) min
N

∑
i=1

(yi−µ)2/N;
M

∑
j=1

(x j−µ)2/M ≥C2 (17)

(vi) max ∑
k

(tk+1− tk)2 (18)

Here, objective (v) is different from others, because it aims at minimum differ-
ence among subjects, while others aim at maximum difference among subjects.

4 A model which treats fuzzy numbers
Also a model which treats fuzzy numbers is proposed for the purpose of pre-

senting lack of assurance or vagueness in answers. Let tk be triangular fuzzy num-
bers with lower bound (tk − ck), mode tk and upper bound (tk + dk). The following
formulation corresponding to Formulation 1 is proposed, where

Tk = {(tk− ck)+2tk +(tk +dk)}/4 (19)

Formulation F1

max
N

∑
i=1

(yi−µ)2−
K

∑
k=1

(c2
k +d2

k ) (20)

s.t.
N

∑
i=1

yi/N = µ = 0; yi =
K

∑
k=1

hikTk/M (21)

K

∑
k=1

HkT 2
k /(NM) = 1; Hk =

N

∑
i=1

hik (22)

T1 ≤ T2 ≤ ·· · ≤ TK (23)
µ : grand mean
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Table 1: Example 1
XXXXXXXXXXXSubject

Object
A B C D E

1 2 3 3 3 3
2 1 2 3 1 1
3 2 3 2 2 1
4 1 1 1 1 1
5 3 1 1 2 3
6 3 3 3 3 3
7 2 2 2 2 1
8 1 3 3 2 1
9 3 1 1 3 3
10 1 2 2 1 1
Sum 19 21 21 20 18
1: bad, 2: medium, 3: good

Instead of T 2
k the following quantity can be used.

[∫ 1

0
{tk− ck(1−α)}2dα +

∫ 1

0
{tk +dk(1−α)}2dα

]
/2

=t2
k − tk(ck−dk)/2+(c2

k +d2
k )/6

(24)

Under all formulations the same value for many tk may be given. Therefore, a condi-
tion

tk− tk−1 ≥C C : a positive constant (25)

may be necessary.

Example 1. Table 2 and Table 3 show values of x and y under Formulation 1 (max
V (y)). Table 4 and Table 5 show values of x and y under Formulation 2 (maxV (x)).
As shown in Table 3 and Table 5,

maxV (y) >> maxV (x)

Therefore, results of max{V (y)+V (x)} coincided with results of maxV (y). Under
Formulation F1, ck = dk = 0, that is, the same results as Formulation 1 were obtained.

5 Dual scaling for paired comparison data
In this section paired comparison data are treated on the line of Nishisato (1980,

Sec.6.2). Suppose that N subjects evaluate pairs among M objects. If object h >
object j, gh j=1 is given and if object h < object j, gh j=0. The data matrix F has N
rows and M(M−1)/2 columns. Consider a situation where N=8 and M=4 (objects:
A, B, C, D).
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Table 2: Values of x in Formulation 1
A B C D E Objective

Nishisato -0.402(4) 0.440(1) 0.426(2) -0.210(3) -0.546(5)

maxV (y)
C =0 -0.125(4) 0.083(1) 0.083(1) -0.125(4) 0.083(1) 4.792
C =0.2 -0.121(5) 0.094(1) 0.094(1) -0.101(4) 0.034(3) 4.774
C =0.4 -0.117(5) 0.105(1) 0.105(1) -0.077(4) -0.015(3) 4.734

( ): order

Table 3: Values of y in Formulation 1
Nishisato C=0 C=0.2 C=0.4 Category Sum

1 -0.070(5) 0.917(2) 0.938(2) 0.953(2) 14(2)
2 -0.413(10) -0.333(6) -0.357(7) -0.379(7) 8(8)
3 -0.329(8) -0.333(6) -0.277(6) -0.219(6) 10(4)
4 -0.106(6) -0.750(8) -0.829(10) -0.903(10) 5(10)
5 0.362(3) 0.083(4) 0.074(4) 0.065(4) 10(4)
6 0.071(4) 1.333(1) 1.329(1) 1.317(1) 15(1)
7 -0.255(7) -0.750(8) -0.669(8) -0.583(8) 9(7)
8 0.433(1) 0.083(4) 0.074(4) 0.065(4) 10(4)
9 -0.387(9) 0.500(3) 0.466(3) 0.429(3) 11(3)
10 0.407(2) -0.750(8) -0.749(9) -0.743(9) 7(9)
V (y) 0.479 0.477 0.473
V (x) 0.010 0.009 0.008
V (y)+V (x) 0.490 0.486 0.482
( ): order

Table 4: Values of x in Formulation 2
A B C C E Objective

Nishisato -0.402(4) 0.440(1) 0.426(2) -0.210(3) -0.546(5)

maxV (x)
C = 0 -0.041(4) 0.165(1) 0.165(1) 0.165(1) -0.453(5) 0.289
C=0.2 -0.051(4) 0.163(1) 0.163(1) 0.143(3) -0.418(5) 0.251
C=0.4 -0.060(4) 0.160(1) 0.160(1) 0.120(3) -0.381(5) 0.214

( ): order
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Table 5: Values of y in Formulation 2
Nishisato C=0 C=0.2 C=0.4 Category sum

1 -0.070(5) 0.783(1) 0.824(2) 0.861(2) 14(2)
2 -0.413(10) -0.453(8) -0.458(8) -0.461(8) 8(8)
3 -0.329(8) 0.371(3) 0.317(3) 0.261(3) 10(4)
4 -0.106(6) -1.277(10) -1.273(10) -1.262(10) 5(10)
5 0.362(3) -0.041(5) -0.031(6) -0.020(6) 10(4)
6 0.071(4) 0.783(1) 0.864(1) 0.941(1) 15(1)
7 -0.255(7) 0.371(3) 0.277(4) 0.181(4) 9(7)
8 0.433(1) -0.041(5) -0.031(6) -0.020(6) 10(4)
9 -0.387(9) -0.041(5) 0.009(5) 0.060(5) 11(3)
10 0.407(2) -0.453(8) -0.498(9) -0.541(9) 7(9)
V (y) 0.355 0.369 0.383
V (x) 0.058 0.050 0.043
V (y)+V (x) 0.413 0.419 0.426
( ): order

The i-th row shows comparison results of six pairs (A, B), (A, C), (A, D), (B, C),
(B, D), (C, D). When F is given as follows, the first row means that

(A > B), (A < C), (A > D), (B < C), (B < D), (C > D)

where

F =




1 −1 1 −1 −1 1
0 −1 −1 −1 1 1
−1 −1 −1 −1 −1 1
1 −1 0 −1 1 1
1 −1 −1 −1 0 1
−1 1 1 1 −1 1
1 −1 1 1 1 1
1 −1 −1 −1 −1 −1




AB AC AD BC BD CD

(26)

The design matrix T is M(M−1)/2×M. At the above example

T =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1




AB
AC
AD
BC
BD
CD

(27)

Let x = (xA,xB,xC,xD)t . Then

T x = (xA− xB,xA− xC,xA− xD,xB− xC,xB− xD,xC− xD)t (28)
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FT =




1 −3 3 −1
−2 0 3 −1
−3 −1 3 1
0 −1 1 0
−1 −2 3 0
1 1 −1 −1
1 1 1 −3
−1 −3 1 3




(29)

The (i, j)-component of E(= FT ) presents a judge of subject i for object j. For
example the (1, 1)-component = 1 of E presents a judge of subject 1 for object 1: A.
A comparison result of (A, B), (A, C), (A, D) is (1, -1, 1) that is, (A > B), (A < C),
(A > D). This means that object A is superior to 2 objects and inferior to 1 object,
that is, the balance is 1. The (1, 2)-component = -3 of FT presents a judge of subject
1 for object 2: B. A comparison result of (A, B), (B, C), (B, D) is (-1, -1, -1), that is,
(A > B), (B < C), (B < D). This means that object B is inferior to 3 objects, that is,
the balance is -3.

A solution x is obtained through maximization of variance among subjects,
xtE tEx, under normalization of total variance, that is, x is obtained as an eigenvector
corresponding to the maximum eigenvalue of E tE.

6 Formulation different from Nishisato for paired com-
parison data
Let Ai be a comparison matrix of subject i in AHP (Analytic Hierarchy Process).

If object h > object j, the (h, j)-th component of Ai is larger than 1 and the (h, j)-th
component of Di corresponding to Ai is equal to 1. For example, D1 corresponding
to A1 is given by

D1 =




0 1 −1 1
−1 0 −1 −1
1 1 0 1
−1 1 −1 0


 (30)

The following relation holds between Di and FT.

E ≡ FT =
[
D1eee D2eee D3eee D4eee D5eee D6eee D7eee D8eee

]t (31)

where eee = (1,1, · · ·,1)t .
From these facts, the following treatments for Ai obtained in AHP can be con-

sidered.
(i) Obtain Di from Ai. Calculate E by Eq.(31).
(ii) Let the ( j, k)-th component of Bi be log{the ( j, k)-th component of Ai}. Use

Bi instead of Di. Calculate E by

E =
[
B1eee B2eee B3eee B4eee B5eee B6eee B7eee B8eee

]t (32)
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Table 6: Comparison between AHP and Procedures (i) and (ii)
object 1 2 3 4

j

1
AHP 0.311 0.389 0.141 0.159
(i) 0.356 0.389 0.232 0.159
(ii) 0.366 0.389 0.238 0.159

2
AHP 0.346 0.201 0.203 0.25
(i) 0.346 0.295 0.306 0.25
(ii) 0.346 0.296 0.319 0.25

3
AHP 0.188 0.143 0.149 0.52
(i) 0.249 0.167 0.149 0.52
(ii) 0.368 0.143 0.145 0.52

4
AHP 0.309 0.249 0.336 0.106
(i) 0.309 0.221 0.281 0.106
(ii) 0.309 0.235 0.292 0.214

5
AHP 0.286 0.225 0.387 0.102
(i) 0.333 0.25 0.387 0.102
(ii) 0.361 0.236 0.387 0.102

A solution x is obtained as an eigenvector corresponding to the maximum eigenvalue
of E tE and a solution y is obtained as an eigenvector corresponding to the maximum
eigenvalue of EE t .

Example 2. Table 6 shows results of the case where N=19, J=5, M=4. For the
purpose of comparison, AHP results are also shown in Table 6, where if the ( j, k)-
th component, ai, jk, of Ai, the ( j, k)-th component a paired comparison matrix is
(∏19

i=1 ai, jk)1/19.

The same formulation 3 as formulation 2 can be considered.
(iii) Let a value of the ( j, k)-th component of Ai be h.
If h > 1, let the ( j, k)-th component, bi, jk, of Bi be log th.
If h = 0, let bi, jk be 0.
If h < 1, let bi, jk be − log th.
Let fi j be a mean of j-th row of Bi, that is,

fi j = ∑
k

bi, jk/M. (33)
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Formulation 3

max
M

∑
j=1

(x j−µ)2 (34)

s.t.
M

∑
j=1

x j/M = µ = 0; x j =
N

∑
i=1

fi j/N (35)

N

∑
i=1

M

∑
j=1

( fi j−µ)2/(NM) = 1 (36)

t1 = 1≤ t2 ≤ ·· · ≤ tK . (37)

However, the same formulation as formulation 2 cannot be considered, because

yi =
M

∑
j=1

fi j/M = 0.

Example 3. Suppose that

Ai =




1 5 3
1/5 1 1/2
1/3 2 1




Then,

Bi =




0 log t5 log t3

− log t5 0 − log t2

− log t3 log t2 0




fi1 = (log t5 + log t3)/3

fi2 = (− log t5 + log t2)/3

fi3 = (− log t3 + log t2)/3

yi = ∑
j

fi j/3 = 0.

The last equation must be changed into

yi = ∑
j<k

bi, jk (38)

Formulation 4

max
N

∑
i=1

(yi−µ)2 (39)

s.t.
N

∑
i=1

yi/N = µ = 0; yi = ∑
j<k

bi, jk (40)

N

∑
i=1

M

∑
j=1

( fi j−µ)2/(NM) = 1 (41)

t1 = 1≤ t2 ≤ ·· · ≤ tK (42)
µ : grand mean
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Table 7: Values of th obtained by procedure (iv)
h 1 2 3 4 5 6 7 8 9
th 1 2.113 6.014 8.185 8.185 8.185 8.185 8.185 16.000

Table 8: Aggregated evaluation by AHP and procedure (iv)
AHP 0.270 0.189 0.230 0.311
(iv) 0.288 0.177 0.211 0.324

The following procedure can be considered as a method of aggregating N sub-
jects’ judges A1, · · · , AN at AHP.

(iv) Let judge of objects k relating to criteria j by subject i be fi,J+M( j−1)+k

(i = 1,2, · · · ,N; j = 1,2, · · · ,J; k = 1,2, · · · ,M).
Decide th which maximize the variance of xJ+M( j−1)+k j = ∑i fi,J+M( j−1)+k/N.
Derive a value of criteria j as x j = ∑N

i=1 fi j/N ( j = 1,2, · · ·,J) and let

c j = exp(x j)/∑
k

exp(xk)

Calculate xJ+M( j−1)+k j = ∑i fi,J+M( j−1)+k/N (k = 1,2, · · · ,M).
Derive aggregated evaluation exp{∑ j c jxJ+M( j−1)+k}.
Calculate exp{∑ j c jyi j} as evaluation of subject i.

Example 4. Data of Example 2 are analyzed, following to procedure (iv). Table 7
and Table 8 show a part of results. There are not large differences between them.
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