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Abstract This paper treats a finite time horizon optimal control problem in which the controlled
state dynamics is governed by a general system of stochastic functional differential equations with a
bounded memory. An infinite-dimensional HJB equation is derived using a Bellman-type dynamic
programming principle. It is shown that the value function is the unique viscosity solution of the
HJB equation. In addition, the computation issues are also studied. More particularly, a finite
difference scheme is obtained to approximate the viscosity solution of the infinite dimensional HJB
equation. The convergence of the scheme is proved using the Banach fixed point theorem. The
computational algorithm is also provided based on the scheme obtained.
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1 Introduction
The theory of stochastic functional differential equations has been widely used

to describe the stochastic systems whose evolution depend on the past history of
the state. It has many applications in real world applications (see Mohammed [20],
[21] and Kolmanovskii and Shaikhet [13] for basic theory and some applications).
The linear-quadratic regulatory problem involving stochastic delay equations was
first studied in Kolmanovskii and Maizenberg [12], and optimal control problems
for a class of nonlinear stochastic equations that involve a continuous delay of the
following type

dX(s) = α(s,X(s),Y (s),u(s))ds+β (s,X(s),Y (s),u(s))dW (s), s ∈ [t,T ], (1)

have been studied in recent literature (see e.g. Elsanousi [8], Elsanousi et al [9], and
Larssen [16], Oksendal and Sulem [22]), in which Y (s) =

∫ 0
−r e−δθ X(s+θ)dθ .
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In this paper, we will consider more general forms of the system of stochastic
equations in Rn

dX(s) = f (s,Xs,u(s))ds+g(s,Xs,u(s))dW (s), ∀s ∈ [t,T ] (2)

in which W (s) is a standard m-dimensional Brownian motion. In addition, the drift
f (s,Xs,u(s)) and the diffusion coefficients g(s,Xs,u(s)) depend explicitly on the win-
dow of the state process Xs over the time interval [s− r,s], where Xs : [−r,0]→ Rn is
defined by Xs(θ) = X(s+θ),θ ∈ [−r,0]. The consideration of such a system enable
us to model many real world problems that have aftereffects (see [13]). Apparently,
equation (1) is only a special case of (2).

In our recent work [4], we studied the system (2) using the viscosity solution
concept introduced by Crandall and Lions [2], [18], [19] in order to characterize the
value function as the unique viscosity solution of the associated HJB equation. In
[5], we considered the finite difference method to solve the associated Hamilton-
Jacobi-Bellman equation numerically. One thing we would like to point out is that
the Markov Chain approximation method (see [15] for basic theory) can also be used
to obtain the numerical solution for stochastic systems with delay (see Kusher [14]).
In addition, in [3, 6], we considered optimal stopping time for stochastic systems
with a bounded memory. In [7], we studied the application in Black-Scholes formula
when the stock price is described with a stochastic delayed differential equations.

This paper is organized as follows. Notation and the statement of the problem
are contained in Section 2. In Section 3, the infinite dimensional Hamilton-Jacobi-
Bellman (HJB) equation for the value function is given. In Section 4, we consider
the viscosity solution of the HJB equation. It is shown in Section 4 that the value
function is a viscosity solution of the HJB equation. The uniqueness result for vis-
cosity solution of the HJB equation is also given there. In Section 5, we present a
finite difference method to approximate the viscosity solution of the HJB equation.
The convergence results are given. An computational algorithm is given in Section
6.

2 Problem Formulation
Let T > 0 denote a fixed terminal time, and let t ∈ [0,T ] denote an initial time.

We study the finite time horizon optimal control problem for a general system of
stochastic functional differential equations on the interval [t,T ]. Let r > 0 be a fixed
constant, and let J= [−r,0] denote the duration of the bounded memory of the equa-
tions considered in this paper. For the sake of simplicity, denote C(J;ℜn), the space
of continuous functions φ : J→ ℜn, by C. Note that C is a real separable Banach
space under the sup-norm defined by

‖φ‖= sup
t∈J
|φ(t)|, φ ∈ C,

where | · | is the Euclidean norm in ℜn.
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We denote by ( · | · ) the inner product in L2(J,ℜn), and 〈 · , · 〉 the inner product
in ℜn. Given φ and ψ in C, we have defined as follows,

(φ |ψ) =
∫ 0

−r
〈φ(s),ψ(s)〉ds, and ‖φ‖2 = (φ |φ)

1
2 .

Note that the space C can be continuously embedded into L2(J;ℜn).

Convention 1.
Throughout the end, we use the following conventional notation for functional dif-
ferential equations (see Hale [11]): If ψ ∈C([−r,∞);ℜn) and t ∈ℜ+, let ψt ∈ C be
defined by ψt(θ) = ψ(t +θ), θ ∈ J.

Throughout the end, let {W (t), t ≥ 0} be a certain m-dimensional standard Brow-
nian motion defined on a complete filtered probability space (Ω,F ,P;F), where
F = {F (t), t ≥ 0} is the P-augmentation of the natural filtration {FW (t), t ≥ 0} gen-
erated by the Brownian motion {W (t), t ≥ 0}, i.e., if t ≥ 0,

FW (t) = σ{W (s),0≤ s≤ t}
and

F (t) = FW (t)∨{A⊂Ω|∃B ∈F such that A⊂ B and P(B) = 0}
where the operator ∨ denotes that F (t) is the smallest σ -algebra such that FW (t) ⊂
F (t) and

{A⊂Ω|∃B ∈F such that A⊂ B and P(B) = 0} ⊂F (t).

Let L2(Ω,C) be the space of C-valued random variables Ξ : Ω→ C such that

‖Ξ‖L2 =
{∫

Ω
‖Ξ(ω)‖2dP(ω)

} 1
2

< ∞.

In addition, let L2(Ω,C;F (t)) be those Ξ ∈ L2(Ω,C) which are F (t)-measurable.
We consider the following system of controlled stochastic functional differential

equations with a bounded memory:

dX(s) = f (s,Xs,u(s))ds+g(s,Xs,u(s))dW (s), s ∈ [t,T ], (3)

with the initial function Xt = ψt , where ψt ∈ L2(Ω,C;F (t)) and u(·) = {u(s),s ∈
[t,T ]} is a control process taking values in a compact set U (of an Euclidean space).
The functions, f : [0,T ]×C×U → ℜn and g : [0,T ]×C×U → ℜn×m are given
deterministic functions.

Definition 1. Given the m-dimensional standard Brownian motion {W (s),s ∈ [0,T ]}
and the control process {u(s), s ∈ [t,T ]}, a process {X(s; t,ψt ,u(·)),s ∈ [t− r,T ]} is
said to be a (strong) solution of the controlled equation (3) on the interval [t−r,T ] and
through the initial datum (t,ψt) ∈ [0,T ]×L2(Ω,C;F (t)) if it satisfies the following
conditions:
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1. Xt(·; t,ψt ,u(·)) = ψt ;
2. X(s; t,ψt ,u(·)) is F (s)-measurable for each s ∈ [t,T ];
3. The process {X(s; t,ψt ,u(·)),s ∈ [t,T ]} is continuous and satisfies the follow-

ing stochastic integral equation P-a.s.

X(s) = ψt(0)+
∫ s

t
f (λ ,Xλ ,u(λ ))dλ +

∫ s

t
g(λ ,Xλ ,u(λ ))dW (λ ). (4)

In addition, the solution process {X(s; t,ψt ,u(·)),s∈ [t−r,T ]} is said to be (strongly)
unique if {X̃(s; t,ψt ,u(·)),s ∈ [t− r,T ]} is also a solution of (3) on [t− r,T ] with the
control process u(·) and through the same initial datum (t,ψt), then

P{X(s; t,ψt ,u(·)) = X̃(s; t,ψt ,u(·)),∀s ∈ [t,T ]}= 1.

Definition 2. For each t ∈ [0,T ], a 5-tuples α = (Ω,F ,P,W (·),u(·)) is said to be an
admissible control if it satisfies the following conditions:

1. (Ω,F ,P) is a complete probability space.
2. W (·) = {W (s),s ∈ [0,T ]} is an m-dimensional standard Brownian motion on

(Ω,F ,P) over [t,T ] with W (t) = 0 a.s., and F (t,s) = σ{W (τ), t ≤ τ ≤ s}
augmented by the P-null sets in F .

3. u : [t,T ]×Ω→U is an {F (t,s),s ∈ [t,T ]}-adapted process on (Ω,F ,P) that
is right-continuous at the initial time t.

4. Under the control process u(·) = {u(s),s∈ [t,T ]}, equation (3) admits a unique
strong solution X t,ψ,u(·)(·) = {X(s; t,ψ,u(·)),s ∈ [t,T ]} on (Ω, F , P; {F (t,s),
s ∈ [t,T ]}) through each initial datum (t,ψ) ∈ [0,T ]×C.

5. The control process u(·) is such that

E
[∫ T

t
|L(s,Xs(t,ψ,u(·)),u(s))|ds+ |Ψ(XT (t,ψ,u(·)))|

]
< ∞,

where L : [0,T ]×C×U →ℜ and Ψ : C→ℜ represent the running and terminal
cost functions, respectively.

The collection of admissible controls α = (Ω,F ,P,W (·),u(·)) over the interval
[t,T ] shall be denoted by U [t,T ].

We shall write u(·)∈U [t,T ] or α = (Ω,F ,P,W (·),u(·))∈U [t,T ] interchange-
ably, whenever there is no danger of ambiguity.

Throughout the end, we assume that the functions f : [0,T ]×C×U → ℜn,
and g : [0,T ]×C×U → ℜn×m satisfy the following conditions. (See Mohammed
[20, 21].) The functions f and g are continuous and they satisfy the following linear
growth and Lipschitz conditions.

Assumption 2.
There exists a constant Λ > 0 such that

| f (t,ϕ,u)− f (t,φ ,u)|+ |g(t,ϕ,u)−g(t,φ ,u)| ≤ Λ‖ϕ−φ‖,
∀(t,ϕ,u),(t,φ ,u) ∈ [0,T ]×C×U.
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Assumption 3.
There exists a constant K > 0 such that

| f (t,φ ,u)|+ |g(t,φ ,u)| ≤ K(1+‖φ‖), ∀(t,φ ,u) ∈ [0,T ]×C×U.

Given an admissible control u(·) ∈U [t,T ], let X t,ψ,u(·)(·) = {X(s; t,ψ,u(·)),s ∈
[t,T ]} be the solution of (3) through the initial datum (t,ψ) ∈ [0,T ]×C. We again
consider the corresponding C-valued process {Xs(t,ψ,u(·)),s ∈ [t,T ]} defined by

Xs(θ ; t,ψ,u(·)) = X(s+θ ; t,ψ,u(·)), θ ∈ J. (5)

For notational simplicity, we often write X(s) = X(s; t,ψ,u(·)) and Xs = Xs(t,ψ,u(·))
for s ∈ [t,T ] whenever there is no danger of ambiguity.

It can be shown under Assumptions 2–3 that the C-valued process {Xs(t, ψ ,
u(·)), s ∈ [t,T ]} is a Markov process (see Mohammed [20], [21]).

Let L and Ψ be two continuous real-valued functions on [0,T ]×C×U and
[0,T ]×C, respectively. Moreover, we assume that they both have at most polynomial
growth in L2(J;ℜ). In other words, there exist constants Λ,k such that

|L(t,φ ,u)| ≤ Λ(1+‖φ‖2)k, and |Ψ(t,φ)| ≤ Λ(1+‖φ‖2)k,

for all (t,φ ,u) ∈ [0,T ]×C×U , for some positive integer k .
Given any initial data (t,ψ) ∈ [0,T ]×C and any admissible control u(·) ∈

U [t,T ], we define the objective function

J(t,ψ;u(·))≡

E
[∫ T

t
e−ρ(s−t)L(s,Xs(t,ψ,u(·)),u(s))ds+ e−ρ(T−t)Ψ(XT (t,ψ,u(·)))

]
, (6)

where ρ > 0 denotes a discount factor. For each initial datum (t,ψ) ∈ [0,T ]×C,
the optimal control problem is to find u(·) ∈U [t,T ] so as to maximize the objective
function J. In this case, the value function V : [0,T ]×C→ℜ is defined to be

V (t,ψ) = sup
u(·)∈U [t,T ]

J(t,ψ;u(·)). (7)

3 The HJB Equation
Let C∗ and C† be the space of bounded linear functionals Φ : C → ℜ and

bounded bilinear functionals Φ̃ : C×C → ℜ, of the space C, respectively. They
are equipped with the operator norms which will be, respectively, denoted by ‖ · ‖∗
and ‖ · ‖†.

Let B = {v1{0},v ∈ℜn}, where 1{0} : [−r,0]→ℜ is defined by

1{0}(θ) =

{
0 for θ ∈ [−r,0),
1 for θ = 0.
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We form the direct sum

C⊕B = {φ + v1{0} | φ ∈ C, v ∈ℜn}
and equip it with the norm ‖ · ‖ defined by

‖φ + v1{0}‖= sup
θ∈[−r,0]

|φ(θ)|+ |v|, φ ∈ C, v ∈ℜn.

Note that for each sufficiently smooth function Φ : C → ℜ, its first order Fréchet
derivative (with respect to φ ∈ C), DΦ(ϕ) ∈ C∗, has a unique and continuous lin-
ear extension DΦ(ϕ) ∈ (C⊕B)∗. Similarly, its second order Fréchet derivative,
D2Φ(ϕ) ∈ C†, has a unique and continuous linear extension D2Φ(ϕ) ∈ (C⊕B)†.
In above, (C⊕B)∗ and (C⊕B)† are spaces of bounded linear and bilinear func-
tionals of C⊕B, respectively. (See Lemma (3.1) and Lemma (3.2) on pp 79-83 of
Mohammed [20] for details).

For a Borel measurable function Φ : C→ℜ, we also define

S (Φ)(φ) = lim
h→0+

1
h

[
Φ(φ̃h)−Φ(φ)

]
(8)

for all φ ∈ C, where φ̃ : [−r,T ]→ℜn is an extension of φ defined by

φ̃(t) =

{
φ(t) if t ∈ [−r,0)
φ(0) if t ≥ 0,

and again φ̃t ∈ C is defined by

φ̃t(θ) = φ̃(t +θ), θ ∈ [−r,0].

Let D(S ), the domain of the operator S , be the set of Φ : C → ℜ such that the
above limit exists for each φ ∈ C.

Throughout the end, let C1,2
lip ([0,T ]×C) be the space of functions Φ : [0,T ]×

C→ℜ such that ∂Φ
∂ t : [0,T ]×C→ℜ and D2Φ : [0,T ]×C→ C† exist and are con-

tinuous and satisfy the following Lipschitz condition:

‖D2Φ(t,φ)−D2Φ(t,ϕ)‖† ≤ K‖φ −ϕ‖ ∀t ∈ [0,T ], φ ,ϕ ∈ C.

We can derive the HJB equation for V , which is given in the following theorem:
Theorem 4. Suppose V is the value function defined by (7) and satisfies V ∈ C1,2

lip
([0,T ]×C)∩D(S ). Then the value function V satisfies the following HJB equation:

ρV (t,ψ)− ∂V
∂ t

(t,ψ)−max
v∈U

[A vV (t,ψ)+L(t,ψ,v)] = 0 (9)

on [0,T ]×C, and V (T,ψ) = Ψ(ψ), ∀ψ ∈ C, where A is defined by

A vV (t,ψ)≡S (V )(t,ψ)+DV (t,ψ)( f (t,ψ,v)1{0})

+
1
2

m

∑
i=1

D2V (t,ψ)(g(t,ψ,v)ei1{0},g(t,ψ,v)ei1{0}). (10)
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For details about how to derive the HJB equation, please refer to [4].
Note that it is not known that the value function V satisfies the necessary smooth-

ness condition V ∈C1,2
lip ([0,T ]×C)∩D(S ). Therefore, in general we need to con-

sider viscosity solution instead of a classical solution for HJB equation (9). In fact,
it will be shown that the value function is a unique viscosity solution of the HJB
equation (9). These results shall be given in the next section.

4 Viscosity Solution of the HJB Equation
In this section, we shall show that the value function V defined by (7) is actually

a viscosity solution of the HJB equation (9). First, let us define the viscosity solution
of (9) as follows.

Definition 3. Let w ∈C([0,T ]×C). We say that w is a viscosity subsolution of (9)
if, for every Γ ∈C1,2

lip ([0,T ]×C)∩D(S ), for (t,ψ) ∈ [0,T ]×C satisfying Γ≥ w on
[0,T ]×C and Γ(t,ψ) = w(t,ψ), we have

ρΓ(t,ψ)− ∂Γ
∂ t

(t,ψ)−max
v∈U

[A vΓ(t,ψ)+L(t,ψ,v)]≤ 0.

We say that w is a viscosity super solution of (9) if, for every Γ ∈C1,2
lip ([0,T ]×C)∩

D(S ), and for (t,ψ) ∈ [0,T ]×C satisfying Γ ≤ w on [0,T ]×C and Γ(t,ψ) =
w(t,ψ), we have

ρΓ(t,ψ)− ∂Γ
∂ t

(t,ψ)−max
v∈U

[A vΓ(t,ψ)+L(t,ψ,v)]≥ 0.

We say that w is a viscosity solution of (9) if it is both a viscosity supersolution and
a viscosity subsolution of (9).

For our value function V defined by (7), we have the following results:

Theorem 5. The value function V is a viscosity solution of the HJB equation

ρV (t,ψ)− ∂V
∂ t

(t,ψ)−max
v∈U

[A vV (t,ψ)+L(t,ψ,v)] = 0 (11)

on [0,T ]×C, and V (T,ψ) = Ψ(ψ), ∀ψ ∈ C.

Since a viscosity solution is both a subsolution and a supersolution, the unique-
ness result will follow immediately after establishing the following comparison prin-
ciple:

Theorem 6 (Comparison Principle). Assume that V1(t,ψ) and V2(t,ψ) are both con-
tinuous with respect to the argument (t,ψ) and are respectively viscosity subsolution
and supersolution of (9) with at most a polynomial growth. In other terms, there
exists a real number Λ > 0 and a positive integer k > 0 such that,

|Vi(t,ψ)| ≤ Λ(1+‖ψ‖2)k, for (t,ψ) ∈ [0,T ]×C, i = 1,2.

Then
V1(t,ψ)≤V2(t,ψ) for all (t,ψ) ∈ [0,T ]×C. (12)
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The proofs for Theorem 5 and Theorem 6 can be found in [4], so we omit them
here.

5 A Finite Difference Scheme
In this section, we consider an explicit finite difference scheme and show that

it converges to the unique viscosity solution of equation (9). We will use a method
introduced by Barles and Souganidis [1]. Given a positive integer M, we consider the
following truncated optimal control problem with value function VM : [0,T ]×C→R

VM(t,ψ) = sup
u(·)∈U [t,T ]

E
[∫ T

t
e−ρ(s−t)(L(s,Xs,u(s))∧M)ds

+ e−ρ(T−t)(Ψ(XT )∧M)
]
, (13)

where a∧ b is defined by a∧ b = min{a,b} for all a,b ∈ R. It is easy to see that
VM → V as M → ∞. In view of these, we need only find the numerical solution for
VM.

Similar to the proof of Theorem 5 (see [4]), it can be shown that the value
function VM is the unique viscosity solution of the corresponding HJB equation

ρVM(t,ψ)− ∂VM

∂ t
(t,ψ)−max

u∈U
[A uVM(t,ψ)+L(t,ψ,u)∧M] = 0 (14)

on [0,T ]×C, and V (T,ψ) = Ψ(ψ)∧M, ∀ψ ∈ C.
Let ε with 0 < ε < 1 be the stepsize for variable ψ and η with 0 < η < 1 be the

stepsize for t. We consider the finite difference operators ∆ε , ∆η and ∆2
η defined by

∆ηW (t,ψ) =
W (t +η ,ψ)−W (t,ψ)

η
,

∆εW (t,ψ)(h+ v1{0}) =
W (t,ψ + ε(h+ v1{0}))−W (t,ψ)

ε
,

∆2
εW (t,ψ)(h+ v1{0},k +w1{0}) =

W (t,ψ + ε(h+ v1{0}))−W (t,ψ)
ε2

+
W (t,ψ− ε(k +w1{0}))−W (t,ψ)

ε2 .

where h,k ∈ C and v,w ∈ Rn. Recall that,

S (Φ)(φ) = lim
ε→0+

1
ε

[
Φ(φ̃ε)−Φ(φ)

]
.

Therefore we define,

Sε(Φ)(φ) =
1
ε

[
Φ(φ̃ε)−Φ(φ)

]
.

It is clear that Sε(Φ) is an approximation of S (Φ).
We have the following lemma:
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Lemma 7. For any W : [0,T ]×C → R, W ∈ C 1,2([0,T ]×C) such that W can be
smoothly extended on [0,T ]× (C⊕B), we have

lim
ε→0

∆εW (t,ψ)(h+ v1{0}) = DW (t,ψ)(h+ v1{0}), (15)

and
lim
ε→0

∆2
εW (t,ψ)(h+ v1{0}) = D2W (t,ψ)(h+ v1{0},k +w1{0}). (16)

The proof can be found in [5].
Let ε,η > 0. The corresponding discrete version of equation (14) is given by

ρVM(t,ψ) =
1
ε

[VM(t, ψ̃ε)−VM(t,ψ)]+
VM(t +η ,ψ)−VM(t,ψ)

η

+max
u∈U

[
VM(t,ψ + ε( f (t,ψ,u)1{0}))−VM(t,ψ)

ε

+
1
2

m

∑
i=1

(
VM(t,ψ + ε(g(t,ψ,u)ei1{0}))−VM(t,ψ)

ε2

+
VM(t,ψ− ε(g(t,ψ,u)ei1{0}))−VM(t,ψ)

ε2

)
+L(t,ψ,u)∧M

]
. (17)

Let Cb([0,T ]× (C⊕B)) denote the space of bounded continuous functions W
from [0,T ]× (C⊕B) to R. Define a mapping HM : (0,1)2 × [0,T ]×C×Rn ×
Cb([0,T ]× (C⊕B))→ R as the following

HM(ε,η , t,ψ,x,W )≡ ε max
u∈U

[
1
ε

W (t, ψ̃ε)+
W (t +η ,ψ)

η

+
W (t,ψ + ε( f (t,ψ,u)1{0}))

ε
+L(t,ψ,u)∧M

+
1
2

m

∑
i=1

W (t,ψ + ε(g(t,ψ,u)ei1{0}))+W (t,ψ− ε(g(t,ψ,u)ei1{0}))
ε2

]

− ε
(

2
ε

+
1
η

+
m
ε2 +ρ

)
x. (18)

Then, (17) is equivalent to HM(ε,η , t,ψ,VM(t,ψ),VM) = 0. Moreover, note that the
coefficient of x in HM is negative. This implies that HM is monotone, i.e., for all
x1,x2 ∈ Rn, ε,η ∈ (0,1), t ∈ [0,T ], ψ ∈ C, and W ∈Cb([0,T ]× (C⊕B))

HM(ε,η , t,ψ,x1,W )≤HM(ε,η , t,ψ,x2,W ) whenever x1 ≥ x2,

where x1 ≥ x2 denotes componentwise inequality.
We have the following result (see [5] for the proof):
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Lemma 8. For every t ∈ [0,T ], ψ ∈C⊕B, and for every test function W (·, ·) defined
on [0,T ]× (C⊕B) such that W ∈C1,2

b ([0,T ]× (C⊕B))∩D(S ), we have

ρW (t,ψ)− ∂W
∂ t

(t,ψ)−max
u∈U

[A uW (t,ψ)+L(t,ψ,u)∧M] =

lim
(τ,φ)→(t,ψ),ε,η↓0,ξ→0

HM(ε,η ,τ,φ ,W (τ,φ)+ξ ,W +ξ )
ε

. (19)

In other words, the scheme HM is consistent.

We define an operator Tε,η on Cb([0,T ]× (C⊕B)) as follows,

Tε,ηW (t,ψ)≡max
u∈U

[
1

2
ε + 1

η + m
ε2 +ρ

(
1
ε

W (t, ψ̃ε)+
W (t,ψ + ε( f (t,ψ,u)1{0}))

ε

+
1
2

m

∑
i=1

W (t,ψ + ε(g(t,ψ,u)ei1{0}))+W (t,ψ− ε(g(t,ψ,u)ei1{0}))
ε2

+
W (t +η ,ψ)

η
+L(t,ψ,u)∧M

)]
. (20)

Then it is easy to verify that HM(ε,η , t,ψ,W (t,ψ),W ) = 0 is equivalent to the equa-
tion

W (t,ψ) = Tε,ηW (t,ψ). (21)

It is not very hard to prove the following result (see [5] for details):

Lemma 9. For each ε and η , Tε,η is a contraction map.

By virtue of the Banach fixed point theorem, the strict contraction Tε,η has a
unique fixed point that we denote by W M

ε,η , which is also a unique solution of

HM(ε,η , t,ψ,W (t,ψ),W ) = 0.

In addition, we have the following stable result (see [5])

Lemma 10. The scheme HM is stable, that is, for every ε,η ∈ (0,1), there exists a
bounded solution Wε,η ∈Cb([0,T ]× (C⊕B)) to the equation

HM(ε,η , t,ψ,W (t,ψ),W ) = 0, (22)

with the bound independent of ε , and η .

Given the above results, we can obtain the convergence result:

Theorem 11. Let W M
ε,η denote the solution to (22). Then, as (ε,η)→ 0, the sequence

W M
ε,η converges uniformly on [0,T ]×C to the unique viscosity solution VM of (14).

The proof can be found in [5].
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6 The Computational Algorithm
Based on the results obtained in the last section, we can construct the computa-

tional algorithm to obtain a numerical solution. For example, one algorithm can be
like the following:
Step 0. Choose any function W (0) ∈Cb([0,T ]×C⊕B);
Step 1. Pick the starting values for ε(1),η(1). For example, we can choose ε(1) =
10−2,η(1) = 10−3;
Step 2. For the given ε,η > 0, compute the function

W (1)
ε(1),η(1) ∈Cb([0,T ]×C⊕B)

by the following formula

W (1)
ε(1),η(1) = Tε(1),η(1)W (0),

where Tε(1),η(1), which is defined on Cb([0,T ]×C⊕B), is given by (20);
Step 3. Repeat Step 2 for i = 2,3, · · · using

W (i)
ε(1),η(1) = Tε(1),η(1)W

(i−1)
ε(1),η(1),

where Tε(1),η(1), which is defined on Cb([0,T ]×C⊕B), is given by (20). Stop the
iteration when

‖W i+1
ε(1),η(1)(t,ψ)−W i

ε(1),η(1)(t,ψ)‖ ≤ δ1,

where δ1 is a preselected number which is small enough to achieve the accuracy we
want. Denote the final solution by Wε(1),η(1)(t,ψ);
Step 4. Choose two sequences of ε(k) and η(k), such that

lim
k→∞

ε(k) = lim
k→∞

η(k) = 0.

For example, we may choose ε(k) = η(k) = 10−(2+k). Now repeat Step 2 and Step 3
for each ε(k),η(k) until

‖Wε(k+1),η(k+1)(t,ψ)−Wε(k),η(k)(t,ψ)‖ ≤ δ2,

where δ2 is chosen to obtain the expected accuracy.
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