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Abstract We present an algorithmic solution for the stationary distribution of M/M/c/K retrial
queue which consists of an orbit with infinite capacity and a service facility that has c exponential
servers and waiting space of size K− c. The behavior of queue length process in the retrial queue
is described by level dependent quasi-birth-and-death (LDQBD) process due to repeated attempts.

The algorithm is based on the generalized truncation method (GTM) proposed by Nuets and
Rao [9] which is use of the level independent QBD process except the first N levels as an approxi-
mation of the original LDQBD process and the truncation level N is enlarged until the satisfactory
solution is obtained. As the authors indicated, the method in Nuets and Rao [9] may not perform
very well when the system is highly congested. Main features of our algorithm are to develop a
very simple and effective method for deriving inverse of the matrices in the diagonal blocks and to
provide the stable and efficient ways for computing the rate matrices and the boundary probability
vectors. Our approach can overcome drawbacks of the algorithms in Nuets and Rao [9] and can
be applied not only to the system with very large number s of servers and very large size K− s of
waiting space but also to the highly congested system.

Keywords multi-server retrial queue; finite buffer; level dependent quasi-birth-and-death
(LDQBD) process; generalized truncation method; matrix geometric solutions

1 Introduction
We consider the M/M/c/K retrial queue which consists of an orbit with infi-

nite capacity and a service facility that has c exponential servers and waiting space
of size K− c. Retrial queues are characterized by the following features. When an
arriving customer finds that all servers are busy and no waiting position is available,
the customer joins a virtual pool of blocked customers called orbit and repeats its
request after a random amount of time, called retrial time until the customer gets into
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the service facility. We assume that the access from orbit to the service facility is
governed by the exponential distribution whose rate may depend on the current num-
ber of customers in orbit. The behavior of queue length process in the retrial queue
is described by level dependent quasi-birth-and-death (LDQBD) process due to re-
peated attempts. For general treatment of the calculation of stationary distribution of
LDQBD process, see Bright and Taylor [4]. This spatial inhomogeneity often leads
the analytical complexity and approximations are used instead. For an approxima-
tion of the stationary distribution of the retrial queueing systems, many authors use
another calculable system with infinite state space, so-called generalized truncated
system that is a Markov chain with spatially homogeneous block-partitioned gener-
ator except the first N levels e.g., see [1, 2, 5, 9, 12] and the references therein. The
detailed overviews of the related references with retrial queues can be found in [3, 5].

In this paper we propose a numerical algorithm for computing the stationary
distribution. The algorithms are based on the generalized truncation method (GTM)
proposed by Nuets and Rao [9] which uses of the level independent QBD process
except first N levels as an approximation of the original LDQBD process and the
truncation level N is enlarged until the satisfactory solution is obtained. Shin [11]
shows that the stationary distribution of the generalized truncated system in many
retrial queues including M/M/c/K retrial queue converges to that of the original
system as the truncation level N becomes infinity. The GTM consists of the follow-
ing three steps. The first step is to modify the infinitesimal generator, say Q of the
original LDQBD process to QN , the generator of the level independent QBD process
except first N levels. The second step is to find the stationary distribution yyy of QN and
to increase N until the individual elements of yyy do not change significantly. Finally,
approximate the stationary distribution xxx of Q by yyy. For yyy corresponding to the level
of the homogeneous part of QN , matrix geometric method in Neuts [8] are used and
the probabilities corresponding to the boundary levels are obtained by are obtained by
solving the system of linear equations. In Neuts and Rao [9], the successive substitu-
tion method in Neuts [8] is used for rate matrix and the block Gauss-Seidel scheme
is used for the boundary probabilities. Thus as the truncation level N increases, the
size of linear system for boundary probabilities becomes large. This situation can
occur when the system is highly congested. Furthermore as the size K of service
facility increases, the size of block matrix components of QN also increases. Thus
the method in Neuts and Rao [9] may not perform very well under the conditions
of severe congestion when the traffic intensity is high and retrial rate is very small
as the authors indicated. To overcome drawbacks in Neuts and Rao [9], we develop
a simple and effective method for deriving the inverse of the matrices in diagonal
blocks and provide the stable and efficient ways for computing the rate matrices and
the boundary probability vectors. Our approach can be applied not only to the system
with very large size K of service facility but also to the highly congested system.

This paper is organized as follows. In section 2, the mathematical model is
described in detail. The algorithmic solutions are proposed in section 3. Section 4
deals with numerical results and concluding remarks are presented in section 5.
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2 Model description
Consider an M/M/c/K retrial queue which consists of infinite capacity of orbit

and the service facility with c identical servers and K− c waiting positions. Service
times of customers are independent of each other and have a common exponential
distribution with parameter µ . Customers arrive according to a Poisson process with
rate λ . The customer who finds that all servers are busy and no waiting position
is available upon its arrival joins orbit and tries to its luck again after a random
amount of time until the customer gets into the service facility. The access from
orbit to the service facility is governed by the exponential distribution with rate γk

which may depend on the current number k, k ≥ 0 of customers in orbit. That is,
the probability of repeated attempt during the interval (t, t + ∆t), given that k cus-
tomers in orbit at time t, is γk∆t + o(∆t) with γ0 = 0. We assume that the retrial
rates γk, k ≥ 0 satisfy γk ≤ γk+1 (γ0 = 0) and limk→∞ γk = ∞. Let X0(t) and X1(t) be
the number of customers in orbit and in the service facility at time t, respectively
and XXX = {X(t), t ≥ 0} with X(t) = (X0(t),X1(t)). Then the stochastic process XXX is a
Markov chain on the state space S = {(i, j) : i = 0,1,2, · · · , j = 0,1, · · · ,K}. Set-
ting k = {(k,0),(k,1), · · · ,(k,K)}, k ≥ 0, the generator of the Markov chain XXX is of
the form

Q =




0 1 2 3 · · ·
0 A(0)

1 A0

1 A(1)
2 A(1)

1 A0

2 A(2)
2 A(2)

1 A0

3 A(3)
2 A(3)

1 · · ·
...

...




, (1)

where A0, A(n)
1 and A(n)

2 are square matrices of order K +1 and and are given by

A0 =




O

λ


 , A(n)

2 = γn




0 1

0
. . .
. . . 1

0




, n≥ 1,

and

A(n)
1 =




−Λn,0 λ
µ −Λn,1 λ

2µ −Λn,2 λ
. . . . . . . . .

sµ −Λn,c λ
. . . . . . . . .

sµ −Λn,c λ
sµ −Λ0,c




, n≥ 0,
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with Λn,k = λ + γn + kµ , n≥ 0.
We assume that ρ = λ

cµ < 1 which guarantees the existence of the stationary
distribution of XXX (see He et al. [6] and Shin [10]). Let xxx = (xxx0,xxx1,xxx2, · · ·) with
xxxn = (xn0, · · · ,xnK), n ≥ 0 be the stationary distribution of Q. In order to calculate
the stationary distribution xxx, it is necessary to have the family of square matrices
{Rk,k≥ 0} of order K+1 which are the minimal nonnegative solutions to the systems
of equations

A0 +RkA
(k+1)
1 +Rk(Rk+1A(k+2)

2 ) = 0, k ≥ 0. (2)

It follows from the special structure of the matrix A0 that

Rk = A0(−A(k+1)
1 −Rk+1A(k+2)

2 )−1 (3)

has the following formula

Rk =
(

O
rrrk

)
, k ≥ 0, (4)

where O is the zero matrix of size K × (K + 1) and rrrk = (rk0,rk1, · · · ,rkK) is the
(K + 1)− row vector. Thus it follows from Bright and Taylor [4] that the station-
ary distribution xxx = (xxxi, i≥ 0) is given by

xxxn = xxx0

(
n−1

∏
k=0

Rk

)
= x0K

(
n−2

∏
k=0

rkK

)
rrrn−1, n≥ 1, (5)

and xxx0 is the unique solution of the equation

xxx0(A
(0)
1 +R0A(1)

2 ) = 0 (6)

with the normalizing condition

xxx01+ x0K

(
rrr01+

∞

∑
n=2

(
n−2

∏
k=0

rkK

)
rrrn−11

)
= 1, (7)

where 1 is the column vector of corresponding size whose components are all 1.

3 Algorithmic Solution
In this section, we present an algorithmic solution for the stationary distribution

xxx of Q by using the generalized truncation method. The first step of the approximation
is to modify the infinitesimal generator Q to QN by letting A(k)

i = A(N)
i , i = 1,2 for
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k ≥ N, where N is a fixed positive integer. That is, QN is of the form

QN =




0 1 · · · N−1 N N+1 · · ·
0 A(0)

1 A0

1 A(1)
2 A(1)

1 A0
...

. . . . . . . . .
N−1 A(N−1)

2 A(N−1)
1 A0

N A2 A1 A0

N+1 A2 A1 · · ·
...

...




, (8)

where A1 = A(N)
1 and A2 = A(N)

2 . It is well known (e.g. see Neuts [8]) that QN is
positive recurrent if and only if

ρ(N) =
πππ (N)A01

πππ (N)A(N)
2 1

=
λπ (N)

K

γN

(
1−π (N)

K

) < 1, (9)

where πππ (N) = (π (N)
j ,0 ≤ j ≤ K) is the stationary distribution of A(N) = A0 + A(N)

1 +
A(N)

2 , that is, πππ (N)A(N) = 0 and πππ (N)1 = 1. Noting that A(N) is the same as the generator
of the Markov chain for queue length process in the ordinary M/M/c/K queue with
arrival rate λ +γN and service rate µ of each server, it is easily seen that π (N)

K is given
by

π (N)
K =

cc

c!
(ρ̂N)K

[
c−1

∑
j=0

(cρ̂N) j

j!
+

(cρ̂N)c

c!
1− (ρ̂N)K−c+1

1− ρ̂N

]−1

,

where ρ̂N = λ+γN
cµ . By showing that limN→∞ πππ (N) = ρ , it can be seen that the Markov

chain QN is positive recurrent under the condition ρ < 1 for sufficiently large N. A
sufficient condition ρ < 1 of ergodicity of QN for sufficiently large N can also be
obtained from Shin [10]. The second step is to find the stationary distribution yyy of
QN and to increase N until the individual elements of yyy do not change significantly.
Note that yyy depends on the truncation level N. We shall write yyy(N) instead of yyy,
whenever necessary for clarity. Finally, approximate xxx by yyy.

Let S is the minimal nonnegative solution of the matrix equation

A0 +SA1 +S2A2 = 0 (10)

and
Sk = A0(−A(k+1)

1 −Sk+1A(k+2)
2 )−1, k = N−2,N−3, · · · ,1,0 (11)

with SN−1 = S. It follows from the special structure of the matrix A0 that S and Sk,
0≤ k ≤ N−2 have the following formulae

S =
(

O
sss

)
, Sk =

(
O
sssk

)
, 0≤ k ≤ N−2, (12)
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where O is the zero matrix of size K × (K + 1), and sss = (s0,s1, · · · ,sK) and sssk =
(sk0,sk1, · · · ,skK) are the K +1 row vector. To highlight the matrices S is a function of
N, we shall write S(N) and sss(N) instead of S and sss, whenever necessary for clarity.
Similarly, Sk(N) and sssk(N) will be used instead of Sk and sssk.

Write yyy = (yyy0,yyy1,yyy2, · · ·) in the block partitioned form, where yyyi = (yi0, · · · ,yiK),
i≥ 0. Following the similar procedures to those of (5), (6) and (7), yyyi, i≥ 0 are given
by

yyyn =





y0K

(
n−2

∏
k=0

skK

)
sssn−1, 1≤ n≤ N−1,

y0K

(
N−2

∏
k=0

skK

)
(sK)n−Nsss, n≥ N.

(13)

The vector yyy0 is the unique solution of the equation

yyy0(A
(0)
1 +S0A(1)

2 ) = 0 (14)

with the normalizing condition

yyy01+ y0K

[
sss01+

N−1

∑
n=2

(
n−2

∏
k=0

skK

)
sssn−11+

(
N−2

∏
k=0

skK

)
sss1

1− sK

]
= 1. (15)

So the algorithm consists of two parts, (1) computation of S and Sk, and (2) choice of
truncation level N.

Computations of S and Sk. Since S2 = sKS, we have from (10) and (12) that

sss = (λeT
K+1 + γNsKs̃ss)(−A1)−1, (16)

where eT
K+1 = (0, · · · ,0,1) is a (K +1)-dimensional row vector and s̃ss = (0, s0, s1, · · · ,

sK−1). That is, the jth entry s j of sss is given by

s j = λaK+1, j+1 + γNsK

K

∑
i=1

si−1ai+1, j+1, j = 0,1, · · · ,K, (17)

where (−A1)−1 = (ai j)1≤i, j≤K+1. The solution of the equation (16) is obtained by
sss = limn→∞ sss(n), where the sequence {sss(n),n≥ 0} is defined by

sss(n+1) = (λeT
K+1 + γNs(n)

K s̃ss(n))(−A1)−1 (18)

with sss(0) = 0 and s̃ss(n) = (0,s(n)
0 ,s(n)

1 , · · · ,s(n)
K−1). Since all the elements in (18) are

nonnegative, the iteration (18) provides a stable method for evaluating S. To expedite
the convergence to sss, we use a modified method that uses the new one s(n+1)

i for i < j
for computing s(n+1)

j as

s(n+1)
j = λaK+1, j+1 + γNs(n)

K

(
j−1

∑
i=1

s(n+1)
i−1 ai+1, j+1 +

K

∑
i= j

s(n)
i−1ai+1, j+1

)
, j = 0,1, · · · ,K.

(19)
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Iteration (19) is repeated until for arbitrarily chosen ε0 > 0, the tolerance condition

||sss(n+1)−sss(n)||∞ = max
0≤ j≤K

|s(n+1)
j − s(n)

j |< ε0 (20)

is satisfied.
We can see from (16) and (11) that it is necessary to evaluate (−A1)−1 and

(−A(k+1)
1 −Sk+1A(k+2)

2 )−1, 0≤ k≤N−1 for computing S and Sk. The following results
for (−A(k)

1 )−1 are immediate from Proposition A.2 in Appendix. Let µ j = min( j,c)µ ,
0≤ j ≤ K +1. Define w(k)

j and v(k)
j , 1≤ j ≤ K +1 as follows:

w(k)
K+1 =

λ
λ + cµ

,

w(k)
j =

λ
λ + γk + µ j−1−w(k)

j+1µ j

, j = K,K−1, · · · ,2,

w(k)
1 =

1

λ + γk−w(k)
2 µ

and

v(k)
K+1 =

cµ
λ + cµ

,

v(k)
j =

µ j−1

λ (1− v(k)
j+1)+ γk + µ j−1

, j = K,K−1, · · · ,2,

v(k)
1 =

1

λ (1− v(k)
2 )+ γk

.

Proposition 1. The inverse matrix (−A(k)
1 )−1 = (a(k)

i j )1≤i, j≤K+1 of −A(k)
1 is given as

follows: (1) The first row and column :

a(k)
1 j = w(k)

1 w(k)
2 · · ·w(k)

j , j = 1,2, · · · ,K +1, (21)

a(k)
i1 = v(k)

i v(k)
i−1 · · ·v(k)

1 , i = 1,2, · · · ,K +1, (22)

(2) The j-th (2≤ j ≤ K) row and column :

a(k)
j j =

1+λa(k)
j, j−1

λ + γk + µ j−1−w(k)
j+1µ j

, (23)

a(k)
jm = a(k)

j j w(k)
j+1w(k)

j+2 · · ·w(k)
m , m = j +1, j +2, · · · ,K +1, (24)

a(k)
m j = v(k)

m v(k)
m−1 · · ·v(k)

j+1a(k)
j j , m = j +1, j +2, · · · ,K +1, (25)

(3) The (K +1,K +1)-component :

a(k)
K+1,K+1 =

1+λa(k)
K+1,K

λ + cµ
. (26)
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For the inverse (−A(k+1)
1 −Sk+1A(k+2)

2 )−1, we need the following lemma.

Lemma 2. Let A be an invertible matrix of size n and

B = A+auuuvvvT ,

where uuu and vvv are column n-vectors and vvvT is the transpose of vvv. If B is invertible,
then the inverse matrix B−1 of B is given by

B−1 = A−1− a
1+avvvT A−1uuu

A−1uuuvvvT A−1.

In particular, if uuu = vvv = eeek = (0, · · · ,0,1,0, · · · ,0)T is the column n-vector whose kth
component is 1 and others are all zeros, then the (i, j) component [B−1]i j of B−1 is

[B−1]i j = [A−1]i j− a
1+a[A−1]kk

[A−1]ik[A−1]k j, 1≤ i, j ≤ n.

Proposition 3. Once sssk+1 is obtained, sssk = (sk0,sk1, · · · ,skK) is given by

sk j = λa(k+1)
K+1, j+1 +λ

(
γk+2a(k+1)

K+1,K+1

)(
∑K

i=1 sk+1,i−1a(k+1)
i+1, j+1

)

1− γk+2

(
∑K

i=1 sk+1,i−1a(k+1)
i+1,K+1

) , j = 0,1,2, · · · ,K. (27)

Proof. Noting that

A(k+1)
1 +Sk+1A(k+2) = A(k+1)

1 + γk+2eK+1s̃ssk+1,

(27) is immediate from Lemma 2.

Choice of N. The choice of the truncation level N is important because the
amount of computation and the approximation error depend on it critically. It can
be seen from (13) that the tail distribution of yyy depends largely on the spectral ra-
dius sp(S(N)) = sK(N) of S(N). As Neuts and Rao [9] indicated, to minimize the
effect of the approximation, the truncation level N must be chosen such that sK(N)
is sufficiently close to sK(∞). In the following, we show that sp(RN) = rN,K and
sp(S(N)) = sK(N) have the same limit ρ as N tends to infinity.

Lemma 4.
lim
k→∞

rkK = ρ = lim
N→∞

sK(N). (28)

Proof. Let ∆k = −diag[A(k)
1 ] be the diagonal matrix whose diagonal elements are

[−A(k)
1 ]ii, 1≤ i≤ K +1 and define

P(k)
0 = ∆−1

k A0, k ≥ 0,

P(k)
1 = ∆−1

k A(k)
1 + I, k ≥ 0,

P(k)
2 = ∆−1

k A(k)
2 , k ≥ 1
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and let
RJ

k = ∆−1
k Rk∆k+1, k ≥ 0. (29)

Then the matrices RJ
k , k ≥ 0 are the minimal nonnegative solutions to the equations

RJ
k = P(k)

0 +RJ
kP(k+1)

1 +RJ
k[R

J
k+1P(k+2)

2 ], k ≥ 0. (30)

We have from (29) that RJ
k has non-zero elements only in the last row and denote it

by rrrJ
k = (rJ

k0, · · · ,rJ
k,K) and

rrrk =
(

λ + cµ
Λk+1,0

rJ
k,0,

λ + cµ
Λk+1,1

rJ
k,1, · · · ,

λ + cµ
Λk+1,K−1

rJ
k,K−1,r

J
k,K

)
.

Thus rk,K = rJ
k,K and hence r∞,K = rJ

∞,K . Letting k → ∞ in (30), we have that

rJ
∞,0 = 0,

rJ
∞, j = rJ

∞,KrJ
∞, j−1, j = 1,2, · · · ,K−2,

rJ
∞,K−1 = rJ

∞,K
cµ

λ + cµ
+ rJ

∞,KrJ
∞,K−2,

rJ
∞,K =

λ
λ + cµ

+ rJ
∞,KrJ

∞,K−1.

The nonnegative solutions that are less than 1 of the equations above are given as
follows:

rJ
∞, j = 0, j = 0,1, · · · ,K−2,

rJ
∞,K−2 =

ρ
1+ρ

,

rJ
∞,K = ρ.

Thus r∞,K = rJ
∞,K = ρ and hence the first part of (28) is proved. We can show the

second equality in (28) by noting that

S(N) = ∆NSJ(N)∆−1
N

and SJ(N) is a minimal nonnegative solution of the equation

SJ(N) = P(N)
0 +SJ(N)P(N)

1 +(SJ(N))2P(N)
2 .

The details are omitted.

Remark 1. Neuts and Rao [9] claim that limN→∞ sp(S(N)) = ρ by numerical exper-
iments for various case. The model considered in [9] is a little bit different from that
in this paper. But our method can be applied to the case of Neuts and Rao [9].
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Now we propose criteria for selecting N. Basically, N must be large enough for
QN to satisfy the stability condition (9) and the stationary distribution yyy exists. We
choose N which satisfies the following conditions for S(N):

|sK(N)−ρ|< ε1 or ||S(N)−S(N−1)||∞ < ε2 (31)

for arbitrarily given εi > 0, i = 1,2. Furthermore, to reduce the effect of approxima-
tion, we choose to increase N until the tail distribution ∑∞

k=N yyyk(N)1 < ε3 for arbitrar-
ily given ε3 > 0. The following algorithm summarizes the results above.

Algorithm 1. Approximation for xxx

1. Choose an initial level N0 for ρ(N0) < 1 and let N := N0.
2. Compute (−A(N)

1 )−1 and S(N) using Algorithm A and (19), respectively.
3. IF (|sK(N)−ρ|< ε1 or ||S(N)−S(N−1)||∞ < ε2) THEN

compute Sk(N), k = N−1, · · · ,0 and yyy using (27) and (13), respectively;
ELSE N := N +1 and GO TO 2. ENDIF;

4. Check the criterion for tail distribution of yyy(N).
IF (∑∞

k=N yyyk(N)1 < ε3) THEN
STOP;
ELSE N := N +1 and GO TO 2. ENDIF;

4 Numerical results
We consider M/M/25/K retrial queue with arrival rate λ = 1.0 and retrial rate

γk = kγ , k≥ 0. To show the effectiveness and feasibility of algorithm 1 to the case of
large K and/or highly congested system, where ρ is high and γ is very small compar-
ing the arrival rate λ , we consider the following combinations ρ = 0.9, 0.95, 0.975,
γ = 10.0, 1.0, 0.5,0.1, 0.05, c = 25, and K = 25, K = 50. Some system character-
istics such as the mean number L0 of customers in orbit and the mean number L1 of
customers in service facility, and the blocking probability BP are considered. The
expressions for L0, L1 and BP are as follows:

L0 =

(
∞

∑
k=0

kyyyk

)
1 =

(
N−1

∑
k=0

kyyyk

)
1+ yN−1,K

(
sK

(1− sK)2 +
N

1− sK

)
sss1,

L1 =

(
∞

∑
k=0

yyyk

)
lll1 =

(
N−1

∑
k=0

yyyk + yN−1,K
sss

1− sK

)
lll1,

BP =
∞

∑
n=0

yyyn,K =
N−1

∑
n=0

yyyn,K + yN−1,K
sK

1− sK
,

where lll1 = (0,1,2, · · · ,K)T . We choose the stopping criteria ε0 = 0.001 for (20),
ε1 = ε2 = 0.001 and ε3 = 0.0001 for the third and fourth steps in Algorithm 1. To
show the choice of the error bounds εi, i = 0,1,2,3 are satisfactory, we present the
numerical results of L0, L1 and BP for large values of N in tables 1 – 3. For each case
of γ in tables 1 – 3, the first line corresponds to the truncation level N obtained by the
Algorithm 1 and the second line corresponds to the large N for comparisons.
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Table 1: M/M/25/K retrial queue with λ = 1.0 and ρ = 0.9
K = 25 K = 50

γ N L0 L1 BP N L0 L1 BP
10. 79 4.613 22.50 0.4984 54 0.3246 26.74 0.0355

150 4.621 22.50 0.4984 100 0.3290 26.74 0.0356
1. 80 5.006 22.50 0.4479 54 0.3316 26.73 0.0307

150 5.014 22.50 0.4479 100 0.3359 26.74 0.0308
0.5 81 5.3956 22.50 0.4166 54 0.3383 26.73 0.0276

150 5.4037 22.50 0.4167 100 0.3425 26.73 0.0276
0.1 90 8.102 22.50 0.3273 89 0.3852 26.69 0.0176

150 8.110 22.50 0.3274 100 0.3854 26.69 0.0176
0.05 120 11.24 22.50 0.2930 117 0.4309 26.64 0.0133

150 11.24 22.50 0.2935 150 0.4309 26.64 0.0133

Table 2: M/M/25/K retrial queue with λ = 1.0 and ρ = 0.95
K = 25 K = 50

γ N L0 L1 BP N L0 L1 BP
10.0 158 13.89 23.75 0.7199 133 3.793 33.74 0.1986

300 13.94 23.75 0.7201 300 3.842 33.75 0.1991
1.0 160 14.75 23.75 0.6726 133 3.817 33.71 0.1805

300 14.81 23.75 0.6728 300 3.866 33.72 0.1809
0.5 163 15.64 23.75 0.6410 133 3.841 33.69 0.1672

300 15.70 23.75 0.6412 300 3.890 33.70 0.1676
0.1 179 22.02 23.75 0.5418 133 3.997 33.54 0.1174

300 22.09 23.75 0.5420 300 4.045 33.54 0.1178
0.05 197 29.51 23.75 0.5005 134 4.164 33.38 0.0912

300 29.60 23.75 0.5008 300 4.210 33.38 0.0915

Table 3: M/M/25/K retrial queue with λ = 1.0 and ρ = 0.975
K = 25 K = 50

γ N L0 L1 BP N L0 L1 BP
10.0 292 33.27 24.38 0.8515 267 17.41 40.04 0.4502

450 33.64 24.38 0.8519 400 17.74 40.06 0.4513
1.0 296 34.97 24.38 0.8164 267 17.45 40.00 0.4237

450 35.34 24.38 0.8169 400 17.78 40.03 0.4249
0.5 301 36.76 24.38 0.7918 267 17.48 39.97 0.4027

450 37.13 24.37 0.7923 400 17.81 39.99 0.4039
0.1 332 49.97 24.38 0.7096 267 17.70 39.74 0.3126

450 50.39 24.38 0.7102 400 18.04 39.76 0.3139
0.05 365 65.72 24.37 0.6739 268 17.96 39.51 0.2566

450 66.18 24.37 0.6746 400 18.28 39.53 0.2578
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5 Concluding remarks
For the computation of the stationary distribution of LDQBD process, one of

the main problem is to calculate the rate matrices Rk. Especially, when the truncation
level N is large, the number of the boundary states are large and many inverse ma-
trices (−A(k)

1 )−1 should be calculated for Rk. The algorithm presented in this paper
follows the general method presented in Bright and Taylor [4], but main contribution
of this paper is to present a simple algorithm for (−A(k)

1 )−1 when A(k)
1 is the tridiago-

nal form. Thus the algorithm of this paper can be applied to the LDQBD process with
generator whose diagonal block is tridiagonal form. Stepanov [13] considered a very
general Markovian retrial queueing system with impatient customers and feedback,
that is, an arriving customers from outside of the system and the orbit can leave the
system without service and the customers who completes its service can rejoin the
queue. Stepanov’s model also falls into the LDQBD process with diagonal block that
is tridiagonal matrix. Algorithm A for computing the inverse of the transient genera-
tor of tridiagonal form can be applied to the case where A(k)

1 is the block tridiagonal
form, for example MAP/M/c/K retrial queue. In this case, using the block matrix
version of algorithm A, it necessary to K +1 inverses of the matrix of size m instead
of the matrix inverse of size m(K + 1) for the inverse of the diagonal block, where
m is the size of the underlying Markov chain describing MAP (Markovian arrival
process).

Appendix A Fundamental matrix of a generator of tran-
sient birth-and-death process with finite state
space

Consider an n×n matrix T is of the form

T =




b1 a1

c2 b2 a2

c3 b3 a3
. . . . . . . . .

cn−1 bn−1 an−1

cn bn




.

with bi < 0 for 1≤ i≤ n, and ai > 0, c j > 0 for 1≤ i≤ n−1, 2≤ j ≤ n. We assume
that T 1� 0 and hence T−1 exists, and denote by

(−T )−1 = X ≡




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

xn1 xn2 · · · xnn




the fundamental matrix of T .
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Define wk and vk, k = 1,2, · · · ,n by the solution of the following equations

ak−1 +wkbk +wkwk+1ck+1 =−δ1,k, 1≤ k ≤ n, (A.1)
ck +bkvk +akvk+1vk =−δ1,k, 1≤ k ≤ n, (A.2)

where δi, j = 1 for i = j, δi, j = 0 for i 6= j and a0 = an = c1 = cn+1 = 0.

Lemma A.1. The wk and vk, 1≤ k ≤ n are positive and given as follows

wn = an−1(−bn)−1, (A.3)
wk = ak−1[−(bk +wk+1ck+1)]−1, k = n−1,n−2, · · · ,2, (A.4)
w1 = [−(b1 +w2c2)]−1 (A.5)

and

vn = (−bn)−1cn, (A.6)
vk = [−(bk +akvk+1)]−1ck, k = n−1,n−2, · · · ,2, (A.7)
v1 = [−(b1 +a1v2)]−1. (A.8)

Proof. The recursive formulae (A.3)− (A.5) and (A.6)− (A.8) are immediate from
(A.1) and (A.2), respectively. It remains to show that wk > 0 and vk > 0, 1 ≤ k ≤ n.
It is clear that wn > 0. We have from T 1� 0 and cn−1 > 0 that

− (bn−1 +wncn) =−bn−1 +
cn

bn
an−1 ≥−bn−1−an−1 ≥ cn−1 > 0 (A.9)

and hence
0 <− cn−1

bn−1 +wncn
≤ 1. (A.10)

Similarly, it follows from (A.9) and (A.10) that

−(bn−2 +wn−1cn−1) =−bn−2 +
cn−1an−2

bn−1 +wn−1cn−1
≥−bn−2−an−2 ≥ cn−2 > 0

and hence
0 <− cn−2

bn−2 +wn−1cn−1
≤ 1.

Repeating this procedure, we have that −(bk + wk+1ck+1) > 0 and wk > 0, 1 ≤ k ≤
n−1. Similarly, we can show−(bk +akvk+1) > 0 and hence vk > 0, 1≤ k≤ n−1.

Proposition A.2. The (i, j)-component xi j, 1 ≤ j ≤ n of X = (−T )−1 are given as
follows:

(1) The first row and column :

x1 j = w1w2 · · ·w j, j = 1,2, · · · ,n, (A.11)
x j1 = v jv j−1 · · ·v1, i = 1,2, · · · ,n, (A.12)
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(2) The j-th (2≤ j ≤ n−1) row and column :

x j j = (1+ x j, j−1ai−1)[−(bi +wi+1ci+1)]−1, (A.13)
x jm = x j jw j+1w j+2 · · ·wm, m = j +1, j +2, · · · ,n, (A.14)
xm j = vmvm−1 · · ·v j+1x j j, m = j +1, j +2, · · · ,n, (A.15)

(3) The (n,n)-component :

xnn = (1+ xn,n−1an−1)[−bn]−1. (A.16)

Proof. We have from XT =−I and T X =−I that

xi, j−1a j−1 + xi jb j + xi, j+1c j+1 =−δi j, 1≤ i, j ≤ n, (A.17)
cixi−1, j +bixi j +aixi+1, j =−δi j, 1≤ i, j ≤ n, . (A.18)

It can be seen from the construction of wk and vk that xi j, 1≤ i, j ≤ n given in (A.11)
– (A.16) satisfy (A.17) and (A.18).

Summarizing the results above, we present an algorithm for computing (−T )−1.

Algorithm A. Computation of (−T )−1 = (xi j)

1. Compute wk and vk, 1≤ k ≤ n using Lemma A.1.
2. Computation of rows and columns.

For i = 1,2, · · · ,n, do

• x j j =
{

w1, j = 1,
(1+ x j, j−1a j−1)[−(b j +w j+1c j+1)]−1, j ≥ 2.

• x jk = x j,k−1wk, k = j +1, · · · ,n : j-th row
• xk j = vkxk−1, j, k = j +1, · · · ,n : j-th column

Remark A.1. Carefully looking the proof of Proposition A.2, we can see that x j j in
(A.13) may also be written by

x j j = [−(b j +a jv j+1)]−1(1+ cix j−1, j), j = 2,3, · · · ,n. (A.19)

Remark A.2. Replacing ai, bi and ci by Ai, Bi and Ci, respectively, we can show that
Proposition A.2 holds for the transient QBD generator T ∗ that is irreducible and is of
the form

T ∗ =




B1 A1

C2 B2 A2

C3 B3 A3
. . . . . . . . .

Cn−1 Bn−1 An−1

Cn Bn




,

where Bk is the square matrix of order nk, 1 ≤ k ≤ n, and Ak and Ck are the matrices
with appropriate order.
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