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Abstract In this paper, we focus on approaches in network dimensioning where it allocates band-
widths and attempts to provide a proportionally fair treatment of all the competing classes. We will
show that an achievement function can map different criteria onto a normalized scale subject to vari-
ous utilities. The achievement function can be coped with the Ordered Weighted Averaging method.
Moreover, it may be interpreted as a measure of QoS on All-IP networks. Using the achievement
function, one can find a Pareto optimal allocation of bandwidths on the network under the available
budget, which provides the so-called proportional fairness to each class. Consequently, this results
in the similar satisfaction level to every connection in all classes.
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1 Introduction
Taking a single global Internet Protocol (IP) based networks to carry all types

of services, telecommunication is moving toward a converged network to replace
the traditional separated packet switched and circuit switched networks [17]. This
revolutionary converged All-IP networks not only reduces network deployment and
management costs, but also offers a great deal of opportunity to introduce various
new services that are not possible on the traditional separated networks.

The idea of a single shared physical network that will support multiple heteroge-
neous applications with different traffic characteristics and different Quality of Ser-
vice (QoS) requirements, is widely regarded as a way to meet the telecommunication
challenges of the future [3], [19]. Packet-switched networks have been proposed to
offer the QoS guarantees in integrated-services networks because individual packets
may exhibit a significant variation in network service quality.

Packet switched networks suffer three major quality problems in offering time-
sensitive services: long delay time, jitter, packet loss. The Universal Mobile Telecom-
munications System (UMTS) offers teleservices (like speech or SMS) and bearer ser-
vices which provide the capability for information transfer between access points. It
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is possible to negotiate and renegotiate the characteristics of a bearer service at con-
nection establishment or during ongoing connection. Bearer services have different
QoS parameters such as maximum transfer delay, delay variation and bit error rate.
Thus, UMTS network services have different QoS classes for four types of traffic:

1. Conversational class (voice, video telephony, video gaming)
2. Streaming class (multimedia, video on demand, webcast)
3. Interactive class (web browsing, network gaming, database access)
4. Background class (email, SMS, downloading)

UMTS [17] has specified four different traffic classes according to their QoS
requirements for different applications as shown in Table 1. An UMTS network
consists of three interacting domains; Core Network (CN), UMTS Terrestrial Radio
Access Network (UTRAN) and User Equipment (UE). The main function of the
core network is to provide switching, routing and transit for user traffic. A core
network also contains the databases and network management functions. The basic
Core Network architecture for UMTS is based on GSM network with GPRS. UMTS
uses channels with a fixed bandwidth of 5 Mbps, which is transmitted from a base
station to all mobile stations [17]. Each station transmits its information using Code
Division Multiple Access (CDMA). The available bandwidth can be divided between
the users according to their needs. Therefore, a problem of network dimensioning
with elastic traffic [11] requires to allocate bandwidth to maximize flows fairly.

Table 1: The Characteristics of UMTS Service Classes
Traffic Classes Sensitivity to Jitter Sensitivity to Delay Sensitivity to Packet Loss
Conversational high high low

Streaming high high low
Interactive class low low high

Background class very low low high

Fair resource allocation problems are concerned with the allocation of limited
bandwidth among competing activities so as to achieve the best overall performances
of the system but providing fair treatment of all the competitors [8]. We introduce
the methodology that allow the decision maker to explore a set of solutions that could
satisfy users’ preferences with respect to throughput and fairness (see [4], [5], [11],
[12]). The formulation and analysis is carried out in a general utility-maximizing
framework. Assume there are m classes in different QoS requirements. In this work,
we will adopt the approach called proportional fairness (see [4], [5], [12]) to max-
imize the sum of logarithms of the bandwidth θi for each class i, i = 1, . . . ,m. The
optimization model of the Proportional Fairness method takes the following form:

max
m

∑
i=1

log(θi) (1)

Different users have different objectives for the network QoS. There are a num-
ber of characteristics that qualify QoS [20], including minimum queue delay, mini-
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mum delay variations, maximum capacity of consistent data throughput, etc. Multi-
ple criteria decision methods are applied in some decision models to aggregate differ-
ent criteria measurements and subjective preference information from the decision-
makers (DMs). A more straightforward technique to represent the DMs’ preferences
in a decision model is through goals or reference points where the DMs can specify
aspiration levels, i.e., desirable or preferable values for each criterion.

In a multiple criteria decision-making situation we often search for Pareto opti-
mal solutions. In a typical multiple criteria optimization of realistic size, especially
one with more than two objectives, the range of efficient solutions can be enormous.
One scheme for dealing with multiple criteria models that permits more balanced
handling of the objectives is simply to combine them in a weighted sum. Multiple
objective functions can be combined into a single composite one by summing objec-
tives with positive weights on maximizing and negative weights on minimizing [15].
Signs orient all objectives in the same direction, and weights reflect their relative im-
portance. If a single weighted-sum objective model derived from a multiple-objective
optimization produces an optimal solution, the solution is undominated by any other
one; simply we call it a Pareto optimal solution of the multiple-objective model. In
this work, we use the method of weighted sums to solve (1). When compared to
weights, reference points provide a more direct way for the DMs to express their
desires and, thus, to affect the solution.

In short, we deal with the problem of dimensioning bandwidth for elastic data
applications in packet-switched communication networks, which can be considered
as a multiple-objective optimization model. Users’ satisfaction is summarized by
means of their achievement functions where each user is allowed to request more
than one type of service. The objective of the optimization problem is to determine
the amount of required bandwidth for each class to maximize the users’ satisfaction
with a proper aggregate utility function. In this regard, we will focus on the following
subjects:

i) how to construct the achievement functions involving utility functions;
ii) how to transform the different criterion measurement onto a normalized scale;

iii) how to allocate budgets with proportional fairness on UMTS networks.

The remaining parts of this paper are organized as follows. In the next sec-
tion we introduce the network dimensioning problems where we construct the utility
functions function to transform the different measurements onto a normalized scale.
A numerical example is given in Section 3. Finally, in Section 4, we remark on
summaries of this study.

2 Fair bandwidth allocation on network dimensioning
problems
Consider a core network topology G = (V,E), where V and E denote the set of

nodes and the set of links in the network respectively. Given the total budget B and
the maximal possible capacity of each link Ue, the objective is to allocate optimal
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bandwidth for all connections subject to QoS requirements bi. Suppose there are
m different classes which have their own QoS requirement. In each class, every
connection is allocated the same bandwidth and it has the same QoS requirement.
Suppose each connection is delivered between the same source and destination in this
(core) network. Under a limited available budget, we want to allocate the bandwidth
xe in order to provide each class with maximal possible QoS.

2.1 Network constraints
Denote by Si a set of connections in class i. Suppose there is the number of

connections in Si is Ki, i.e., |Si| = Ki. Given the marginal cost κe of bandwidths for
each link e ∈ E, it shall allocate the bandwidths in order to provide each class with
maximal possible QoS. First, let xe and θi be the bandwidth allocated to the link e
and the connection j of class i respectively. Then these decision variables must be
nonnegative:

xe ≥ 0, ∀ e ∈ E (2)

θi ≥ 0, ∀ j ∈ Si, for i = 1, . . . ,m. (3)

Furthermore, it requires the following constraints on the network:

∑
e∈E

κexe = B (4)

and
xe ≤Ue, ∀e ∈ E. (5)

In each class i, every connection takes the same bandwidth and has the same
bandwidth requirement and it produces θi,1 = θi,2 = · · ·= θi,Ki . Let θi(= θi,1 = θi,2 =
· · · = θi,Ki) be the bandwidth allocated to each connection of class i. Thus, the con-
straint follows

θi ≥ bi. (6)

Next, for each connection j of class i, denote by p j the routing path from the
source o to destination d. To determine whether link e is chosen we define the binary
decision variable

χ i
j(e) =

{
1 if link e ∈ p j

0 if link e /∈ p j.
(7)

Thus, it yields the following constraint:

∑
i
∑

j
χ i

j(e)θi = xe, ∀ e ∈ E. (8)

Moreover, for each class i, it has

θi ·∑
e

κeχ i
j(e) = ci, (9)
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where ci is a budget allocated to each connection of class i. Then, it gives

∑
i
(Ki · ci +π i) = B, (10)

where π i is the reserved budget for each class i. Let Eo ⊆ E be the set of links
connected with the source node o, then we have

∑
e∈Eo

χ i
j(e) = 1, ∀ i, j. (11)

Let Ed ⊆ E be the set of links connected with the destination node d, then we have

∑
e∈Ed

χ i
j(e) = 1, ∀ i, j. (12)

Let Eν ⊆ E be the set of links that flow into the node ν and E ′
ν ⊆ E be the set of links

that flow out of the node ν , then we have

∑
e∈Eν

χ i
j(e) = ∑

e∈E ′ν

χ i
j(e), ∀ i, j. (13)

Let x = {(xe,θi,χ i
j(e))| ∀ j ∈ Si, for i = 1, . . . ,m,∀e ∈ E} ∈ Rn denote the vec-

tor of decision variables and Q = {x|x satisfies constraints (2)− (13)} denote the
feasible set. We consider a resource allocation problem defined as an optimization
problem with m objective functions, i.e.,

max{ f(x) : x ∈ Q}, (14)

where f(x)={ f1(x), f2(x), . . . , fm(x)} is a vector-function that maps the decision space
Rn into the criterion space Rm.

2.2 Achievement functions with proportional fairness
In order to transform the different measurements onto a normalized scale, we

construct the achievement function µi for each criteria i which can be viewed as an
extension of the fuzzy membership function in terms of a strictly monotonic and
concave utility function as shown in Figure 1 (see [11], [16], etc.)

We assume that the decision maker specifies requirements in aspiration and
reservation levels by introducing desired and required values for several outcomes.
Depending on the specified aspiration and reservation levels, ai and ri, respectively,
we construct our achievement function of θi as follows:

µi(θi) = logαi

θi

ri
, where αi =

ai

ri
. (15)

Formally, we define µi(·) over the range [0,∞), with µi(0) = −∞ and µ ′
i (0) =

∞. Depending on the specified reference levels, this achievement function can be
interpreted as a measure of the decision maker’s satisfaction with the value of the i-th
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Figure 1: The Graph of an Achievement Function µi(θi)

criteria. It is a strictly increasing function of θi, having value 1 if θi = ai, and value
0 if θi = ri. The achievement function can map the different criterion values onto
a normalized scale of the decision maker’s satisfaction. Moreover, the logarithmic
achievement function will be intimately associated with the concept of proportional
fairness (see [5], [11], and [12].)

Proposition 1. The achievement function µi(θi) is continuous, increasing, and con-
cave.

These results are entirely consistent with those assumptions on the utility func-
tions for end-to-end flow control in [5], where the objective is to maximize the ag-
gregate source utility over their transmission rates. In addition, it takes an analytical
approach devised to address decision-making problems where targets have been as-
signed to all the attributes. In other words, the DM may seek a satisfactory and suffi-
cient solution through it. A key element is the achievement function that represents a
mathematical expression of the unwanted deviation variables. Moreover, when some
conditions hold the corresponding solution represents a balanced allocation among
the achievement of the different goals. We will formulate the mathematical model
of the fair bandwidth allocation by using the achievement function in the following
sections.

2.3 Multiple objectives of applying achievement functions
Achievement functions are derived on the basis of reference points to project

an arbitrary point to the set of nondominated attainable solutions. The achievement
function is constructed in such a way that if the reference point is dominated, the
optimization will advance past the reference point to a nondominated solution. By
using the concept of the utility functions as mentioned, we can construct the achieve-
ment functions µT

i and µD
i for the throughput T and delay D respectively for each
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class i. Given the weight β T
i and β D

i of the throughput and delay for each class i
and β T

i + β D
i = 1 for each β T

i ,β D
i ∈ (0,1). Then, for each class i, we consider the

individual objective function fi:

fi(x) ,β T
i µT

i (θi)+β D
i µD

i (
θi

λi
)

=β T
i logαT

i

θi

rT
i

+β D
i logαD

i

θi/λi

rD
i

=β T
i

log θi
rT

i

logαT
i

+β D
i

log θi
λirD

i

logαD
i

= log(
θi

rT
i
)

βT
i

logαT
i + log(

θi

λirD
i
)

βD
i

logαD
i

= log[(
θi

rT
i
)

βT
i

logαT
i · ( θi

λirD
i
)

βD
i

logαD
i ]

= log[
(θi)

(
βT

i
logαT

i
+

βD
i

logαD
i

)

(rT
i )

(
βT

i
logαT

i
) · (λirD

i )
(

βD
i

logαD
i

)
]

= log[
(θi)Gi

Hi
]

=Gi logθi− logHi

where λi represents the demand of bandwidth per unit time for class i. Let

αT
i , aT

i /rT
i

αD
i , aD

i /rD
i

and
Gi , β T

i / logαT
i +β D

i / logαD
i

be constant numbers as well as

Hi , (rT
i )

(
βT

i
logαT

i
) · (λirD

i )
(

βD
i

logαD
i

)
.

Note θi, a function of x, is the bandwidths allocated to class i. The individual objec-
tive function fi is the function of the allocation pattern x.

Next, it shows how to transform the multiple-objective problems to a single ob-
jective optimization subject to the fairness for each class. We will apply an approach
by analyzing aggregation of outcomes f(x) = ( f1(x), . . . , fm(x)). This approach is in-
troduced by Yager [21] as the so-called Ordered Weighted Averaging (OWA) Method.
First, it defines the ordering map : Rm → Rm such that

(f(x)) = (Φ1(f(x)),Φ2(f(x)), . . . ,Φm(f(x))),
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where
Φ1(f(x))≤Φ2(f(x))≤ . . .≤Φm(f(x)).

There exists a permutation τ of set S ={1,2, . . . ,m} such that

Φi(f(x)) = fτ(i)(x)

for i = 1, . . . ,m. Then we define the cumulative ordering map ˜(f(x)) = (Φ̃1(f(x)),
. . ., Φ̃m(f(x))) defined as Φ̃i(f(x)) = ∑i

k=1 Φk(f(x)), for i = 1,2, . . . ,m. The coeffi-
cients of vector ˜(f(x)) express, respectively: the smallest outcome, the total of the
two smallest outcomes, the total of the three smallest outcomes, etc. Vector ˜(f(x))
can be viewed graphically with a piecewise linear curve connecting point (0,0) and
points ( i

m , Φ̃i(f(x))
m ) for i = 1,2, . . . ,m. Such a curve represents the absolute Lorenz

curve as shown in Figure 2. Fair solutions to problem (14) can be expressed as

m


i


1
0

m


1


m


2
 ...


Figure 2: The Graph of a Absolute Lorenz Curve

Pareto-optimal solutions for the multiple criteria problem with objectives ˜(f(x))

max {(Φ̃1(f(x)),Φ̃2(f(x)), . . . ,Φ̃m(f(x))) : x ∈ Q}. (16)

Theorem 2. A feasible solution x ∈ Q is a fair solution of the resource allocation
problem (14), if and only if it is a Pareto-optimal solution of the multiple criteria
problem (16).

The proof of this theorem is given in [11].
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2.4 Majorization
We introduce the concept of majorization (see [9], [10]) to provide the fairness.

For the n-dimensional decision vector x=( x1, . . . ,xn ) of reals, let x(1) ≤ . . . ≤ x(n)

denote the components of x in increasing order.
Definition 1. For x and y in Rn, x≤M y if ∑n

i=1 x(i) = ∑n
i=1 y(i) and ∑k

i=1 x(i) ≥∑k
i=1 y(i),

for k = 1, . . . ,n−1. When x ≤M y then x is said to be majorized by y.

If x ≤M y, then the allocation x is more fair than y. Next, we have the following
definition.
Definition 2. A function g : Rn → R is called Schur-concave, if x ≤M y implies
g(x)≥ g(y).

Thus, we present the following theorem which is adopted from [10].
Theorem 3. Let h be an arbitrary real function and define g(x)=∑n

i=1 h(xi) for x ∈
Rn, then g is Schur-concave if and only if h is concave.

Recall that the achievement functions, µi and µ̂i, are concave functions. Accord-
ing to this definition, it is easy to prove that the function fi is Schur-concave.

In the following, we will introduce the concept of fairness by using the fair
aggregation function (see [5], [10], [11], [12], [21]). Typical solution concepts for
multiple criteria problems are defined by aggregation functions g : Rm → R to be
maximized. Thus, (14) becomes

max{g(f(x)) : x ∈ Q} (17)

The simplest aggregation functions commonly used for the multiple criteria problem
(14) are defined as the weighted sum of outcomes

g(f(x)) =
m

∑
i=1

wi fi(x), (18)

or the worst outcome
g(f(x)) = min

i=1,...,m
fi(x). (19)

An aggregation (17) is fair if it is defined by a strictly increasing and strictly Schur-
concave function g.
Definition 3. An aggregation function g satisfying all the following requirements
(20), (21) and (22), we call the corresponding problem (17) a fair aggregation of
problem (14). For all i ∈ S = {1,2, . . . ,m},

g( f1(x), . . . , fi−1(x), f ′i (x), fi+1(x), . . . , fm(x)) < g( f1(x), . . . , fm(x)), (20)

whenever f ′i (x) < fi(x). For any permutation π of S,

g( fπ(1)(x), fπ(2)(x), . . . , fπ(m)(x)) = g( f1(x), f2(x), . . . , fm(x)) (21)

For any 0 < ε < zi′ − zi′′ , we have

g( f1(x), . . . , fi′(x)− ε, . . . , fi′′(x)+ ε, . . . , fm(x)) > g( f1(x), f2(x), . . . , fm(x)). (22)
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It is straightforward to see that g(f(x)) = ∑m
i=1 wi fi is a fair aggregation function

according to this definition. Every optimal solution to the fair aggregation (17) of
a resource allocation problem (14) defines some fair allocation scheme. In order to
guarantee the consistency of the aggregated problem (17) with the maximization all
individual objective functions in the original multiple criteria problem, the aggrega-
tion function must be strictly increasing with respect to every coordinate, i.e., (20).
In order to guarantee the fairness of the solution concept, the aggregation function
must be additionally symmetric (impartial), i.e., (21). Symmetric functions satisfy-
ing the requirement (22), are called strictly Schur-concave functions. Next, we give
the following two theorems without proofs.

Theorem 4. For a strictly concave, increasing function µi : R→ R, the function
g(f(x)) = ∑m

i=1 wi fi(x) is a strictly monotonic and strictly Schur-concave function.

Theorem 5. For a strictly concave, increasing function µi : R → R, the optimal
solution of the problem max{∑m

i=1 wi fi(x) : x ∈ Q} is a fair solution for resource
allocation problem (14).

These proofs are omitted here due to the page limitation.

2.5 Mathematical models
In the following, we adopt an effective modeling technique for quantities Φ̃i(f(x))

with arbitrary i. In [11], for a given outcome vector f(x) the quantity Φ̃i(f(x)) may
be found by solving the following linear program:

Φ̃i(f(x)) = max iti−
m

∑
k=1

dk

subject to ti− fk(x)≤ dk, k = 1, . . . ,m
dk ≥ 0, k = 1, . . . ,m,

(23)

where ti is an unrestricted variable and nonnegative variables dk represent their down-
side deviations from the value of ti for several values fk(x). For example, the worst
outcome of i = 1 may be defined by the following optimization:

Φ̃1(f(x)) = max {t1 : t1 ≤ fi(x) for i = 1, . . . ,m}. (24)

Formula (23) provides us with a computational formulation for the worst con-
ditional mean M k

m
(f(x)) defined as the mean outcome for the k worst-off services,

i.e.,

M k
m
(f(x)) =

1
k

Φ̃k(f(x)), for k = 1, . . . ,m. (25)

For k = 1, M 1
m
(f(x)) = Φ̃1(f(x)) = Φ1(f(x)) which represents the minimum outcome.

For k = m, Mm
m
(f(x)) = 1

m Φ̃m(f(x)) = 1
m ∑m

i=1 Φi(f(x)) = 1
m ∑m

i=1 fi(x) which represents
the mean outcome.
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For modeling various fair preferences one may use some combinations of the
cumulative ordered outcomes Φ̃i(f(x)). In specific, for the weighted sum we obtain

m

∑
i=1

wiΦ̃i(f(x)). (26)

Note that, due to the definition of map Φ̃i, the above function can be expressed in the
form with weights νi = ∑m

j=i wi (i = 1, . . . ,m) allocated to coordinates of the ordered
outcome vector. When substituting wi with νi, (26) becomes ∑m

i=1 νiΦi(f(x)), where
∑m

i=1 νi = 1 and νi ≥ 0, ∀i = 1, . . . ,m.
Applying the OWA method to problem (14), we get

max {
m

∑
i=1

νiΦi(f(x)) : x ∈ Q}. (27)

If weights νi are strictly decreasing and positive, that is ν1 > ν2 > .. . > νm−1 > νm >
0, then each optimal solution of the OWA problem (27) is a fair solution of (14).
Actually, formulas (23) and (26) allow us to formulate the following mathematical
programming of the original multiple criteria problem:

maximize
m

∑
i=1

wiψi

subject to ψi = iti−
m

∑
k=1

dki, ∀i = 1, . . . ,m

ti−dki ≤ fk(x), ∀i, k = 1, . . . ,m
dki ≥ 0, ∀i, k = 1, . . . ,m
ti unrestricted, ∀i = 1, . . . ,m,

x ∈ Q,

(28)

where wm = νm, wi = νi−νi+1 for i = 1, . . . ,m−1, νi ∈ (0,1) for each i, and ∑m
i=1 νi =

1. The individual function ψi is the first i sum of the ordered multiple objective
functions (f(x)) in the allocation pattern x ∈ Q.

2.6 Piecewise linear form of the achievement functions
In implementation, it is convenient to handle a linear function rather than a

concave function. Depending on the specified aspiration and reservation levels for
each class i, ai and ri, respectively, we construct the achievement function µ̂i(θi)
of bandwidth θi as a piecewise linear function (29). Between ri and ai, We have
break points ri = ki,0 ≤ ki,1 ≤ . . . ≤ ki,n−1 ≤ ki,n = ai. We assume ki,l − ki,l−1 are the
same for all l = 1, . . . ,n. Moreover, we denote the point bi to represent the minimal
bandwidth requirement for each class i. We will give the following propositions for
the achievement function.
Lemma 6. Let κ be the cheapest cost per unit bandwidth given in an end-to-end
path. Suppose the total budget is B. There exists a finite number Mi ≤ B/κKi such
that θi ≤Mi, ∀ i, where Ki is the number of connections in class i.
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Since pages are limited, proofs of the following results are skipped and will be
provided under request. We define µ̂i(·) over the range [0,Mi]. Depending on the
specified reference levels, this achievement function can be interpreted as a measure
of the decision maker’s satisfaction with the value of the i-th criteria [7]. It is a strictly
increasing function of θi, having value 1 if θi = ai, and value 0 if θi = ri.

Practically, we define

µ̂i(θi) =





−M for 0≤ θi < bi

ρ0 · (θi− ki,0) for bi ≤ θi < ri

ρ1 · (θi− ki,1)+ µi(ki,1) for ri ≤ θi < ki,1

ρ2 · (θi− ki,2)+ µi(ki,2) for ki,1 ≤ θi < ki,2
...
ρn−1 · (θi− ki,n−1)+ µi(ki,n−1) for ki,n−2 ≤ θi < ki,n−1

ρn · (θi− ki,n)+1 for ki,n−1 ≤ θi < ai

ρM · (θi−Mi)+ µi(Mi) for ai ≤ θi ≤Mi.

(29)

Denote αi = ai
ri

, we have parameters µi(Mi) = logαi
Mi/ri and µi(ki,l) = logαi

ki,l/ri for
l = 1, . . . ,n−1. Moreover, the parameters ρ0 = M/(ri−bi), ρM = (µi(Mi)−1)/(Mi−
ai) and

ρl =
n logαi

(ki,l/ki,l−1)
ai− ri

, for l = 1, . . . ,n,

represent the slope on l-th line segment for l = 0,1, . . . ,n and M. The slope of each
segment represents a different marginal rate of satisfaction. The increasing (decreas-
ing) rate case means that the DM wishes to attach a larger (smaller) marginal satis-
faction depending on how far the achievement of the goal is from its target.

Next, we present an appealing property of the achievement function (15), which
holds in the bandwidth allocation problem we are studying.

Proposition 7. The achievement function µ̂i(θi) is continuous, increasing, and con-
cave.

Given the budget and a network, one may choose proper values of ri and ai such
that θi ∈ [ri,ai] for each connection, namely, the bandwidth θi in terms of transmission
rates is always manageable between ri and ai. Thus, µ̂i(θi) is well defined. Next, we
focus on investigating the properties when θi ∈ [ri,ai].

Lemma 8. Let µ̂ (n)
i (θi) : [ri,ai]→ [0,1], where n means the number of break points,

be defined as the achievement function (15) restricted on [ri,ai]. Then the sequence
of functions {µ̂ (n)

i (θi)}∞
n=1 converges uniformly to µi(θi) = logαi

(θi/ri) on [ri,ai].

Proof. Let ε > 0 be given. Choose N = (ri−ai)
ερM

such that n≥ N, implies

|µ̂ (n)
i (θ)−µi(θi)| ≤|µ̂ (n)

i (ki,l)− µ̂ (n)
i (ki,l−1)|

=|µi(ki,l)−µi(ki,l−1)|
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=
1
ρl
|ki,l − ki,l−1|

≤ 1
ρM

· ri−ai

n
<ε,

for each θ ∈ [ri,ai]. The first inequality holds because both µ̂ (n)
i (θ) and µi(θi) are

increasing functions. Moreover, there must be an interval [ki,l−1,ki,l)⊆ [ri,ai] contains
θ for each θ ∈ [ri,ai]. Thus, by the definition of uniformly convergence, {µ̂ (n)

i }
converges uniformly to logαi

(θi/ri) on [ri,ai]. ¤
Theorem 9. If ri ≤ θi ≤ ai, then the ε-proportionally fair bandwidth allocation ob-
tained by using (15) as objective function approaches to proportional fairness as
n→ ∞.

Proof. When using the logarithm function logαi
(θi/ri) as the associated objec-

tive function for each class i, Luh and Wang [6] showed that this bandwidth allo-
cation provided proportional fairness. By Lemma 8, the achievement function (15)
converges uniformly to logαi

(θi/ri). So, the fair bandwidth allocation, obtained by
using (15) as objective function, approaches to proportional fairness. ¤

The achievement function is intimately associated with the concept of propor-
tional fairness. The achievement function (15) can also map the different criterion
values onto a normalized scale of the decision maker’s satisfaction. When taking
the achievement function which is considered as a measure of QoS on All-IP net-
works, one can formulate the mathematical model of the fair bandwidth allocation in
a network.

3 A Numerical Example
Consider a network topology G = (V,E) (as shown in Figure 3), where V =

{node 1, node 2, . . ., node 7} and E = {ek, k = 1,2, . . . ,14} denote the set of nodes
and the set of links in the network respectively. Let node 1 and node 7 be the source
and destination respectively. Each connection is delivered from o to d. Given the
cost taking account of delay and the purchasing cost of bandwidth for each link:
κ1 = $5, κ2 = $6, κ3 = $10, κ4 = $5, κ5 = $4, κ6 = $11, κ7 = $6, κ8 = $8, κ9 = $6,
κ10 = $7, κ11 = $12, κ12 = $6, κ13 = $5, and κ14 = $6. There are also given the
maximal capacity of each link: U1 = 2,300 kbps (i.e. kilobits/sec), U2 = 3,500 kbps,
U3 = 1,000 kbps, U4 = 2,500 kbps, U5 = 2,100 kbps, U6 = 2,200 kbps, U7 = 2,000
kbps, U8 = 3,000 kbps, U9 = 2,100 kbps, U10 = 2,700 kbps, U11 = 1,500 kbps,
U12 = 1,800 kbps, U13 = 3,000 kbps, and U14 = 3,500 kbps.

There are given three classes (as Table 2 shows), where class 1 has the highest
priority and class 3 has the lowest priority. The maximal possible number of connec-
tions in each class is 10. Under the total available budget B = $130,000, we want to
allocate the bandwidths in order to provide each class with maximal possible quality
of service (QoS) defined via (15).
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Figure 3: Sample Network Topology

Table 2: The Characteristics of Each Class
class


bandwidth

requirement


aspiration level

of bandwidth


reservation level

of bandwidth


reserved

budget


maximal number

of connections


1
 160 kbps
  334 kbps
 167 kbps
 $18,000
 10

2
 80 kbps
 166 kbps
 83 kbps
 $9,000
 10

3
 25 kbps
 56 kbps
 28 kbps
 $3,000
 10


3.1 A Mathematical Programming
Let xk be the bandwidth allocated to the link ek∀k = 1,2, . . . ,14. We also let θi

be the bandwidth allocated to the connection j of class i ∀i = 1,2,3. For each class i,
we consider the objective function fi as below:

f1(θ1) = log2
θ1

1670
, (30)

f2(θ2) = log2
θ2

830
, (31)

f3(θ3) = log2
θ3

280
, (32)

where θi is the bandwidth allocated to class i. Suppose each objective is regarded as
important as each other. Thus, each objective function has equal weight w1 = w2 =
w3 = 1

3 . Then, we can formulate the mathematical model as follows.
As the formulation of (MP1), we have the following mathematical model (MP2):

maximize
1
3

log2
θ1

1670
+

1
3

log2
θ2

830
+

1
3

log2
θ3

280
subject to 5x1 +6x2 +10x3 +5x4 +4x5 +11x6 +6x7 +8x8 +6x9

+7x10 +12x11 +6x12 +5x13 +6x14 = 130,000

(10c1 +18,000)+(10c2 +9,000)+(10c3 +3,000) = 130,000

θi · (5χ i
j(e1)+6χ i

j(e2)+10χ i
j(e3)+5χ i

j(e4)+4χ i
j(e5)
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Figure 4: The Graph of f1(θ1)

Figure 5: The Graph of f2(θ2)

Figure 6: The Graph of f3(θ3)
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+11χ i
j(e6)+6χ i

j(e7)+8χ i
j(e8)+6χ i

j(e9)+7χ i
j(e10)

+12χ i
j(e11)+6χ i

j(e12)+5χ i
j(e13)+6χ i

j(e14)) = ci,

∀ j = 1, . . . ,10, ∀i = 1,2,3
θ1,1 = θ1,2 = · · ·= θ1,10 ≥ 160
θ2,1 = θ2,2 = · · ·= θ2,10 ≥ 80
θ3,1 = θ3,2 = · · ·= θ3,10 ≥ 25

10

∑
j=1

θi = θi, ∀i = 1,2,3

3

∑
i=1

10

∑
j=1

χ i
j(ek) ·θi = xk, ∀k = 1, . . . ,14

χ i
j(ek) = 0 or 1, ∀i = 1,2,3, ∀ j = 1, . . . ,10,and k = 1, . . . ,14

0≤ xk ≤Uk, ∀k = 1, . . . ,14,

where U1 = 2,300, U2 = 3,500, U3 = 1,000, U4 = 2,500, U5 = 2,100, U6 = 2,200,
U7 = 2,000, U8 = 3,000, U9 = 2,100, U10 = 2,700, U11 = 1,500, U12 = 1,800, U13 =
3,000, and U14 = 3,500.

3.2 Numerical experiments with ILOG
Since the objective functions fi in (30)-(32) are logarithmic functions which

can not be solved by ILOG software. To overcome this problem, we replace fi by
piece-wise linear functions f̂i for each i = 1,2,3.

f̂1(θi) =





2(θ1−835)−1 for 0≤ θ1 < 835
1

835(θ1−835)−1 for 835≤ θ1 < 1670
0.42
557 (θ1−1670) for 1670≤ θ1 < 2227
0.32
557 (θ1−2227)+0.42 for 2227≤ θ1 < 2784
0.26
556 (θ1−2784)+0.74 for 2784≤ θi < 3340
0.56
1580(θ1−3340)+1 for 3340≤ θ1 < 4920
0.4

1580(θ1−4920)+1.56 for 4920≤ θ1 ≤ 6500

(33)

f̂2(θ2) =





2(θ2−415)−1 for 0≤ θ2 < 415
1

415(θ2−415)−1 for 415≤ θ2 < 830
0.42
277 (θ2−830) for 830≤ θ2 < 1107
0.32
277 (θ2−1107)+0.42 for 1107≤ θ2 < 1384
0.26
276 (θ2−1384)+0.74 for 1384≤ θ2 < 1660
1.30
2420(θ2−1660)+1 for 1660≤ θ2 < 4080
0.67
2420(θ2−4080)+2.30 for 4080≤ θ2 ≤ 6500

(34)
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Figure 7: The Graph of f̂1(θ1)

Figure 8: The Graph of f̂2(θ2)

f̂3(θ3) =





2(θ3−140)−1 for 0≤ θ3 < 140
1

140(θ3−140)−1 for 140≤ θ3 < 280
0.41
93 (θ3−280) for 280≤ θ3 < 373

0.32
93 (θ3−373)+0.41 for 373≤ θ3 < 466

0.27
94 (θ3−466)+0.73 for 466≤ θ3 < 560

2.66
2970(θ3−560)+1 for 560≤ θ3 < 3530
0.88
2970(θ3−3530)+3.66 for 3530≤ θ3 ≤ 6500

(35)

The break points for f̂1(θ1) are 0, 835, 1670, 2227, 2784, 3340, 4920, and 6500,
we proceed as follows:
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Figure 9: The Graph of f̂3(θ3)

Step 1 Replace f̂1(θ1) by

f̂1(θ1) =z1
1 f̂1(0)+ z1

2 f̂1(835)+ z1
3 f̂1(1670)+ z1

4 f̂1(2227)

+ z1
5 f̂1(2784)+ z1

6 f̂1(3340)+ z1
7 f̂1(4920)+ z1

8 f̂1(6500).

=−1671z1
1−1z1

2 +0.42z1
4 +0.74z1

5 + z1
6 +1.56z1

7 +1.96z1
8.

(36)

Step 2 Add the following constraints:

θ1 = 0z1
1 +835z1

2 +1670z1
3 +2227z1

4 +2784z1
5 +3340z1

6 +4920z1
7 +6500z1

8 (37)

z1
1 ≤ y1

1 (38)

z1
k ≤ y1

k−1 + y1
k , ∀k = 2, . . . ,7 (39)

z1
8 ≤ y1

7 (40)
8

∑
k=1

z1
k = 1 (41)

7

∑
k=1

y1
k = 1 (42)

y1
k = 0 or 1,∀k = 1,2, . . . ,7 (43)

z1
k ≥ 0,∀k = 1,2, . . . ,8. (44)

The break points for f̂2(θ2) are 0, 415, 830, 1107, 1384, 1660, 4080, and 6500,
we proceed as follows:

Step 3 Replace f̂2(θ2) by

f̂2(θ2) =z2
1 f̂2(0)+ z2

2 f̂2(415)+ z2
3 f̂2(830)+ z2

4 f̂2(1107)

+ z2
5 f̂2(1384)+ z2

6 f̂2(1660)+ z2
7 f̂2(4080)+ z2

8 f̂2(6500).

=−831z2
1−1z2

2 +0.42z2
4 +0.74z2

5 + z2
6 +2.30z2

7 +2.97z2
8.

(45)
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Step 4 Add the following constraints:

θ2 = 0z2
1 +415z2

2 +830z2
3 +1107z2

4 +1384z2
5 +1660z2

6 +4080z2
7 +6500z2

8 (46)

z2
1 ≤ y2

1 (47)

z2
k ≤ y2

k−1 + y2
k , ∀k = 2, . . . ,7 (48)

z2
8 ≤ y2

7 (49)
8

∑
k=1

z2
k = 1 (50)

7

∑
k=1

y2
k = 1 (51)

y2
k = 0 or 1,∀k = 1,2, . . . ,7 (52)

z2
k ≥ 0,∀k = 1,2, . . . ,8. (53)

The break points for f̂3(θ3) are 0, 140, 280, 373, 466, 560, 3530, and 6500, we
proceed as follows:

Step 5 Replace f̂3(θ3) by

f̂3(θ3) =z3
1 f̂3(0)+ z3

2 f̂3(140)+ z3
3 f̂3(280)+ z3

4 f̂3(373)

+ z3
5 f̂3(466)+ z3

6 f̂3(560)+ z3
7 f̂3(3530)+ z3

8 f̂3(6500).

=−281z3
1−1z3

2 +0.41z3
4 +0.73z3

5 + z3
6 +3.66z3

7 +4.54z3
8.

(54)

Step 6 Add the following constraints:

θ3 = 0z3
1 +140z3

2 +280z3
3 +373z3

4 +466z3
5 +560z3

6 +3530z3
7 +6500z3

8 (55)

z3
1 ≤ y3

1 (56)

z3
k ≤ y3

k−1 + y3
k , ∀k = 2, . . . ,7 (57)

z3
8 ≤ y3

7 (58)
8

∑
k=1

z3
k = 1 (59)

7

∑
k=1

y3
k = 1 (60)

y3
k = 0 or 1,∀k = 1,2, . . . ,7 (61)

z3
k ≥ 0,∀k = 1,2, . . . ,8. (62)

Next, combining (36), (45), and (54), we can replace the objective function

1
3

log2
θ1

1670
+

1
3

log2
θ2

830
+

1
3

log2
θ3

280
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by

1
3

f̂1(θ1)+
1
3

f̂2(θ2)+
1
3

f̂3(θ3)

=
1
3
(−1671z1

1−1z1
2 +0.42z1

4 +0.74z1
5 + z1

6 +1.56z1
7 +1.96z1

8)

+
1
3
(−831z2

1−1z2
2 +0.42z2

4 +0.74z2
5 + z2

6 +2.30z2
7 +2.97z2

8)

+
1
3
(−281z3

1−1z3
2 +0.41z3

4 +0.73z3
5 + z3

6 +3.66z3
7 +4.54z3

8)

We proceed to consider the following constraints:

θi · (5χ i
j(e1)+6χ i

j(e2)+10χ i
j(e3)+5χ i

j(e4)+4χ i
j(e5)

+11χ i
j(e6)+6χ i

j(e7)+8χ i
j(e8)+6χ i

j(e9)+7χ i
j(e10)

+12χ i
j(e11)+6χ i

j(e12)+5χ i
j(e13)+6χ i

j(e14)) = ci,

∀ j = 1, . . . ,10, ∀i = 1,2,3 (63)

and
3

∑
i=1

10

∑
j=1

χ i
j(ek) ·θi = xk, ∀k = 1, . . . ,14. (64)

Since 0-1 variables χ i
j(ek) multiplied by decision variables θi are nonlinear, we re-

place χ i
j(ek)θi by nonnegative variables Ai

j(ek). Then (63) and (64) become

5Ai
j(e1)+6Ai

j(e2)+10Ai
j(e3)+5Ai

j(e4)+4Ai
j(e5)

+11Ai
j(e6)+6Ai

j(e7)+8Ai
j(e8)+6Ai

j(e9)+7Ai
j(e10)

+12Ai
j(e11)+6Ai

j(e12)+5Ai
j(e13)+6Ai

j(e14) = ci,

∀ j = 1, . . . ,10, ∀i = 1,2,3 (65)

and
3

∑
i=1

10

∑
j=1

Ai
j(ek) = xk, ∀k = 1, . . . ,14. (66)

Simultaneously,
θ1,1 = θ1,2 = · · ·= θ1,10 ≥ 160, (67)

θ2,1 = θ2,2 = · · ·= θ2,10 ≥ 80, (68)

and
θ3,1 = θ3,2 = · · ·= θ3,10 ≥ 25 (69)

can be rewritten respectively as

A1
j(ek)≥ 160χ1

j (ek), ∀k = 1, . . . ,14, ∀ j = 1, . . . ,10, (70)
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A2
j(ek)≥ 80χ2

j (ek), ∀k = 1, . . . ,14, ∀ j = 1, . . . ,10, (71)

and
A3

j(ek)≥ 25χ3
j (ek), ∀k = 1, . . . ,14, ∀ j = 1, . . . ,10. (72)

Then we have the constraints of the form

−A1
j(ek)+160≤ 0 (73)

−A1
j(ek)≤ 0, (74)

−A2
j(ek)+80≤ 0 (75)

−A2
j(ek)≤ 0, (76)

and
−A3

j(ek)+25≤ 0 (77)

−A3
j(ek)≤ 0. (78)

Adding the two constraints (79) and (80) to the model will ensure that at least
one of (73) and (74) is satisfied:

−A1
j(ek)+160≤M ·χ1

j (ek) (79)

−A1
j(ek)≤M · (1−χ1

j (ek)). (80)

Similarly, adding the two constraints (81) and (82) to the model will ensure that
at least one of (75) and (76) is satisfied:

−A2
j(ek)+80≤M ·χ2

j (ek) (81)

−A2
j(ek)≤M · (1−χ2

j (ek)). (82)

Next, adding the two constraints (83) and (84) to the model will ensure that at
least one of (77) and (78) is satisfied:

−A3
j(ek)+25≤M ·χ3

j (ek) (83)

−A3
j(ek)≤M · (1−χ3

j (ek)). (84)

In (79)-(84), χ i
j(ek) is a 0-1 variable for each i, j and M is a number chosen large

enough to ensure that
−A1

j(ek)+160≤M,

−A1
j(ek)≤M,

−A2
j(ek)+80≤M,

−A2
j(ek)≤M,

−A3
j(ek)+25≤M,
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and
−A3

j(ek)≤M

are satisfied.
From the above discussion, we present a Mixed-Integer programming model

(MP3):

maximize
1
3
(−1671z1

1−1z1
2 +0.42z1

4 +0.74z1
5 + z1

6 +1.56z1
7 +1.96z1

8)

+
1
3
(−831z2

1−1z2
2 +0.42z2

4 +0.74z2
5 + z2

6 +2.30z2
7 +2.97z2

8)

+
1
3
(−281z3

1−1z3
2 +0.41z3

4 +0.73z3
5 + z3

6 +3.66z3
7 +4.54z3

8)

subject to 5x1 +6x2 +10x3 +5x4 +4x5 +11x6 +6x7 +8x8 +6x9

+7x10 +12x11 +6x12 +5x13 +6x14 = 130,000

(10c1 +18,000)+(10c2 +9,000)+(10c3 +3,000) = 130,000

5Ai
j(e1)+6Ai

j(e2)+10Ai
j(e3)+5Ai

j(e4)+4Ai
j(e5)

+11Ai
j(e6)+6Ai

j(e7)+8Ai
j(e8)+6Ai

j(e9)+7Ai
j(e10)

+12Ai
j(e11)+6Ai

j(e12)+5Ai
j(e13)+6Ai

j(e14) = ci,

∀ j = 1, . . . ,10, ∀i = 1,2,3

−A1
j(ek)+160−Mχ1

j (ek)≤ 0, ∀ j = 1, . . . ,10, ∀k = 1, . . . ,14

−A1
j(ek)−M(1−χ1

j (ek))≤ 0, ∀ j = 1, . . . ,10, ∀k = 1, . . . ,14

−A2
j(ek)+80−Mχ2

j (ek)≤ 0, ∀ j = 1, . . . ,10, ∀k = 1, . . . ,14

−A2
j(ek)−M(1−χ2

j (ek))≤ 0, ∀ j = 1, . . . ,10, ∀k = 1, . . . ,14

−A3
j(ek)+25−Mχ3

j (ek)≤ 0, ∀ j = 1, . . . ,10, ∀k = 1, . . . ,14

−A3
j(ek)−M(1−χ3

j (ek))≤ 0, ∀ j = 1, . . . ,10, ∀k = 1, . . . ,14
10

∑
j=1

θi = θi, ∀i = 1,2,3

3

∑
i=1

10

∑
j=1

Ai
j(ek) = xk, ∀k = 1, . . . ,14

χ i
j(ek) = 0 or 1, ∀i = 1,2,3, j = 1, . . . ,10, and k = 1, . . . ,14

Ai
j(ek)≥ 0, ∀i = 1,2,3, j = 1, . . . ,10, and k = 1, . . . ,14

0≤ xk ≤Uk, ∀k = 1, . . . ,14

θ1−835z1
2−1670z1

3−2227z1
4−2784z1

5−3340z1
6−4920z1

7−6500z1
8 = 0

θ2−415z2
2−830z2

3−1107z2
4−1384z2

5−1660z2
6−4080z2

7−6500z2
8 = 0

θ3−140z3
2−280z3

3−373z3
4−466z3

5−560z3
6−3530z3

7−6500z3
8 = 0

zi
1− yi

1 ≤ 0, ∀i = 1,2,3
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Figure 10: The Allocation of Bandwidths in Sample Network Topology

zi
k− yi

k−1− yi
k ≤ 0, ∀k = 2, . . . ,7, ∀i = 1,2,3

zi
8− yi

7 ≤ 0, ∀i = 1,2,3
8

∑
k=1

zi
k = 1, ∀i = 1,2,3

7

∑
k=1

yi
k = 1, ∀i = 1,2,3

yi
k = 0 or 1, ∀k = 1,2, . . . ,7, ∀i = 1,2,3

zi
k ≥ 0, ∀k = 1,2, . . . ,8, ∀i = 1,2,3,

where U1 = 2,300, U2 = 3,500, U3 = 1,000, U4 = 2,500, U5 = 2,100, U6 = 2,200,
U7 = 2,000, U8 = 3,000, U9 = 2,100, U10 = 2,700, U11 = 1,500, U12 = 1,800, U13 =
3,000, and U14 = 3,500.

Using this model, we can find a pareto optimal allocation of bandwidth on the
network (as Figure 10) under a budget B = $130,000. The Pareto optimal solution
is: x3 = x4 = x6 = x7 = x10 = x11 = x12 = 0 kbps, x1 = x5 = x9 = x13 = 2,100 kbps,
x2 = x8 = x14 = 2,900 kbps, θ1, j = 300 kbps, θ2, j = 150 kbps, θ3, j = 50 kbps for
all j. We find the bandwidth allocated to class 1 is θ1 = 3,000 kbps, the bandwidth
allocated to class 2 is θ2 = 1,500 kbps, and the bandwidth allocated to class 3 is
θ3 = 500 kbps. This allocation can provide proportional fairness to every class, and
the satisfaction of each class equals 0.848. The optimal paths (in Figure 10) are 1-
2-4-5-7 and 1-3-6-7, and the cost per unit bandwidth of the optimal path is $20. We
also find the bottleneck links are e5 and e9.

4 Conclusions
In this work, we present an approach for the fair resource allocation problem

in All-IP networks that offer multiple services to users. Users’ utility functions are
summarized by means of achievement functions. We find that the achievement func-
tion can map different criteria onto a normalized scale. The achievement function
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also can work in the Ordered Weighted Averaging method. Moreover, it may be in-
terpreted as a measure of QoS on All-IP networks. Using the bandwidth allocation
model, we can find a Pareto optimal allocation of bandwidth on the network under
a limited available budget, and this allocation can provide the so-called proportional
fairness to every class. That is, this allocation can provide the similar satisfaction to
each user in all classes. We also find the bandwidth allocated to each class.

Most of multiple criteria optimization reported in the literature use a weighted
or a lexicographic achievement function. This selection is usually made in a mech-
anistic way without theoretical justification. For each type of achievement function
underlies a different philosophy on the DMs’ preferences. If the selection of the
achievement function is improper, then it is very likely that the DM will not accept
the solution. Therefore, the right choice of the achievement function is a key element
for the success of the optimization model.
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