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Abstract With the population increase and the traffic development, urban

traffic systems are becoming more and more complicated and gigantic.In this paper,

we proposed a 0-1 programming model and a hypergraph model for the shortest path

problem with transfer times limited. And we design the improved priority-based

encoding genetic algorithm for the hypergraph model. Finally, we give a numerical

example.
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1 Introduction

With the population increase and the traffic development, urban traffic systems
are becoming more and more complicated and gigantic. Especially, the traffic jam
is more serious, and urban public transportation is playing a more important role
than before. Therefore, the urban public passenger transportation is an important
part of the urban traffic systems. For those passengers that they often choose
public transportation, they always pay attention to the optimal riding routes[6,9].
In fact, the criteria to the optimal riding routes are quite different for the differ-
ent decision makers. For example, some passengers expect the minimum travel
time[10], some passengers probably expect the minimum cost or transfer times,
etc. K.Goczyla,J.Cielatkowski[6] designed the optimal routing graph model while
the timetable is known, and proposed different algorithms for different objectives.
He[3] proposed the shortest travelling time model and transfer penalty model, then
put forward to the polynomial-time algorithms of the models.

Some passengers dislike frequent transfer, that is to say, they always pay at-
tention to both the minimum travel time and the transfer times. We call it the
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shortest path problem with transfer times limited. In this paper, we propose the
mathematical model on this kind of problem. Considering the model is nonlinear
and is also of NP complexity, we design the genetic algorithms.

2 0-1 Programming Models

Firstly, we assume that:
(1).The traffic network is connected, which means public vehicles can arrive at

any station in the traffic network.
(2).The travel time is independent on the vehicle bus number, that is to say,

the travel time is same from station i to station j for all public vehicles.
Now, we define the decision variables as follows:

Xk
i,j =

{

1, from station i to station j by kth bus
0, others.

Then, the shortest travel time with transfer times limited can be formulated as
follows:
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where, the first part in the objective function is the travel time from node i to node
j, the second is the delay time of transfer. wk

i,j is the travel time if node i and node

j are direct connected by the bus k, otherwise wk
i,j = ∞. δ is a constant given.

The second is the constraints of the path from node 1 to node n.The third is the
constraints of the transfer times.

It is obvious that the model is 0-1 programming model and is NP-Hard. Many
researchers proposed the intelligent evolution algorithms to solve the integer pro-
gramming problem in the last few decades. There was 0-1 coding genetic algo-
rithms for 0-1 programming model too. But the method is very complicated and
the calculational cost is tremendous.At some case, n-to-1 mapping may occur for
the encoding.Thus, we put forward to transforming the model into a hypergraph
model in the following way. By the way, because of the speciality of the problem
it is possible that there are no feasible solutions for improper value of C.
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3 Hypergraph Model and Genetic Algorithms

Generaly, we can transform the 0-1 programming model into a hypergraph
model.

Let G = {V, E, W} be a directed graph, V = {vi|i = 1, 2, · · · , n} is the set of
nodes,

E = {ei,j |i, j = 1, 2, . . . , n, i 6= j}

is the set of edges(arcs),

W = {wi,j : ei,j |i, j = 1, 2, · · · , n, i 6= j}

is the set of weights of edges. Then, the definitions can be defined as follows:

Definition 3.1 For two adjacent node i and j, if there exists an arbitrary bus from

the node i to the node j, then we call the node i is arc tail of the arc(i, j), and the

node j is arc head of the arc(i, j), the node i is the preorder node of the node j, the

node j is the next node of the node i. G is defined as multi-weights graph if exists

any arc(i, j) that related with more than one bus.

Definition 3.2 For a graph H = {V, E, W}, where arc ei,j ∈ E, define wk
i,j ∈ W

as the kth weight of the arc ei,j, the number of nodes related with the arc is called

the cardinal number of the arc, remarked as |ei,j |,|ei,j | = |k| + 1, if |ei,j | > 2, we

call ei,j is hyperarc. If there are hyperarc in a graph H, H is hypergraph. The size

of H is the sum of all hyperarc cardinal number:

size(H) =
∑

ei,j∈E

|ei,j |.

Apparently, the paths from node s to node t in the hypergraph are hyperpath and

consists of the sequence of nodes,arcs and weights, the paths are following that:

Ps,t = (s, (s, i), wk
s,i, i, (i, j), w

l
i,j, · · · , m, (m, t), wn

m,t, t)

Definition 3.3 Assume Rs,t is the set of all paths from node s to node t in the

hypergraph H. The model such that

p∗s,t = min
∑

wk
i,j |w

k
i,j ∈ Ps,t, Ps,t ∈ Rs,t,

|k| ≤ C + 1,

is called the hypergraph model of the shortest path with transfer times limited. where

p∗s,t is called the shortest hyperpath, |k| is the number of different weights.

Professor Gen proposed the priority-based encoding method for SP as early as
1998[1]. The priority-based encoding genetic algorithm is a very effective method.
Then he solved the bicriterion SP problem by this method in 2004[2,9]. But he
only considered single weight network. To unconstraint hyperpath problem, the
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O(size(H)) algorithm is proposed in[3,4,5,7,8]. The model in this paper is con-
straint hypergraph model and is NP-hard, so there can not exists any polynomial
algorithm.

We design the genetic algorithm for the above model.
By the use of the idea of the priority-based encoding, aiming at hyperpath with

constraints,we design the improved priority-based encoding genetic algorithm.
Firstly, we define some symbols and variables as follows:
D(i, j): the jth bus number departing from node i, j = 1, 2, · · · , N(i);
N(i): the number of bus departing from the node i;
C(k, j): the next arriving node(station) of the jth bus that departing from the

node k;
d(i): the random priority of the node i, that is the random bus number departing

from the node i;
p(i): the bus number departing from the node i in the path;
pn(i): the ith node number in the path.
Then algorithm steps as follows:

Step 1. Generate the initial population. Generate a random integer r1|r1 ∈
{1, 2, · · · , N(i)} for any node i|∀i ∈ V \ {n} and let d(i) = r1, then
d(i)|i = 1, 2, · · · , n−1 is a chromosome and the length is n−1 . Repeat
this process until we get size chromosomes.

Figure 2 shows the chromosome code to a simple urban hyper network
shown in Figure 1. The priority of node is bus number generated
randomly.
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Figure 1: A simple example of a hyper network

5 3 2 2

1 2 3 4
Node  i

Priority n(i)

Figure 2: The code of a chromosome

Step 2. Crossover operator. Select chromosomes by crossover probability
Pc and randomly group them by pairs. In this way we can get ⌊ size

2 ⌋
pairs as crossover parents.
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Step 2.1. Random multi-position crossover is adopted here. We can
get an offspring by crossing one pairs. For example, an offspring is
generated by selecting preserved genes of parent1 at random and
replace unpreserved genes of parent1 with corresponding genes of
parent2. Another offspring can be get by the same process. The
process is shown in figure 3:

5 1 2 2 3 1 2Parant1

4 2 1 1 2 3 1Parant2

5 2 2 2 2 1 1Offspring

Figure 3: Example of OX operator

Step 2.2. Examine the feasibility of the offspring generated. For each
gene in the offspring chromosome, if d(i) ≤ N(i) then the off-
spring is feasible, otherwise, generate random integer r1 (r1 ∈
{1, 2, · · · , N(i)}), let d(i) = r1.

Step 3. Mutation operator. Select chromosomes by mutation probability
Pm . The swap mutation operator is used here.

Step 3.1. Select two gene positions of a mutation parent randomly and
then swap them. The process is shown in Figure.4.

4 1 2 1 3 1 2Parant

4 1 1 1 3 2 2Offspring

Figure 4: Example of mutation operator

Step 3.2. Examine the feasibility of the offspring generated in Step
3.1. For each gene in the two swap positions, if d(i) ≤ N(i) then
the offspring is feasible, otherwise, generate random integer r1|r1 ∈
{1, 2, · · · , N(i)}, let d(i) = r1.

Step 4. Decode.Obviously the transform at the node 3 in figure 2 is illogi-
cality. It is preferable to select bus 5 rather than transform bus 5 with
bus 7 to arrive at the node 4 directly. Therefore, the mend operator
is performed during the decoding process(The mended chromosome is
showed in figure 5).

(1).Let p(1) = d(1), pn(1) = 1, i = 1, j = 1, h = 0, P = φ;

P = 1
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5 3 1 2

1 2 3 4
Node  i

Priority n(i)

Figure 5: The mended code of a chromosome

(2).i = i + 1, j = pn(i − 1), pn(i) = C(pn(i − 1), p(i − 1); P c =
{pn(i)}; P + {pn(i)} −→ P ;

if pn(i) = n then goto (5) else (3)

(3).p(i) = d(pn(i));

if C(pn(i), p(i)) ∈ P, then mend d(i); else goto (4).

Mend operator for d(i): if {1, 2, · · · , N(i)} − P c 6= φ, then generate a
random integer r1|r1 ∈ {1, 2, · · · , N(i)} − P c, let d(pn(i)) = r1, goto
(3); else the node pn(i) is proved to be dead node which means the
path can not arrive at node n. Then we punish the chromosome, let
h = C + 1, goto (5).

(4). if (D(pn(i− 1), p(i− 1)) 6= D(pn(i), p(i))) then

if (D(pn(i− 1), p(i− 1)) ∈ D(i, k)|k = 1, 2, · · · , N(i) then

d(pn(i) = p(i− 1), p(i) = p(i− 1)

else h = h + 1;

goto(2)

(5).If h > C, We are sure the corresponding chromosome is unfeasible.
The unfeasible chromosome can turn into feasible one or contribute
to the evolve process according with the Evolution Strategies theory.
Hence, we would not exclude the chromosome from the population
rather than punish the chromosome and let L(j)=M. Where L(j) is
the path length of the chromosome j and M is the maximum integer.

If h ≤ C, then the decoding process is succeed, where pn() is
the node number along with the path from node 1 to node n and
D(pn(), p()) is the corresponding bus number. Then we can calculate
the path length L(j).

Step 5. Evaluate the fitness function of chromosomes group.

The fitness function of chromosome k is as follows:

eval(k) =

1
L(k)

size
∑

j=1

1
L(j)

, k = 1, 2, · · · , size.

Step 6. We select size chromosomes as the offspring chromosomes by wheel
approach.

The probability of kth chromosomes to be selected is
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q(k) =

k
∑

j=1

eval(j)
size
∑

i=1

eval(i)

,

Generated the random real r ∈ [0, 1], if q(k − 1) ≤ r ≤ q(k) then the
kth chromosome is selected.

Step 7. Repeat step 2-step 6 until the predetermined rounds is run. The
best solution is the optimal feasible chromosome reserved during the
iteration.

4 Numerical Example

A urban public transportation network with 45 edges and 16 nodes is given for
numerical experiment in Figure 6. The travel time list in table 1 and bus number
list in table 2. The problem is to find out the optimal riding routes with transfer
times limited in urban public transportation.We designed the computer program
for the algorithm. Where transfer times C = 3, Pc = 0.4, Pm = 0.5. The computing
results are:

the shortest path:1,3,8,12,15,16;
the transfer bus number of shortest path:1 33 88 812 1115 1216;
the shortest travel time: 41.
Figure.7 shows the evolutional process of optimal paths. Obviously,the conver-

gence of the algorithm is good.

5 Conclusion

The problem of transform in urban public transportation is a very interesting
and realistic research topic and is still an open kind one. Based on urban pub-
lic transportation networks in this paper, the optimal riding routes with transfer
times limited model is formulated in which not only the travel time of paths but
also the transfer times is considered. The experiment result shows that the ge-
netic algorithm designed has good robust and convergence. But we only consider
the transfer problem with certain factors in this paper. The problems with the
uncertain factors need to be researched further.
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Figure 6: An example of a urban transportation network

Table 1: The bus travel time
arc travel time arc travel time arc travel time
1,2 5 4,9 11 9,14 9
1,3 10 5,6 7 10,11 7
1,6 7 5,10 10 10,14 9
2,3 6 5,11 5 11,12 10
2,4 8 6,7 8 11,14 8
2,5 7 6,10 9 11,15 7
2,6 10 7,8 10 12,13 6
3,6 8 7,12 12 12,15 8
3,7 6 8,11 9 13,15 11
3,8 5 8,13 10 14,15 10
4,5 10 9,10 6 14,16 13
15,16 9

 

Figure 7: The evolutional process of optimal paths
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Table 2: The bus number and the riding route
bus number riding route bus number riding route bus number riding route

1 1,2,4,9,10 5 6,5,4,9,10,14 9 11,6,5,4,2,1

2 1,6,5,11 6 7,8,13,12,11,14 10 11,6,5,2,1

3 1,3,7,8,12 7 11,10,9,4,2 11 6,7,8,12,15

4 2,6,7,8,13 8 11,12,8,3 12 6,3,8,13,15,16
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