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Abstract In this paper, we obtained the the adjacent vertex-distinguishing
equitable-total chromatic number of Pm ∨ Fn,where,Pm ∨ Fn is join-graph of path

with order n and fan with order n + 1.
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1 Introduction

It is a very hard to solving the vertex-distinguishing edge coloring( or strong
coloring ) of graphs studied in paper [1-5] introduced from the theory of network.
It is also hard to solve the adjacent strong edge coloring ( or adjacent vertex-
distinguishing edge coloring of graphs introduced in paper [6] and adjacent vertex-
distinguishing total coloring of graphs introduced in paper [7]. In paper [8-9], the
concept that vertex-distinguishing equitable total coloring of graphs and adjacent
vertex-distinguishing equitable-total chromatic number of graphs is given to study
some graphs. In this paper, we give a method to solve Pm ∨ Fn. All of the graphs
concerned in this paper are simple, finite and undirected graph . We denote by
V (G), E(G) and ∆(G) the set of vertices , edges and the maximum degree of graph
G, respectively.
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Definition 1 [7] Let G(V, E) is a connect graph of which the order is at least
2, k is an positive integer and f is the mapping from V (G)∪E(G) to {1, 2, · · · , k}.
For any v ∈ V (G), if

1. for any uv, vw ∈ E(G), u 6= w , there is f(uv) 6= f(vw);

2. for any uv ∈ E(G), u 6= v , there is f(u) 6= f(v), f(u) 6= f(uv), f(v) 6= f(uv);

3. for any uv ∈ E(G), u 6= v , there is C(u) 6= C(v)

Where C(u) = {f(u)} ∪ {f(uv)|uv ∈ E(G)}. Then f is called a k-adjacent
vertex-distinguishing of coloring of graph G(in brief, denoted by k-AVDTC) and
χat(G) = min{k|G has k-AVDTC} is called the adjacent vertex-distinguishing
total chromatic number of graph G.

It is obviously that for any graph G(|V (G)| ≥ 2), χat(G) exists.
Obviously for graph G, if uv ∈ G and d(u) = d(v) = ∆(G), then

χat(G) ≥ ∆(G) + 2.

In paper [7], adjacent vertex-distinguishing total chromatic numbers of some
graphs are obtained and a conjecture is given.

Conjecture 1 [7] For graph G,

χat(G) ≤ ∆(G) + 3.

Definition 2 [9] For graph G, let f : V (G) ∪ E(G) → {1, 2, · · · , k} be a k-
AVDTC of G. Let Si = Vi ∪ Ei. If for any i, j ∈ {1, 2, · · · , k},

||Si| − |Sj || ≤ 1

then f is called a adjacent vertex-distinguishing equitable-total coloring of G( in
brief, denoted by k-AVDETC), where

Vi = {u ∈ V (G)|f(u) = i}, Ei = uv ∈ E(G)|f(uv) = i, i = 1, 2, · · · , k.

And
χaet(G) = min{k|G has a k-AVDETC of G}

is called adjacent vertex-distinguishing equitable-total chromatic number of G.
Obviously for graph G, χaet(G) ≥ χat(G).
Conjecture 2 [9] For any graph,then

(1)χaet(G) ≤ ∆(G) + 3;

(2)χaet(G) = χat(G)

Definition 3[12] For graph G and H(V (G) ∩ V (H) = E(G) ∩ E(H) = φ), a
new graph induced by G, H is called graph G join H( denoted by G ∨H) if

V (G∨H) = V (G)∪V (H), E(G∨H) = E(G)∪E(H)∪{uv|u ∈ V (G), v ∈ V (H)}.
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In the [9] , we have get the adjacent vertex-distinguishing equitable-total chro-
matic numbers of some graphs such as path, circle, complete graph, complete
bipartite graph, fan, wheel, path join path, path join circle, circle join circle, path
join star, path join wheel.In this paper we get the adjacent vertex-distinguishing
equitable-total chromatic numbers of Pm ∨ Fn. The other terminologies and mark
refer to [10-12].

2 Main Results

Lemma 1 [7].Let Kn be a simple graph with order n, then

χaet(Kn) =

{

n + 1, n ≡ 0(mod2);
n + 2, n ≡ 1(mod2).

Lemma 2 [7].Let G be a simple graphs and uv ∈ E(G), d(u) = d(v) = ∆(G),
then

χaet(G) ≥ ∆(G) + 2

Suppose Pm is a path with order m, Pm = u1u2 · · ·um;

V (Fn) = {vi | i = 0, 1, · · · , n};

E(Fn) = {v0vi | i = 1, 2, · · · , n} ∪ {vivi+1 |= 1, 2, · · · , n− 1}

Theorem 1.For n = 2, then

χaet(Pm ∨ F2) =







5 m = 1
7 m = 2
m + 4 m ≥ 3

Proof. Owing to P1 ∨ F2 = K4, P2 ∨ F2 = K5,according to Lemma 1,we know
conclusion is true.

When m ≥ 3 owing to d(v0) = d(v1) = m + 2 = ∆(Pm ∨ F2),according to
Lemma 2,we know

χaet(Pm ∨ F2) ≥ m + 4

To certify theorem is true, we only give a (m+4)-AVDETC of Pm∨F2, (m ≥ 3)
Let f be :

f(v0vi) = i, i = 1, 2;

f(v0ui) = 2 + i, i = 1, 2, · · · , m;

f(v1v2) = 4;

f(uivj) = i + j + 3(mod(m + 4)), i = 1, 2, · · · , m; j = 1, 2;

f(vi) = 1 + i, i = 1, 2;

Adjacent Vertex-Distinguishing Equitable-Total Chromatic Number 331



f(v0) = 0;

f(ui) = i + 3, i = 1, 2, · · · , m.

For n order path Pn(n ≥ 2),

χaet(Pn) =

{

3, n = 2, 3;
4, n ≥ 4.

Case 1.When 3 ≤ m ≤ 6 f(uiui+1) = i, i = 1, 2, · · · , m − 1..Obviously f is a
(m+4)-AVDETC of Pm ∨ F2, (m ≥ 3)

Case 2.When 7 ≤ m ≤ 10,then

f(uiui+1) =

{

i i = 1, 2, · · · , 6
7 + i(mod(m + 4)) i = 6, 7, · · · , m− 1

Obviously f is a (m+4)-AVDETC of Pm ∨ F2, (m ≥ 3)
Case 3.When m ≥ 11,then

f(uiui+1) =

{

i i = 1, 2, · · · , 5
8 + i(mod(m + 4)) i = 6, 7, · · · , m− 1

Obviously f is a (m+4)-AVDETC of Pm ∨ F2, (m ≥ 3),and

| Si |=

{

4 i = 1, 2, · · · , 13, m + 3, 0
5 i = 14, 15, · · · , m + 2

So f also is a (m+4)-AVDETC of Pm ∨ F2, (m ≥ 3), (m ≥ 11).
Above all,we know when m ≥ 3, Pm ∨F2 exists (m+4)-AVDETC,so theorem is

true.
Theorem 2. For n ≥ 3,m = 1, 2, then

χaet(Pm ∨ Fn) =

{

n + 3 m = 1
n + 4 m = 2

Proof. Owing to

∆(Pm ∨ Fn) =

{

n + 1 m = 1
n + 2 m = 2

And d(v0) = d(u1) = ∆(Pm ∨ Fn), (m = 1, 2), and v0u1 ∈ E(Pm ∨ Fn), so
χaet(P1 ∨ Fn) ≥ m + 3 and χaet(P2 ∨ Fn) ≥ n + 4 by lemma 2.

When m=1, we only give a (n+3)-AVDETC of P1 ∨ Fn.
Let f be :

f(v0vi) = i, i = 1, 2, · · · , n;

f(v0u1) = n + 1;

f(vi) = i + 1, i = 1, 2, · · · , n;

f(u1) = n + 2
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f(v0) = 0;

f(vivi+1) = 3 + i, i = 1, 2, · · · , n− 1;

f(u1vi) = n + 2 + i(mod(n + 3)), i = 1, 2, · · · , n

Obviously f is a (n + 3)−AV DETC of P1 ∨ Fn, (n ≥ 3).
When m=2,let f be:

f(v0vi) = i, i = 1, 2, · · · , n;

f(v0ui) = n + i, i = 1, 2;

f(vi) = i + 1, i = 1, 2, · · · , n;

f(ui) = n + 1 + i, i = 1, 2

f(v0) = 0;

f(vivi+1 = 3 + i, i = 1, 2, · · · , n− 1;

f(uivj) = m + 1 + i + j(mod(n + 4)), i = 1, 2; j = 1, 2, · · · , n.

Obviously, f is a (n+4)-AVDETC.
Above all, theorem 2 is true.
Theorem 3 If m ≥ 3, n ≥ 3, then

∆(Pm ∨ Fn) =

{

m + n + 2 m = 3 or n = 3
m + n + 1 m ≥ n ≥ 4 or n > m ≥ 4

Proof. We now consider the following cases separately
Case 1.When n=3, owing to ∆(Pm ∨ F3) = m + n and d(v0) = d(v2) =

m + n, v0v2 ∈ E(Pm ∨ F3),so χaet(Pm ∨ F3) ≥ m + n + 2 by lemma 2.
Let f be:

f(v0vi) = i, i = 1, 2, 3;

f(v0ui) = i + 3, i = 1, 2, · · · , m;

f(vivi+1) = 3 + i, i = 1, 2;

f(uiui+1) = 1 + i, i = 1, 2, · · · , m;

f(vi) = 1 + i, i = 1, 2, 3;

f(v0) = 0;

f(ui) = 4 + i, i = 1, 2, · · · , m;

f(vivi+1) = 3 + i, i = 1, 2.

When m=3,

f(uivj) = 4 + i(mod8), i = 1, 2, 3; j = 1, 2, 3; f(uiui+1) = i + 1, i = 1, 2;

For f , we have
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C(v0) = {7}, C(v1) = {3, 5}, C(v2) = {6}, C(v3) = {6, 7},

C(u1) = {1, 3}, C(u2) = {4}, C(u3) = {4, 5}.

So f is a 8-AVDTC of P3 ∨ F3.And

| Si |=

{

3 i = 1, 3, 4, 5, 6, 7;
4 i = 0, 2

So f is a 9-AVDETC.
When m=5,

f(uiui+1) = i, i = 1, 2, 3, 4;

f(uivj) = 4 + i + j, i = 1, 2; j = 1, 2, 3;

f(u3vj) = 8 + j(mod10), j = 1, 2, 3;

f(u4v1) = 0;

f(u4v2) = 9;

f(u4v3) = 2;

f(u5vj) = 4 + j, j = 1, 2;

f(u5v3) = 0.

For f ,we have

C(v0) = {9}, C(v1) = {3, 8}, C(v2) = {1}, C(v3) = {6, 7}, C(u5) = {1, 2, 3, 7}

C(u1) = {2, 3, 9, 0}, C(u2) = {3, 4, 0}, C(u3) = {4, 5, 8},

C(u4) = {1, 5, 6}, C(v0) = {7}

So f is a 10-AVDTC of P5 ∨ F3, and

| Si |=

{

3 i = 1, 3;
4 i = 2, 4, 5, 6, 7, 8, 9, 0

So f also is a 10-AVDETC of P5 ∨ F3.
When m=6,

f(uivj) = 5 + i + j(mod11), i = 2, 3, 4, 5; j = 1, 2, 3; f(u1vj) = 5 + j, j = 1, 2, 3;

f(u6v1) = 3, f(u6v2) = 6, f(u6v3) = 7.

Obviously f is a 11-AVDETC of P6 ∨ F3.
When 7 ≤ m ≤ 8

f(u1vj) = 5 + j, j + 1, 2, 3;

f(uivj) = 5 + i + j(mod(m + 5)), i = 2, 3, · · · , m− 1; j = 1, 2, 3

334 International Symposium on OR and Its Applications 2005



f(umv1) = 3; f(umv2) = 6; f(umv3) = 7.

If m=7,f(uiui+1) = i− 1, i = 1, 2, · · · , 6
Obviously f is a 12-AVDETC of P7 ∨ F3.
If m = 8.f(uiui+1) = i, i = 1, 2, · · · , 6; f(u7u8) = 4.Obviously f is 11-AVDTC

of P8 ∨ F3,and

| Si |=

{

5 i = 4, 6, 10, 11
4 others

So f is 13-AVDETC of P8 ∨ F3.
If m=9,

| Si |=

{

4 i = 0, 1, 2, 6, 7, 8, 9, 13
5 others

If m=10

| Si |=

{

4 i = 0, 1, 2, 7, 8, 9, 14
5 others

If m=11

| Si |=

{

4 i = 0, 1, 2, 8, 9, 15
5 others

If m=12

| Si |=

{

4 i = 0, 1, 2, 9, 16
5 others

If m=13

| Si |=

{

4 i = 0, 1, 2, 17
5 others

So f also is a (m+5)-AVDETC of Pm ∨ F3, (9 ≤ m ≤ 13)
If m=14

| Si |=

{

4 i = 7, 8, 9
5 others

If m=15

| Si |=

{

4 i = 8, 9
5 others

If m=16

| Si |=

{

4 i = 9
5 others

If m=17,| Si |= 5, i = 0, 1, · · · , m + 4 So f also is (m+5)-AVDETC of Pm ∨
F3, 14 ≤ m ≤ 17

When m ≥ 18

f(uiui+1) = m + 3 + i(mod(m + 5)), i = 1, 2, · · · , m− 6;

f(uiui+1) = i + 6−m, i = m− 5, m− 4, m− 3, m− 2, m− 1.
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Obviously f is a (m+5)-AVDTC of Pm ∨ F3.and

| Si |=

{

6 i = 10, 11, · · · , m− 8
5 others

So f is a (m+5)-AVDTEC of Pm ∨ F3, (m ≥ 18)
Case 2.When m = 3, n ≥ 4,∆(P3 ∨ Fn) = n + 3 and d(v0) = d(u2) = n + 3,so

χaet(P3 ∨ Fn) ≥ n + 5 by lemma 2,same as Case 1,(regard P3 as v1v2v3),we can
obtain (n+5)-AVDEC of P3 ∨ Fn, (n ≥ 4)

Case 3.When m ≥ 4 and n ≥ 4,∆(Pm ∨ Fn) = m + n and only v0, d(v0) =
m + n..To certify conclusion is true,we only give a (m+n+1)-AVDETC of Pm ∨
Fn, (m ≥ 4, n ≥ 4)

Subcase 3.1 When n ≥ 7,let f be :

f(v0vi) = i, i = 1, 2, · · · , n;

f(v0ui) = n + i, i = 1, 2, · · · , n;

f(un) = 1; f(v0) = 0;

f(vi) = i + 1, i = 1, 2 · · · , n

f(ui) = n + 1 + i, i = 1, 2, · · · , n− 1;

f(vivi+1) = i− 1, i− 1, 2, · · · , n− 1;

f(uiui+1) = n− 1 + i, i = 1, 2, · · · , n− 1

f(u1vi) = n + 2 + i(mos(2n + 1)), i = 1, 2, · · · , n− 1;

f(u1vn) = n− 1

If n ≡ 1(mod2),

f(uivj) = n + 1 + i + j(mod(2n + 1)), i = 2, 3, · · · ,
n + 1

2
; j = 1, 2, · · · , n

f(uivj) = 3−
n + 5

2
+ i + j, i =

n + 3

2
,
n + 5

2
, · · · , n; j = 1, 2, · · · , n;

If n ≡ 0(mod2),

f(uivj) = n + 1 + i + j(mod(2n + 1), i = 2, 3, · · · ,
n

2
+ 1; j = 1, 2, · · · , n)

f(uivj) = i + j −
n

2
, i =

n

2
+ 2,

n

2
+ 3, · · · , n; j = 1, 2, · · · , n.

It is clear f is a (2n+1)-AVDETC of Pn ∨ Fn, (n ≥ 7).
Subcase 3.2 If m > n ≥ 4,or n > m ≥ 4, suppose that m > n ≥ 4
Subcase 3.2.1 If m = n + 1 ≥ 5,when n=4,let f be:
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f(v0vi) = i, i = 1, 2, 3, 4;

f(v0ui) = 4 + i, i = 1, 2, 3, 4, 5;

f(v0) = 0;

f(vi) = 1 + i, i = 1, 2, 3, 4;

f(ui) = 5 + i, i = 1, 2, 3, 4;

f(u5) = 1;

f(uivj) = 5 + i + j(mod10), i = 1, 2, 3, 4; j = 1, 2, 3, 4;

f(u5v1) = 3, f(u5v2) = 6, f(u5v3) = 7, f(u5v4) = 8;

f(vivi+1) = 3 + i, i = 1, 2, 3;

f(uiui+1) = i + 3, i = 1, 2, 3;

f(u4u5) = 4.

For f ,we have :

C(u1) = {1, 2, 3}; C(u2) = {2, 3}; C(u3) = {3, 4};

C(u4) = {5, 7}; C(u5) = {2, 5, 0}; C(v1) = {6, 5}; C(v2) = {7}

C(v3) = {8}; C(v4) = {7, 9}; C(v0) = φ

So f is a 10-AVDTC of P5 ∨ F4.
If n ≥ 5,

f(v0vi) = i, i = 1, 2, · · · , n;

f(v0ui) = n + i, i = 1, 2, · · · , n + 1;

f(v0) = 0,

f(vi) = 1 + i, i = 1, 2, · · · , n.

f(un+1) = 1;

f(ui) = n + 1 + i, i = 1, 2, · · · , n;

f(vivi+1) = n + i, i = 1, 2, · · · , n− 1;

f(uiui+1) = n− 1 + i, i = 1, 2, · · · , n.

If n=5,

f(uivj) = 6+ i+ j(mod12), i = 1, 2, 3; j = 1, 2, 3, 4, 5; f(u4vi) = i−1, i = 1, 2, 3, 4, 5

f(u5vi) = 2 + i, i = 1, 2, 3, 4, 5; f(u6vi) = i + 3, i = 1, 2, 3; f(u6vi) = i− 3, i = 4, 5.
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For f , we have

C(v0) = φ; C(v1) = {5, 7, 11}; C(v2) = {0, 8}; C(v3) = {1, 9}

C(v4) = {7, 10}; C(v5) = {8, 10, 11}; C(u1) = {1, 2, 3, 4}; C(u2) = {2, 3, 4}

C(u3) = {3, 4, 5}; C(u4) = {5, 6, 11}; C(u5) = {0, 1, 2}; C(u6) = {0, 7, 8, 10}

So f is a 12-AVDTC of P6 ∨ F5,and

| Si |=

{

6 i = 9
5 others

So f is a 12-AVDETC of P6 ∨ F5

If n=6,
f(vivi+1) = 6 + i, i = 1, 2, 3, 4, 5;

f(uiui+1) = 4 + i, i = 1, 2, 3, 4, 5, 6;

f(uivj) = 7 + i + j(mod14), i = 1, 2, 3, 4; j = 1, · · · , 6;

f(u5vi) = i− 1, i = 1, · · · , 6;

f(u6vi) = 2 + i, i = 1, · · · , 6;

f(u7vi) = 3 + i, i = 1, 2, 3;

f(u7vi) = i− 2, i = 4, 5;

f(u7v6) = 9.

So f is a 14-AVDTC of P7 ∨ F6, and

| Si |=

{

5 i = 4, 6, 7, 8
6 others

Same as it,we can obtain when n ≥ 7, f is a 2(n+1)-AVDETC of Pn+1 ∨ Fn.
Subcase 3.3. m = n + k, k ≥ 2, n ≥ 4.It is clear f is a (m+n+1)-AVDETC.
Above all, theorem is true.
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