
Models and Algorithms for Shortest

Paths in a Time Dependent Network

Yinzhen Li1,2,∗ Ruichun He1 Zhongfu Zhang1

Yaohuang Guo2

1 Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
2 Southwest Jiaotong University, Chengdu, 610031, P. R. China

Abstract The shortest path problem in the time dependent network is an
important extension of the classical shortest path problem and has been widely ap-
plied in real life. It is known as nonlinear and NP-hard. Therefore, the algorithms
of the classical shortest path are incapable to solve this problem. In this paper, the
models of the shortest path problem in the time dependent network are formulated
and algorithms are designed for solving the proposed models. Finally, a numerical
example is given.

Keywords time dependent networks, shortest path, model, genetic algo-
rithm,traffic and transportation

1 Introduction

The classical shortest path problem(SPP) is an important branch of the opti-
mization problems and has been extended to a wide varieties[1]. The derivative
SPP is an important extension of SPP and has been widely applied in ITS, com-
puter science and communications. There are variety of derivative problems. Time
dependent shortest path problem(TDSPP)[2] is a kind of them.

Since it was initialized by Cherkassky, Goldberg and Radzik[2] in 1996, the
TDSPP has been widely applied in the real life. For example, the vehicle’s run-
ning time in a road section varies with the time, because of the degree of traffic
jam which is usually different in different time in same road section. Therefore,
the roadblock function is actually a function of time. However, the classical SP
algorithm such as Dijkstra algorithm can not be used to solve the TDSP prob-
lem. There are some algorithms for TDSPP in recent years . Chen[3] analyzed the
TDSP problem, however, he did not give any suggestion for the basic algorithm of
TDSPP. Dreyfus[2] proposed the opinion to solve the TDSPP by using improved
Dijkstra algorithm, however, this algorithm is proved to be wrong by Kaufman[4].

∗Corresponding author. E-mail address: liyz01@mail.lzjtu.cn

319

Futhermore, an efficient algorithm for TDSPP, which was added some constraints
on the weights of edges, was given by Chen and Tang[4]. Orda, Rom and Cai[5][6][7]
proposed the algorithm to TDSPP with the conditions that vehicles are permitted
to wait in nodes. However, it is forbidden for vehicles to wait in many cases such as
at intersections in urban traffic networks. G.Tan proved that TDSP problem can
be divided into FIFO network and NFIFO network (refer to the reference[8]). He
proposed that TDSPP of FIFO networks can be solved by Dijkstra algorithm, and
TDSPP of NFIFO networks can be solved by inverse ordering Dijkstra algorithm
in the case of taking into account discrete time.

In this paper, we discuss and put forward to models of TDSPP under the condi-
tions of not limited by discrete or continuous travel times and a hybrid intelligent
algorithm is designed in which the priority-based encoding genetic algorithm is
embedded. Finally, a numerical example is given.

2 Models

Definition 2.1 Let G = {V, E, F (t)} be a directed graph, where V = {1, 2, · · · , n}
is the set of nodes,

E = {(i, j)|i 6= j , i, j ∈ V }

the set of edges and
F (t) = {fi,j(t)|(i, j) ∈ E}

that of weights of edges, fi,j(t) is the function of time t ∈ [a, b], b > a ≥ 0. Then
G is called as a time dependent network (TDN).

Definition 2.2 For a TDN, let p1,n(t) be a path from source node 1 to destination
node n. The length of p1,n(t) is defined as a function of time t. Let P1,n denotes
the set of all paths from 1 to n. The path p∗1,n(t∗) such that

W (p∗1,n(t∗)) ≤ W (p1,n(t)), ∀p1,n(t) ∈ P1,n,

is called the minimum time path, where W (.) is the path length (including waiting
time in nodes).

Firstly, we define some notations. Let

N+(j) = {i|(i, j) ∈ E} ,

N−(j) = {i|(j, i) ∈ E} .

xi,j : the decision variable of which the value equal to 1 if edge (i, j) in the
corresponding path in P1,n and equal to 0 otherwise.

ai: the arriving time at node i by path p1,n(t).
li: the departing time from node i by path p1,n(t).
By such a way, the TDSPP can be formulated as follows:

320 International Symposium on OR and Its Applications 2005

min Z(x, t) =
∑

i,j∈V

xi,j · fi,j(li) +
∑

i,j∈V

(li − ai) · xi,j ,

s.t.
∑

i∈N+(j)

xi,j −
∑

i∈N−(j)

xj,i =







1, if i = 1,

0, ∀i, j ∈ V \{1, n}, i 6= j,

−1, if i = n.

ai ≤ li ≤ ai + bi, i ∈ V,

a1 = a,

ai = lj + fj,i(lj), i ≥ 2,

xi,j = 0 or 1.

(1)

In the constraints of equation (1), the first is the constraints of the path from node
1 to node n, the second is the constraint of wait of node i, and the third and forth
are the travelling time relation from j to i.

Clearly, the equation (1) is nonlinear and is also a NP-Hard problem. And
it characterizes the general model of TDSPP. If li = {ai|∀i ∈ V }, the equation
(1) characterizes the TDSPP with not permitted to wait in any node. If li =
{ai|∀i ∈ V, i ≥ 2}, model (1) characterizes the TDSPP which the source node is
permitted to wait. The problem degenerated to classical SP problem when fi,j(t)
are constants and li = ai, (i, j) ∈ E.

3 Hybrid Genetic Algorithm

We consider both finding optimal paths and optimal waiting times in each node
in this TDSP problem. Finding optimal paths can be solved by the priority-based
encoding genetic algorithm in Section 3.1 and optimal time scheme for each path
can be achieved by the genetic algorithm designed in Section 3.2. The optimal
waiting times are exactly the values of chromosome fitness functions in the Section
3.1. Combining the algorithms in Section 3.2 and that in Section 3.2, we can get
the hybrid genetic algorithms in Section 3.3.

3.1 Priority-Based Encoding Genetic Algorithm

R.Cheng and M.Gen proposed the priority code genetic algorithm to solve
project sequencing problems with restricted resources in 1997, afterwards they
solved SP problem in this method[2]. M.Gen also solved the bi-criterion SP prob-
lem by the genetic algorithm in 2004[9, 10, 11].

Generate initial population. Generate a random integer vi ∈ [1..n] for any
node i, i = 1, 2, · · · , n, and vi 6= vj , i 6= j, vi denotes an unique priority of node i.
Then, to begin with node 1, find out the conterminous node i∗ with node 1 with
the maximal priority and put i∗ into the set of paths. And then begin with i∗,
find out the conterminous node j∗ with node i∗ with the maximal priority and put
j∗ into the set of paths, · · ·. Repeat this process until the node n is in the set of
paths. In this way, we get a path from node 1 to node n. We can get size1 paths by

Models and Algorithms for Shortest Paths in a Time Dependent Network 321

repeating the above process. This is initial population. The code of a chromosome
is shown in figure 1:

Node i:

Figure 1.
 The
 code of a chromosome

Priority v(i):

1
 2
 3
 4
 5
 6

1
 4
 2
 5
 3
 6

Evaluate the fitness of a chromosome. Apparently, the fitness function
is the path length of classical SP problem, and the path length is a constant if
having gotten the path. But the path length in TDSPP is a function of time if we
have gotten the path p1,n(t). In other words, the value of the fitness function is an
optimal value of constrained optimization problem as follows:

min Z∗ =
∑

(i,j)∈p1,n(t)

fi,j(li) +
∑

(i,j)∈p1,n(t)

li − ai,

s.t. ai ≤ li ≤ ai + bi,

a1 = a,

ai = lk + fk,i(lk),

(2)

where li is the decision variable.
The evaluating function of chromosome i (path i) is defined as follows:

eval(Z∗

i) =
1

Z∗

i

÷

size1
∑

k=1

1

Z∗

k

(3)

Selection operation. The roulette wheel approach is adapted here. We select
size1 chromosomes from parent population as an offspring according to eval(Z∗)
of each path.

Crossover operation. The OX(Order Crossover) proposed by Davis is adapted
here. We select chromosomes according to the crossover probability Pc and ran-
domly group them by pairs. We can get an offspring by selecting preserved genes at
random of parent1 and replace unpreserved genes of parent1 with corresponding
genes of parent2. The process is shown in figure 2:

Offspring

Parent1

Figure 2. Example of OX operator

1
 4
 2
 5
 3
 6

3
 4
 2
 5
 6
 1

Parent2
 3
 4
 5
 6
 1
 2

Mutation operation. We select chromosomes from parent population accord-
ing to the mutation probability Pm. Select two genes at random for mutation and
exchange them. The mutation process is shown in figure 3:

322 International Symposium on OR and Its Applications 2005

Offspring

Parent

Figure 3. Example of mutation process

4
 5
 3
 1
 2
 6

4
 1
 3
 5
 2
 6

3.2 Genetic Algorithm for Optimizing the Value of Fitness

Function

The model of fitness function of path m in Section 3.1 can be simplified as
follows:

min Z∗

m = an − li,

s.t. ai ≤ li ≤ ai + bi,

ai = lk + fk,i(lk),
a1 = a.

(4)

Apparently, in order to get optimal l∗i , assume that we have gotten a path from
node 1 to node n, p1,n(t) = {1, 2, 3, . . . , n}. It is clear that l1 ∈ [a, a + b1], and if
l1 = x1 then l2 ∈ [a2, a2 + b2], where a2 = x1 + f1,2(x1), · · · . So we can design the
following genetic algorithm to get l∗i .

Coding and initial population. We adopt the real number encoding in
this algorithm. Given a chromosome l = (l1, l2, · · · , ln). Generate a real number
x1 ∈ [a, a+ b1]at random, and let l1 = x1, then a2 = x1 + f1,2(x1). Generate a real
number x2 ∈ [a2, a2 + b2] at random again, and let l2 = x2, then a3 = x2 + f2,3(x2)
,· · ·. At last we can get a feasible chromosome l. Through repeating the above
process we can get size2 initial population. The fitness function of chromosome i

is formulated as follows:

eval(i) =
1

ai
n − l1

÷

size2
∑

k=1

1

ak
n − l1

, (5)

where, ai
n denotes the time that the ith chromosome arrives at node n. And the

optimal chromosome is preserved in order to guarantee convergence.
Selection operator. The roulette wheel approach is adopted.

Step 1. Calculate. qi =
i

∑

j=1

eval(j), i = 1, 2, · · · size2.

Step 2. Generate a uniform random number r ∈ [0, qsize2].

Step 3. If qi−1 < r ≤ qi satisfied then the chromosome i is selected.

Step 4. Repeat Step 2 to Step 3 until size2 chromosomes are selected.

Crossover operator. We select chromosomes by crossover probability Pc

and randomly group them by pairs. Assume a crossover operation is between the
chromosome j and k, generate a uniform random integer i ∈ (1, m), where m is the

Models and Algorithms for Shortest Paths in a Time Dependent Network 323

number of nodes in path p1,n and i is the position for crossover operation. Then
exchange the ith gene in the chromosome j and k. After this operation, if the
chromosome j and k are feasible or not,we should check up them. If not feasible,
then need to mend them. The process is as follows.

Step 1. If li satisfies the first constraint of equation (4), go to Step 2,
otherwise go to Step 4.

Step 2. If i = m, go to Step 5, otherwise then, let i = i + 1, calculate
ai = li−1 + fi−1,i(li−1).

Step 3. If li satisfies the first constraint of equation (4), go to Step 5.

Step 4. Generate random number x ∈ [ai, ai + bi], let li = x, then go to
Step 2.

Step 5. The chromosome is feasible, stop.

Mutation operator. We select chromosomes from parent population by muta-
tion probability Pm, generate a random position of the gene i ∈ [1, m] for mutation.

Step 1. Generate a random number x ∈ [ai, ai + bi], let li = x.

Step 2. If i = m, then go to Step 4. Otherwise, we must check up this
chromosome if feasible, if not feasible, need to mend it, according to
Step 1 to Step 5 in crossover operator.

Step 3. Let i = i+1, ai = li−1 +fi−1,i(li). If li satisfies the first constraint
of equation (4), then go to Step 4, otherwise go to Step 1.

Step 4. The chromosome is feasible, stop.

3.3 Hybrid Genetic Algorithm

We design the following hybrid genetic algorithm in Section 3.2 and Section 3.1.

Step 1. Generate size1 initial population at random according to priority-
based encoding algorithm.

Step 2. Crossover operation.

Step 3. Mutation operation.

Step 4. Optimize the value of fitness function Z∗

i , i = 1, 2, · · · , size1.

Step 4.1. Generate size2 chromosomes at random as initial popula-
tion.

Step 4.2. Crossover operation.

Step 4.3. Mutation operation.

Step 4.4. Evaluate the fitness function which is denoted by equation
(5) in Section 3.2.

Step 4.5. Selection operation.

324 International Symposium on OR and Its Applications 2005

Table 1: Network parameters
i bi arc fi,j(t) i bi arc fi,j(t) i bi arc fi,j(t)

1 5 1,2 3 + te−t 9 2 9,10 5 17 1 17,18 3 + 3e−(6−t)2

1,3 2t + 3e−4t 9,13 8− 2e−t2 17,22 4− 2e−(t)2

1,4 5 + 2e−t2 9,14 9− 3e−(t−2)2 18 2 18,22 6 + 3e−2t2

1,5 3 + 2te−3t 9,15 6 + (10 − t)2/8 18,23 8

1,6 4 + (3 − t)2 10 3 10,11 3 + 2e−t2 18,24 5 + (18− t)2/10

2 3 2,7 6 + (2 − 3t)2 10,15 5 + (12 − t)2/10 19 2 19,18 9− 3e−(20−t)2

2,8 3t + 6e−t2 10,16 6 19,24 12 − 3e−(16−t)2

3 2 3,2 2 + 3e−t2 11 0 11,16 5 + 3e−2t2 19,25 10 + 2e−t2

3,4 5 12 1 12,13 4 20 1 20,18 3 + 5e−2t2

3,8 4 + (1 − t/3)2 12,117 5 + 2e−t2 20,21 5 + 2e−t2

4 3 4,5 6− 3e−2t2 13 2 13,14 2 20,25 4 + 4e−3t2

4,9 4 13,17 6 + 3e−2t2 21 2 21,25 3 + (20− t)2/5
5 0 5,9 3 + (3 − 2t)2 13,18 7 + 2e−t2 21,26 4 + (18− t)2/8

5,10 4 + 2e−(1/2)t2 14 1 14,18 3 + (14 − t)2/10 22 2 22,23 6− 3e−(2+t)2

6 1 6,5 6 14,19 6 22,27 7 + 2e−t2

6,11 6 + (5 − t)2 14,20 5 + 3e−t2 23 1 23,24 8 + (25− t)2/6

7 3 7,12 2t + 2e−t2 15 2 15,14 3 + 2e−(10−t)2 23,27 6 + (23− t)2/8
7,13 10 15,20 4 24 2 24,25 5 + (24− t)2/6

8 0 8,7 4 15,21 5− 2e−3t2 24,27 4 + (26− t)2/7

8,9 6 + (7 − t)2 16 3 16,18 8− 3e−(7−t)2 25 3 25,26 6 + 2e−3t2

8,13 11 16,21 5 25,27 5 + 4e−(3+t)2

26 2 26,27 10 + 3e−(4−t)2

Step 4.6. Terminate this process after running predetermined rounds
or the satisfied solution is obtained, report the evaluating Z∗

i and
go to Step 5; otherwise go to Step 4.2.

Step 5. Evaluate fitness function(equation (3) in Section 3.1).

Step 6. Selection operation.

Step 7. If a satisfied solution is obtained then stop; otherwise go to Step
2.

4 Numerical Example

A time dependent network with 64 edges and 27 nodes is given for numerical
experiment (Figure 4). The related parameters are given in Table 1.

We design computer programs of the hybrid genetic algorithm. By running the
program with the given example, we get a shortest path and the times scheme,
where size1 = 500, Pc = 0.2, Pm = 0.02, size2 = 500.

shortest path: 1, 5, 10, 15, 20, 25, 27.

Models and Algorithms for Shortest Paths in a Time Dependent Network 325

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure 4 An example of a network

times scheme:

a1 = 0, l1 = 4.8, a5 = 7.80, l5 = 7.80, a10 = 11.80, l10 = 11.83,

a15 = 16.84, l15 = 16.87, a20 = 20.87, l20 = 20.88, a25 = 24.88,

l25 = 24.92, a27 = 29.92.

The figure 5 shows us the evolutional process of the time scheme of an optimal
path in 193th path population.

Figure5 . Evolutional process of the time scheme of an optimal path

The figure 6 shows us the evolutional process of optimal paths.

Acknowledgement

This work is supported by National Natural Science Foundation of China (No.
70071028), and Qinglan Project of Lanzhou Jiaotong University.

326 International Symposium on OR and Its Applications 2005

Figure6
 Evolutional process of optimal paths

References

[1] E. Erkut. The discrete p-dispersion problem[J]. European Journal of opera-
tional Research, 1990:46, 48–60.

[2] B.V. Cherkassky, Andrew V. Goldberg, Tomasz Radzik. Shortest paths algo-
rithms:Theory and experimental evaluation[J]. Mathematical programming,
1996:73, 129–174.

[3] E. S. Dreyfus. An appraisal of some shortest path algorithms[J]. Oper. Res.,
1969:17, 395–412.

[4] Y. L. Chen, K. Tang. Minimum time paths in a network with mixed time
constraints[J]. Computer Operational Research, 1998: 25, 793–805.

[5] D. E. Kaufman, R. L. Smith. Fatest path in time-dependent networks for
intelligent vehicle-highway systems application. IVHS Journal, 1993:11, 1–
11.

[6] A. Orda, R. Rom. Shortest path and minimum-delay algorithms in networks
with time-dependent edge-length[J]. Joutnal of ACM, 1990:37, 607–625.

[7] A. Orda, R. Rom. Distributed shortest path protocols for time dependent
networks[J]. Distributed computing, 1996:10, 49–62.

[8] X. Cai, T. kloks, C. K. Wong. Shortest path problems with time con-
straints[C]. In: Proc 21st international symposium on mathematical foun-
dations of computer science, Cracow, Poland, 1996, 255–266.

[9] G. Tan, W. Gao. Shortest path algorithm in time-dependent networks[J].
Chinese J. Computers, 2002:2, 1–6.

[10] R. Cheng, M. Gen. Resource constrained project scheduling problem using
genetic algorithms[J]. Inter. J. of Intelligent Automation and Soft Computing,
1997:3, 273–286.

Models and Algorithms for Shortest Paths in a Time Dependent Network 327

[11] M. Gen. Bicriteria network design problem[R]. In: 3rd International Confer-
ence of Information and Management Science, Dunhuang, China, 2004:411–
417

328 International Symposium on OR and Its Applications 2005

