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Abstract  Haplotypes are specially important in the study of complex diseases
since they contain more information about gene alleles than genotype data. How-
ever, getting haplotype data via experiments methods is techniquely difficult and
expensive. Thus, haplotype inference through computational methods is practical
and attractive. There are several models for inferrings haplotype from population
genotypes, of which we are interested in the pure parsimony model. This problem
has been proved to be an NP-hard problem, so the goal of this paper is to design
a heuristic method to obtain good solutions within acceptable time. A heuristic
method based on genetic algorithm is presented for haplotype inference under pure
parsimony criterion. The algorithm was tested on a variety of biological data and
simulated data. In comparison with the exact algorithm HAPAR (based on a branch
and bound algorithm), experiment results show that the method can obtain optimal
solutions in almost all cases and runs much faster than HAPAR when the number
of genotypes or SNP sites is large. It is suited for haplotype inference in relative
large haplotype blocks because the algorithm is fast and its running time is not
exponentially increased with input size.
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1 Introduction

In post-genome era, the investigation of genetic differences in a population is
attracting increasing attention and will be one of the main topics in genomics. It is
generally accepted that some regions of variation in DNA sequences are responsible
for genetic diseases and phenotype difference since all human share about 99.9%
identity at the DNA level [12]. Genetic variation that involves a single nucleotide
is called Single Nucleotide Polymorphism (SNP) which is the most frequent form
among various genetic differences.
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In diploid organism, a complete genome contains a pair of chromosomes, one
inherited from each parent. A SNP is a particular nucleotide position in a pair of
chromosomes and usually has two values (nucleotides) of four for different people
in a population. We called these values alleles, using 0 to denote the wild type
allele and 1 to denote the mutant type allele. The SNP sequence on each copy of a
pair of chromosomes is called a haplotype. The mixed SNP data on the two copies
is called a genotype. A genotype gives two nucleotides at each SNP site on a pair
of chromosomes, but it does not indicate which chromosome each nucleotide is in.
For a genotype, if alleles on both chromosomes at a SNP site are identical, we call
this SNP site homozygous, otherwise heterozygous. Generally, haplotypes are more
important in predicting disease because they have more information about gene al-
leles inheriting together than genotypes [17]. However, experimentally determining
haplotype data is time-consuming and expensive while genotypes are much easier
to get, so it is genotypes rather than haplotypes that are usually obtained. Thus,
haplotype inference through computational methods is practical and attractive.

The haplotype inference problem is to resolve the heterozygous sites in a set of
genotypes, i.e. to determine which copy of a pair of chromosomes each allele belongs
to. As is well known, without any biological insight or genetic model, we can not
recover the “true” haplotypes from genotypes, because there may be an exponential
number of possible haplotypes. If we arbitrarily select a pair of haplotypes among
them for a genotype, the haplotype inference problem is trivial and we do not know
which one is true. Biological Experiments [4] show that human chromosomes in a
population have block structure, where no or few recombinations could occur within
each block. Blocks of limited haplotype diversity make the haplotype inference
problem somewhat easier than the case that a lot of recombination events appear.
So methods for haplotype inference are mostly concerned with the analysis of a
specific block in the population. Some researchers have given several haplotype
inference models based on these biological insights from different views. Among
them, the inference method in [3,8] is a method by using a general inference rule and
a parsimonious principle that a valid solution is usually the one resolves the largest
number of genotypes. Another class of methods [1,6,9] for haplotype inference is
based on specific biological models — the coalescent model and the infinite model.
Besides, statistical methods [15, 18] have been also used to solve the haplotype
inference problem. Reviews about the haplotype inference problem can be found
in [2]

The pure parsimony criterion for the haplotype inference problem was proposed
in [10] and its reasonability and biological meanings were illustrated in [10, 19].
This criterion is based on the fact that in natural populations, the number of
observed distinct haplotypes is vastly smaller than the number of combinatorially
possible haplotypes. Haplotype inference under the pure parsimony criteria (for
convenience, HIPP) has been proved to be an NP-hard problem [14]. Literature [10]
solves this problem via integer linear programming. Literature [19] gives a branch
and bound algorithm called HAPAR. These methods are very efficient for small
size problems, but their implementation time is increasing exponentially as the
number of heterozygous sites in genotypes becomes large. It has been noted [11]
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that for haplotype inference, exponential-time algorithms are only practical for
SNPs around one gene, so approximation algorithms or meta-heuristic algorithms
are needed for SNPs around multiple genes. Literature [14] gives approximation
algorithms with error guarantee rate of 2¥=! (where k is the upper bound of the
number of heterozygous sites in a genotype). In this paper, we design a heuristic
method based on genetic algorithm for the HIPP problem (called GAHAP). It is
intended to solve problems of relative large size — haplotype inference in blocks
with large SNP sites or genotype set. Experimental results based on biological and
simulated data show that the algorithm can achieve this goal. It can find optimal
solutions returned by the exact algorithm HAPAR in almost all cases and runs
much faster than HAPAR when the number of genotypes or SNP sites is relatively
large.

The paper is organized as follows: Some notions and a detailed problem formu-
lation are given in Section 2. In Section 3, we describe a genetic algorithm for the
HIPP problem. Experimental results are shown in Section 4. Section 5 concludes
the paper.

2 Formulation and Problem

The genotype data in a population of size m can be formulated as an m x n
matrix G = {g;;} on {0,1,2} with each row g;,i = 1,2,---,m of the matrix G
corresponding to a genotype and each column j, j =1,2,---  n corresponding to a
SNP site on the chromosome. For each genotype g;, when the jth SNP site is wild
type homozygous for g;, g;; = 0. When the jth SNP site is mutant type homozygous
for g;, gi; = 1. When the jth SNP site is heterogenous for the genotype g;, gi; = 2.
A position on a genotype is called ambiguous if the genotype on this position has
value 2. A genotype is called ambiguous if it has at least two ambiguous positions.

A haplotype is a binary vector of length n on {0,1}. A pair of haplotypes hy
and hy is called a resolution of a genotype g if the following conditions hold: for
each SNP site where g; = 0, hq1; = hgj = 0. For each SNP site where g; = 1, hy; =
hoj = 1. For each SNP site where g; = 2, h1; =0, hgj =1 or hi; =1, hg; = 0.
The resolution size of a genotype is the number of all possible resolutions of this
genotype. For a genotype with resolution size r, we order its resolutions and label
them by 1,2,---.,r. A realization of a genotype matrix is a haplotype matrix
H on {0,1} with each row corresponding to a haplotype and for each genotype
gist = 1,2,--- ,m, there exist two rows (a pair of haplotypes) hy, ho of H such
that hy, hs form a resolution of g;.

The haplotype inference problem is : Given an m X n genotype matriz G, find
a haplotype matrix H such that for each genotype there exists at least one pair of
haplotypes which is a resolution of this genotype.

Based on different genetic models, there are several kinds of assumptions on the
haplotype matrix H. Perfect phylogeny haplotyping problem requires to find H as
a realization of G and its rows form a haplotype perfect phylogeny [1,6,9], while
haplotype inference by pure parsimony (HIPP) is a combinatorial optimization
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problem that seeks a realization of G with least rows, i.e. a haplotype set with
smallest cardinality. In this paper, we are concerned with designing a practical
algorithm for the HIPP problem.

3 A Heuristic Method Based on Genetic Algo-
rithm

Genetic algorithm [7] is a useful meta-heuristics algorithm and has successful
applications in many areas including those of computational biology, e.g. protein
structure prediction, promote sequence identification, primer design etc. In this
section, we design a genetic algorithm for solving the HIPP problem. The input of
the algorithm is a genotype matrix with all possible resolutions of each genotype.
The output will be a haplotype matrix and pairs of halotypes associated with each
genotype. The scheme of the designed genetic algorithm for HIPP is given in Table
1. The datails of the algorithm are given in the following subsections.

Haplotyping(G)
Preprocessing(G);
Generate a random initial population Py, k = 0;
while(k < GN) do
Evaluate(Py), i.e. compute the fitness of each individual in P.
Select a fraction of individuals in Py, and add them into Pg41;
Select some pairs of individuals in Py and do crossover. Add all
offspring into Pyy1;
Mutation(Py+1);
LocalOptimizition(Pr1);
Record the best individual in the current population;
k=k+1;
end do
return the best individual in the history.

Table 1: The scheme of the genetic algorithm for the HIPP problem.

3.1 Preprocessing

We adopt the ideas in [10,19] to preprocess the genotype data. If four hap-
lotypes of two resolutions of a genotype are not part of resolutions of any other
genotypes, we can choose one as representative. If two genotypes have several
combinatorial resolutions, we select one among those having same coverage (the
number of genotypes that the haplotypes can resolve). This can reduce the res-
olution size of a genotype and the number of combinatorial resolutions of several
genotypes and thus save computational time. In the rest part of the algorithm,
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the size of the input data and the resolution size of a genotype mean that of the
reduced one.

3.2 The population space

In order to shorten the length of code, we use real string code but not binary
string code to represent an individual in the population space. For a given genotype
matrix G with m rows, individuals representing feasible solutions to the HIPP
problem are integer vectors of dimension m. For each genotype ¢g;, 1 =1,2,--- ,m,
we label its resolutions by 1,2,---,7;, where r; is the resolution size of g;. The
value of the ith element of an individual is an integer k between 1 and r;, denoting
that in the feasible solution indicated by this individual, the kth resolution of the
ith genotype is selected as its true resolution. The following set of integer vectors
constitutes the population space:

P={(z1,22, - ,Zm) | ; is an integer and 1 < z; < r;}.

3.3 Fitness function

Every individual in the population space has a fitness degree. The goal of the
HIPP problem is to find a haplotype set (a solution) with minimum cardinality
to a given genotype matrix G, so the fitness of an individual is relevant to the
cardinality of the feasible solution it corresponds to. We use Ciy, 4y 2,,) tO
denote the cardinality of the feasible solution that the individual {1, 22, -, Zm}
corresponds to, i.e. the number of distinct haplotypes in the haplotype set that
this feasible solution corresponds to. Then, we can design such a fitness function:

_ 2m — 0{117127... )

f(!L'1,.’L'2,"' 7‘Tm) om
Note that 0 < Ciz, 29, 2,3 < 2m and 0 < f < 1. The fitness of an individual
is reversely proportional to the cardinality of the corresponding feasible solution,
which embodies the goal of the HIPP problem.

3.4 Genetic operator

Selection operator: In order to conserve the diversity of a population and at
the same time not to destroy the goodness of the population, the individuals in
the current population are selected using the tournament selection method to be
added into a new population and the standard roulette wheel scheme is used to
select pairs of individuals intended to accept crossover operation.

Tournament selection: select an individual with highest fitness among randomly
selected N individuals and let it survive to the next generation. Generally, the size
of tournament selection NV is 2, i.e. randomly select two individuals among the
current population and let the individual with higher fitness survive. Repeat this
process M times and get M individuals of the next generation.
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Roulette wheel selection: the probability that an individual will be selected is
proportional to its own fitness and reversely proportional to the fitness of the other
individuals in the current population. Let popsize denote the population size and
the fitness of the individual ¢ is f;, then the probability p; with which ¢ will be

selected is:
fi . .
1=1,2,--- ,popsize.

pi = popsize f” ’
i=1

1

Crossover operation: p. (crossover rate) percent individuals of a population will
be intended to do crossover. We use the combination of the single-point crossover
method and the uniform crossover method in our algorithm. Single-point crossover
exchanges two parts of two mated individuals at a randomly selected position.
Uniform crossover is to exchange with probability 1/2 two values at each position
of two individuals intended to accept crossover.

Mutation operation: The mutation is performed with a probability p,, (muta-
tion rate) on each individual in the new population created by selection operation
and crossover operation. Due to the speciality of real string code, we can not adopt
swap mutation and invert mutation suited for binary string code. The mutation
operation in the above algorithm is done as follows: Randomly select a position on
the individual intended to accept mutation, e.g. ig. Then generate randomly an
integer between 1 and 7;,. Replace the original value on the selected position with
this integer.

3.5 Local optimization

The resolution size of a genotype increases exponentially with the number of
heterozygous sites of this genotype. If the input genotype matrix has many ambigu-
ous sites, the population size in the genetic algorithm must be large in order to find
a good solution. This may affect the speed of each iteration. Thus, we introduce a
local optimization mechanism whose idea is somewhat similar to that in [13]. After
doing selection, crossover and mutation operation, we adopt a self-adaptive local
optimization strategy according to the standard deviation o of fitness in the pop-
ulation. o determines the chance of accepting a bad mutation operation according
to a Bolzmann distribution. By introducing the local optimization strategy, we
can use a relatively small population sizes. The local optimization operation is
illustrated as follows, where Pro is the probability for doing local optimization
and LS is the number of local search steps.

3.6 Parameter settings

Generally, genetic algorithm has four parameters to be determined: population
size popsize, crossover rate p., mutation rate p,, and the maximum number of
generation GN. Settings of these parameters are relevant to concrete instances
to be solved and especially the size of instances. The larger the population size
is, the earlier the algorithm finds a good solution, but the algorithm will consume
more time. There is a trade-off between these factors. In the genetic algorithm for



314 International Symposium on OR and Its Applications 2005

LocalOptimization(P)
{T=5
1 =0;
repeat
if (Random(0,1)< PLO)
Localsearch(indi[i]);
end if
1 =14 1;
until (i > popsize)

}

Localsearch(indi)
{ repeat
tempindi = indji;
mutation(indi);
0 = fitness(tempindi)— fitness(indi);
if (6 >0)
if (Random(0,1)> e~ )

indi = tempindi;

return;
end if
end if
s=s+1;

until(s > LS)
}

HIPP, the population size has closer relevance to the number of ambiguous sites
in the genotype data than to the number of genotypes. Since we will use multiple
datasets and their sizes are different, we will select values for these parameters
according to concrete dataset. Experiment results show that the designed genetic
algorithm is robust with crossover rate, mutation rate and the maximum number
of generation, so we always set crossover rate as 0.8, mutation rate as 0.6 and the
maximum number of generation as 150. In addition, the tournament selection size
is set as 2. In local optimization mechanism, local optimization rate is set as 0.3.
The number of local search steps is set as 5 and parameter k is set as 0.9. The
population size will be set according to concrete data sets.

4 Experiment Results

In this section, we will test our algorithm on multiple datasets (including real
datasets and simulation datasets) in comparison with the branch and bound algo-
rithm (called HAPAR) in [19]. Our algorithm (called GAHAP) is implemented on
a 1.8G Hz Pentium 4 processor PC using Microsoft Visual C++ compiler 6.
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As mentioned previously, the designed genetic algorithm is suited to solve prob-
lems of large size since it has advantage in implementation time over exact algo-
rithms. We first use two datasets of relatively small size to test the effectiveness
of the algorithm, then use relatively large datasets to test the efficiency of the
algorithm. Both algorithms are evaluated by three criteria. hap_number is the
number of haplotypes that an algorithm returns. correct_hap is the number of
correct haplotypes among them. error_rate is the proportion of genotypes whose
original haplotype pairs are inferred incorrectly.

4.1 Experiment on human f;-adrenergic receptor gene

Literature [5] reported 13 varying sites within a region of 1.6kb in the human
B2-adrenergic receptor (B2AR) in the population consisting of 121 individuals, 18
distinct genotypes and 12 distinct haplotypes (we consider 10 haplotypes in the
asthmatic cohort) were identified in the studied region. The number of identified
haplotypes is far less than theoretically possible combinations. Implementation of
the exact algorithm HAPAR [19] for the HIPP problem shows that the minimum
number of haplotypes needed to resolve the 18 genotypes is 10. And the haplotype
set output by HAPAR is exactly the original one. For this instance, we choose 50
as the population size of GAHAP. Other parameter settings are the same to those
in Section 3. The designed genetic algorithm GAHAP also returns the same set of
haplotypes in several seconds.

4.2 Experiment on chromosome 5¢31

Literature [4] reported 103 SNPs across 500kb on chromosome 5¢31 in a popu-
lation of 129 trios. Their results show a picture of discrete haplotype blocks with
limited diversity within each block. We consider the block 7 in which there are 4
common haplotypes with 31 SNP sites. We select 9 genotypes generated by these
haplotypes as the input data (after removing 8 missing SNP sites). The parameter
settings of genetic algorithm for this instance are the same to those in last subsec-
tion. Both algorithms return the results indentical to the common haplotype set
in the block 7 in several seconds.

4.3 Experiment on angiotensin converting enzyme (ACE)

Literature [16] completed the genomic sequencing of the DCP1 gene (encode
angiotensin converting enzyme) from individuals and reported 78 SNP sites in 22
chromosomes. 52 out of the 78 varying sites are non-unique polymorphic sites.
There are 13 distinct haplotypes from 11 individuals in this region. For this in-
stance, we choose 300 as the population size of GAHAP. Both algorithm again
return the same optimal value, i.e. the same number of haplotypes, but the haplo-
type sets returned by two algorithms are different. So we run GAHAP ten times
and the average results are listed in Table 2. GAHAP obtains higher accuracy of
haplotype inference than HAPAR in each of ten runs.
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hap_number | correct_hap | error_rate | Tun._time
HAPAR 11 7 0.273 229(s)
GAHAP 11 8.5 0.227 36(s)

Table 2: Comparison results of HAPAR and GAHAP on ACE

4.4 Experiments on simulated data sets

Given a group of parameters m, n, k, we randomly generate m haplotypes
with & SNPs. n genotypes are created by randomly combining two haplotypes
among these haplotypes. Firstly, 6 instances are generated under the parameter
settings that m = 10, kK =20, n = 10,11,12,13, 14,15. We set the population size
of GAHAP as 600. The results of two algorithms are listed in Table 3, where F
denotes that the HAPAR fails to return a solution within two hours and the results
of GAHAP are averaged over 10 runs.

hap_ number correct_hap error_rate
HAPAR GAHAP | HAPAR GAHAP | HAPAR GAHAP
n =10 10 10 10 10 0.000 0.000
n=11 9 9.3 9 8.1 0.000 0.100
n=12 10 10 10 10 0.000 0.000
n =13 F 9.5 F 8.6 F 0.065
n=14 9 9 9 9 0.000 0.000
n =15 F 10.6 F 9.7 F 0.037

Table 3: Comparison results of HAPAR and GAHAP on simulated data.

From Table 3 we can see that even for instances of small size, HAPAR can
not obtain a solution within acceptable time, while GAHAP can always return
a solution at most several minutes for such instances. In addition, GAHAP has
comparable accuracy of haplotype inference with HAPAR.

Due to the randomness of simulated data, the execution time of HAPAR is quite
unstable. Even for the same size of instances, HAPAR is able to output a solution
to one instance very quickly and fails to find a solution to another within several
hours. Especially in the data set with large SNP sites or genotypes, HAPAR is
much slower that GAHAP. On the other hand, GAHAP can always output solutions
in a stable and consistent way.

5 Conclusions

In this paper, we developed a heuristic method based on genetic algorithm
(GAHAP) to solve a kind of haplotype inference problem — the HIPP problem.



Haplotype Inference by Pure Parsimony via Genetic Algorithm 317

We tested our algorithm on a variety of datasets including biological data and
simulated data. Experimental results show the effectiveness and efficiency of this
algorithm. The designed algorithm can return the same optimal values as the exact
algorithm HAPAR in almost all cases and has comparable accuracy of haplotype
inference with HAPAR. For large instances, our algorithm consumes much less time
than the HAPAR. So GAHAP is suited for haplotype inference in haplotype blocks
with large number of SNP sites or genotypes.

From experiment results in Section 4, we can see that sometimes even an optimal
solution of the HIPP problem does not correspond to haplotype inference with
100% accuracy. This is due to the pure parsimony criterion, or there are a few
recombinations in a practical haplotype block. We can use some other information
(e.g. SNP fragments) of a genotype to modify the pure parsimony criterion and
improve the accuracy of haplotype inference by parsimony. This is our further
work.
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