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Abstract The expanding protein sequence and structure databases await
methods allowing rapid similarity search. A novel framework for structural simi-
larity search in proteins is developed. It can not only distinguish the local similarity
case, but also can detect the overall similarity in some sense. First, geometrical
distance of Cα-Cα is used in evaluating structural similarity in proteins. Then a
simple score metric is given out according to the geometrical distance for local sim-
ilar fragment pairs. The rigid superimposition algorithm is used for computation of
RMSD and rotation matrix. In order to detect the overall structure similarity, the
notion of spacial compatibility is introduced using rotation matrix. Experimental
analysis verifies that the novel framework is effective.

Keywords structure similarity search, similarity score metric, consensus
structure, spacial compatibility

1 Introduction

Structure genomics initiatives are set to produce a large amount of data, so there
is a clear need for novel, fast data analysis strategies to extract biologically relevant
similarity information. Many methods have been designed for searching structural
similarity in proteins. And various properties of polypeptide chains in proteins can
be used as criteria for similarity estimation such as structure alignment, RMSD (the
root mean square deviation of all aligned Cα atoms) calculation (Hubbard, 1999,
Guda et al., 2001), contact maps expressing the inte-residue distance (Ortiz et al.,
1999), geometrical parameters-dihedral angle and radius of curvature (Leluk et al.,
2003, Dua et al., 2004), Cα-Cα distance frequency (Carugo et al., 2002), fractal
features (Cui et al., 2004), environmental properties (Jung et al., 2002) such as
solvent-accessible surface, and conformational properties such as dihedral angles or
the mutual orientation of centers of masses (Shindyalor and Bourne, 1998).
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However, the quantitative assessment of structural similarity is problematic in
many respect. First of all, the comparison of three-dimensional (3D) structures is
very computation-intensive, which is partly due to the nature of structural align-
ments. Second, some properties such as the RMSD calculation work well as indica-
tor of similarity only if the structures are closely related. Clearly, distantly related
structures may only share a small segment that can be structurally aligned. Third,
even for distantly overall related structures, diverse methods will produce diverse
results e.g., diverse correspondence, RMSD value and aligned residue number.

The present work aims to define some simple linear profiles of the geometrical
distance parameters of the 3D protein structure and a simple similarity score metric
that can detect the local similarity situation fast and effectively for overall related
structures so as to allow the searching for more detailed local similarity informa-
tion. A rigid superimposition algorithm (Schwartz and Sharir, 1987) is used for
calculating of RMSD and rotation matrix. RMSD value indicates that a few frag-
ment pairs may be overlarge, and those are removed. A grouping algorithm based
on the demographic clustering technique of data mining (Cabena et al., 1997) is
used for clustering all the fragment pairs according to their relevant rotation ma-
trices. In conclusion, it retrieves the overall similarity in a special way by a novel
notion of spacial compatibility. The proposed method may be used for comparison
of structures or as a seed for that. They could be used for classification of struc-
tures in proteins and so on. A detailed analysis and complex comparison of the
members of serpine family is performed on the basis of the presented parameters
with the noted DALI program (Holm and Sander, 1993) for the same purpose. A
notion of “consensus structure”, analogous to “consensus sequence” that has been
introduced by Leluk et al.(2003) is suitable for our similarity search.

2 Methods

Our first goal is to find a profile of proteins and a similarity score metric that
could be used to quickly detect local structural similarities of two proteins. We
can image that two similar structure must have mostly the same relative distance
between Cαs. Further, the distance between two consecutive Cαs is always around
3.8 Åand the angles between three consecutive Cαs vary lightly around 100◦. So
the distance between Cαs can be as a profile for the structure of protein. We define
a distance vector DVN+1:

DVN+1 = [d(Cα(i), Cα(i + N))]i=1,··· ,n−N

= [d1,1+N , d2,2+N , ......., dn−N−1,n−1, dn−N,n],

where d(Cα(i), Cα(i + N)) indicates the distance between the ith Cα atom and
the (i+N)th Cα atom in a protein backbone chain {Cα(1), · · · , Cα(n)} and N is
equal to 3, 4.

We call a fragment which has k consecutive Cα atoms as a k-Cα fragment. A
similarity score S(i, j) (simply, the S score) is defined for two fragments i and j in
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two proteins respectively according to the distance vector DV4 and DV5. For k-Cα

fragments where k equal to 4, 5, S4(i, j) and S5(i, j) are defined as follows:

S4(i, j) = D(dA
i,i+3, d

B
j,j+3),

S5(i, j) = min{D(dA
i,i+3, d

B
j,j+3), D(dA

i+1,i+4, d
B
j+1,j+4), D(dA

i,i+4, d
B
j,j+4)},

where

D(d1, d2) = C1 −
|d1 − d2|

d1 + d2
,

where C1 is a positive constant, dA
i,i+N is the ith component of the distance vector

DV A
N+1 of the protein A and likewise for dB

j,j+N . Sk(i, j) value represents the
similarity situation of the ith k-Cα fragment in protein A to the jth k-Cα fragment
in protein B i.e., the S score is more closer to C1, the two fragments are more
similar. We then prune Sij in favor of consecutive and high-scoring segment: (a)
Pairs with negative S scores are eliminated. (b) Pairs with isolated high S scores,
i.e., those that can not form a stretch of four high-scoring pairs are also eliminated.
The remainder S scores can form various corresponding pair-wise fragments of
protein A and B respectively. The similarity dot-matrix of two proteins can be
quickly computed.

As a matter of fact, similar similarity dot-matrix of two proteins can also be
computed by using other measures such as (1) RMSD of 4 or 5-Cα fragments pairs;
(2) the root mean square (RMS) value of the 4 or 5 residue (φ,ϕ) torsion angles
(Ramachandran et al., 1963); (3) the α angles (the torsion angle defined by four
consecutive Cα atoms) (Levitt, 1976); (4) other dihedral angles introduced in (Leluk
et al., 2003, Dua et al., 2004). All these measures can obtain similar similarity dot-
matrix, but the RMSD is expensive in numerical computation; the (φ,ϕ) torsion
angles and other dihedral angles are too noisy and reflective of local small change
for their flexible non-Cα atoms; the α angles and the d(Cα(i), Cα(i + 3)) distance
have one-to-one relationship in some sense.

Although the S score means some similarity, few remainder S score correspond-
ing pair-wise fragments may have high RMSD value. There is the superimposition
problem: given the corresponding Cα-atom set find a rotation and translation
which superimposes one set to the other with minimal RMSD. The problem has
been dealt with intensive and efficient solution. Many methods have been devel-
oped (Schwartz and Sharir, 1987; Kabsch, 1978; Horn, 1987; Besl and Mckay, 1992).
We first compute the pair-wise fragments’ RMSD value and it’s rigid transform T
consisting of a rotation matrix R and a translation vector a by using the algorithm
of Schwartz and Sharir (1987) whose complexity is linear in the number of the
matched Cα-atom pairs. Then we prune the fragments whose RMSD value is more
than a certain threshold (C2, e.g. 3.5 Å). Thus many local similar fragment pairs
are given out.

Two overall structural similar proteins will also have similar local fragments
and all those local similar fragments will be compatible in space i.e., at least they
will have a roughly equal rotation matrix. Then we can detect local similarity
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fragments whether they are subjected to “spacial compatibility”. The concept of
spacial compatibility is defined as follows: given a set of similar fragment pairs
and their corresponding rotation matrix set R = {R1, R2, ..., RL}, we define the
distance between two rotation matrices Ri and Rj , DF (Ri, Rj), as

DF (Ri, Rj) = ‖Ri − Rj‖F ,

where ‖ · ‖F is frobenius norm. The center R0 of rotation matrix set R is defined
as

R0 =

L
∑

i=1

Ri/L,

if
‖Ri − R0‖F ≤ C3, i = 1, 2, · · · , L.

where C3 is a constant (e.g. 0.4 ), we call such set of similar fragment pairs are
subjected to spacial compatibility. In order to find out such groups, we apply
a grouping algorithm (Table 1), which is based on the demographic clustering
technique of data mining (Cabena et al., 1997). Intuitively, a set of fragment
pairs subjected to spacial compatibility whose fragments’ total length (repeated
was counted once) is the largest is expected, we call it the optimal group.

3 Experiment Analysis

3.1 Data Collection

In order to analyze various cases and compare with other methods easily, a
data set including 30 proteins belonging to five different families randomly selected
from Alpha, Beta, Alpha and Beta(alpha/beta) and Multi-domain proteins (alpha
and beta) classes is selected. Proteins representing serpine family: 1ATTa, 7APIa,
1AZXi, 2ACHa, 2ANTl, 1OVAa whose number of Cα are 420, 339, 417, 337, 398,
385 respectively which were used in Leluk et al.(2003) are taken as main examples
for analyzing.

The proposed method was compared with the famous DALI program (Holm
and Sander, 1993) used for the rigid structure alignment. In our experiment we
always take S5(i, j) as the similarity score, the parameter C2 which comes from
practice is always set to 3.5 Åand C3 is always set to 0.40 experientially.

3.2 Structural Similarity

We use DV4 as a parameter profile, calculated according to the procedure pre-
sented in Methods characterize the structure of 1ATTa and 2ACHa. The result
is shown in Figure 1. An interesting thing is that two regions of 1ATTa profile
is higher than 12, but this is impossible for consecutive protein chain. So we can
infer that the two regions are disconnected for 1ATTa which can be verified by
inspecting its data and figuring its protein backbone of Cαs. We can easily find
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Table 1: Grouping Algorithm based on demographic clustering technique of data
mining
Grouping Algorithm:

Input: A set of rotation matrices and a distance measure C3.
Output: A set of groups into which rotation matrices have been divided, where every rotation

matrices in a group is within the distance C3 of the group center.
Begin:

Step 0: Given a set R of rotation matrices.
Step 1: Take a rotation matrix R1 from R Randomly, create group 1, with center

R01 = R1, set N1 = 1.
Step 2: While (R is not empty)

{
a. Take Rp from R.
b. Compute the distances dj between Rp and existing group center R0j ( suppose we

have k groups now, then 1 ≤ j ≤ k).
c. Suppose jmin = arg min dj is the minimum. if djmin

= DF (R0jmin
, Rp) > C3, then

create a new group k+1, with center R0k+1 = Rp, set Nk+1 = 1. Else
1. Insert Rp into group jmin, Njmin

= Njmin
+ 1.

2. Compute the new center R
′

0jmin
of group jmin.

3. For i = 1, 2, · · · , Njmin

{

i. Re-compute the distance DF (Rjmin,i, R
′

0jmin
) between the rotation matrix

Rjmin,i in group jmin and the new group center R
′

0jmin
.

ii. If DF (Rjmin,i, R
′

0jmin
) > C3, put Rjmin,i into the set R, Njmin

= Njmin
− 1,

go to 2.
}

}
Step 3: For each group, re-calculate the distance between the contained rotation matrices and all

of the group centers. If there is any Rotation Matrix that has a shorter distance with ano-
ther group center than with its own group center, move it to the other group where the
distance is shorter. If there are no such rotation matrix, go to END.

Step 4: Re-compute all the group centers. If any rotation matrix is no longer within distance C3

of the center of its group, put it into the set R. If R is not empty, go to step 3, else go to
step 4.

END

that their similarity were reflected well. Continuous high values of DV4 are present
in β-sheet structure segment and continuous low values are present in α-helics
structure segment commonly. In general secondary structure always corresponds
to distinct feature. The similarity score dot-matrix for two similar protein 1ATTa
and 2ACHa is presented in Figure 2 (where C1 = 0.12). The inter-molecular sim-
ilarity is very easily distinguishable. A rough diagonal can be seen in the map,
showing the overall inter-molecular structure similarity.

Different values of parameter C1 will produce different matched fragments. Fig-
ure 3 pictures the similar fragment pairs subjected to spacial compatibility under
different parameter C1 of two pair proteins: 1ATTa and 2ACHa, 1LW6 and 1SUC
respectively. Table 2 shows the local similar fragment pairs of 1ATTa and 2ACHa
with various C1 values which satisfy the spacial compatibility. More local similar
fragments were given out such as {[179–295, 224–340], 2.98} and {[1–60, 42–101],
2.26}, but DALI program can not obtain these results.
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Table 2: Proteins and their respective families
FamililyName Proteins selected from the family (PDB id)

Serpins 1ATTa, 7APIa, 1AZXi, 2ACHa, 2ANTl, 1OVAa
Flavodoxin-related 1C7E, 1C7F, 1J9G, 1J8Q, 1J9E, 1AZL

Monodomain-cytochrome c 1B7V, 1K3G, 1K3H, 1KIB, 1N9C, 1CED
V set domains 1BJM, 2FB4, 2IG2, 3BJL, 4BJL, 1MCOl

Subtilases 1SEL, 1OYV, 1SCJ, 1CSE, 1SUC, 1LW6
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Figure 1: Profile of protein structure: the left is DV4 profile of protein 1ATTa and
2ACHa from serpins family and likewise the right is DV4 profile of protein 1LW6
and 1SUC from subtilases family.

3.3 Comparative Experiment

In order to well verify the effectivemess of overall similarity search of our
method, a comparative experiment has been done with DALI program by analyz-
ing serpine family members. The protein 1ATTa was taken as the template protein
structure to which others were compared pair-wise. When C1 take different value,
the similar fragment pairs is some different (Figure 3). We take the combination of
the results of our method when C1 = 0.12 and C1 = 0.15. This is rational, because
their respective optimal group can form a larger group subjected to spacial com-
patibility. Figure 4 indicates similar fragments in some serpine family member and
1ATTa by using our method and DALI program respectively. In the comparative
experiment the instance of similarity can be depicted alike and it is so efficient. The
covered range of our method shows the well similarity between proteins 1ATTa and
other serpine family members. In another way, the rotation matrices of two meth-
ods are quite close (the rotation matrices of our method is the center of the optimal
group which satisfy spacial compatibility under some parameter C1). For example,

the rotation matrices of 2ACHa and 1ATTa are





−0.3761 0.3825 0.8379
−0.2013 −0.9198 0.3269
0.9002 −0.0466 0.4250





and





−0.3513 0.3666 0.8615
−0.2033 −0.9281 0.3121
0.9139 −0.0655 0.4006



 respectively. This all mean the conception of

spacial compatibility can well represent the overall structural similarity in proteins.
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Figure 2: Similarity score dot-matrix: the left is similarity score dot-matrix of
1ATTa and 2ACHa and the right is similarity score dot-matrix of 1LW6 and 1SUC.
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Figure 3: A: Similar fragments between 2ACHa and 1ATTa by using our method
with five different parameters C1=0.08, 0.10, 0.12, 0.15, 0.20 and the DALI pro-
gram. 1ATTa structure is taken as template structure for comparison in two meth-
ods. Horizontal axis represents sequence of the template protein molecule 1ATTa.
Vertical axis represents sequence of protein 2ACHa in relative numbers versus se-
quence of target protein molecule. Line parallel to horizontal axis represents the
situation when two fragments are similar without any shift in their sequences. B:
similarly for 1SUC and 1LW6
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Figure 4: Structure similarity in serpine family members:(A) Our method: the
result is the combination of C1=0.12 and 0.15. (B) DALI program. 1ATTa protein
structure is taken as template structure for comparison in two methods. Horizontal
axis represents sequence of template protein molecule 1ATTa. Vertical axis repre-
sents sequence of compared protein chain in relative numbers versus sequence of
target protein molecule. Line parallel to horizontal axis represents the situation
when two fragments are similar without any shift in their sequences.

4 Discussion and Future work

The experimental analysis shows that the proposed geometric distance param-
eters can represent the protein well and can be used to search for structural sim-
ilarity in proteins, although the criteria selected for this search is simple and can
be implemented easily. The profiles of DV4 and DV5 really express the visual char-
acteristics of the structure chain in protein. The method can quickly find local
similar fragments of proteins and can generate data that provide detailed informa-
tion about regions of local similarity in proteins structures. At the same time, the
notion of spacial compatibility not only enriches the annotation of overall struc-
tural similarity, but also provides more detailed similar local fragments(we can call
it “consensus structure”) of overall structure similarity which is significant because
different structure alignment methods produce various alignment results.

An effective profile of proteins is given out. DV4 and DV5 profile comparison
between the target molecule and the predicted form of protein structure could be
useful in the CASP project (Hubbard, 1999). Random coiled fragments, which
usually are difficult to identify, can also be easily analyzed uniformly with sec-
ondary structure fragments when the proposed parameters are used. It also can
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be employed as a tool of classification of proteins and be able to identify sequence
structure patterns that would represent local structural motifs. Further, it can be
developed into structure alignment method or provide initiative solution for some
unstable structure alignment method such as the method designed by Chen et
al(2004). The most important is that it can be designed for large-scale and more
detailed similarity search in database.
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Table 3: The Fragment pairs of 1ATTa and 2ACHa subjected to spacial compat-
ibility. The table has shown the result of five different parameter C1. {[ S1–E1,
S2–E2], R} represent a pair similar fragments, where S1, S2 are the start atoms’
position of fragments in protein 2ACHa and 1ATTa, E1, E2 are the end atoms’
position and R represents their RMSD.
C1 Matched Rigid Fragment Pairs

{[ 3– 22, 43– 62], 0.63} {[ 3– 57, 44– 98], 2.13} {[ 84–100, 126–142], 2.45}
{[ 86–126, 129–169], 1.18} {[ 86– 99, 130–143], 2.04} {[128–150, 172–194], 0.69}

0.08 {[154–210, 200–256], 1.95} {[160–173, 204–217], 1.77} {[191–236, 236–281], 2.75}
{[257–285, 303–331], 2.66} {[263–293, 308–338], 1.16} {[302–337, 350–385], 1.56}
{[ 1– 11, 52– 62], 0.61} {[ 86– 97, 131–142], 1.25} {[238–247, 284–293], 0.67}

{[292–301, 338–347], 1.46} {[311–321, 357–367], 1.03}

{[ 1– 22, 41– 62], 0.67} {[ 1– 60, 42–101], 2.26} {[ 68–100, 110–142], 2.17}
{[ 86–126, 129–169], 1.18} {[104–153, 148–197], 2.60} {[152–210, 198–256], 2.04}

0.10 {[158–171, 206–219], 1.56} {[160–173, 204–217], 1.77} {[190–245, 235–290], 3.25}
{[192–224, 236–268], 2.76} {[225–285, 271–331], 2.79} {[263–286, 307–330], 2.93}
{[263–293, 308–338], 1.16} {[302–337, 350–385], 1.56} {[ 1– 11, 52– 62], 0.61}
{[ 86– 98, 131–143], 1.55} {[246–253, 295–302], 0.96} {[292–301, 338–347], 1.46}
{[311–321, 357–367], 1.03}

{[ 1– 22, 41– 62], 0.67} {[ 1– 60, 42–101], 2.26} {[ 65–100, 107–142], 2.13}
{[ 65–143, 108–186], 2.83} {[104–153, 148–197], 2.60} {[152–221, 198–267], 3.20}

0.12 {[158–171, 206–219], 1.56} {[160–173, 204–217], 1.77} {[190–245, 235–290], 3.25}
{[192–224, 236–268], 2.76} {[225–285, 271–331], 2.79} {[263–286, 307–330], 2.93}
{[263–295, 308–340], 1.40} {[302–337, 350–385], 1.56} {[ 1– 11, 52– 62], 0.61}
{[ 86– 98, 131–143], 1.55} {[246–253, 295–302], 0.96} {[292–301, 338–347], 1.46}

{[ 1– 22, 41– 62], 0.67} {[ 1– 60, 42–101], 2.26} {[ 62–100, 104–142], 2.50}
0.15 {[ 65–143, 108–186], 2.83} {[ 85–153, 129–197], 2.95} {[152–222, 198–268], 3.25}

{[160–173, 204–217], 1.77} {[179–245, 224–290], 3.46} {[191–224, 235–268], 2.79}
{[225–285, 271–331], 2.79} {[250–295, 295–340], 1.69} {[257–286, 301–330], 3.12}
{[302–337, 350–385], 1.56} {[ 1– 12, 52– 63], 0.92} {[ 72– 81, 107–116], 1.15}
{[133–143, 170–180], 0.59} {[292–301, 338–347], 1.46}

{[ 1– 22, 41– 62], 0.67} {[ 1– 60, 42–101], 2.26} {[ 62–100, 104–142], 2.50}
0.20 {[ 65–143, 108–186], 2.83} {[ 85–153, 129–197], 2.95} {[152–222, 198–268], 3.25}

{[160–173, 204–217], 1.77} {[179–245, 224–290], 3.46} {[191–224, 235–268], 2.79}
{[225–285, 271–331], 2.79} {[250–295, 295–340], 1.69} {[257–286, 301–330], 3.12}
{[302–337, 350–385], 1.56} {[ 1– 12, 52– 63], 0.92} {[ 72– 81, 107–116], 1.15}
{[133–143, 170–180], 0.59} {[292–301, 338–347], 1.46}
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