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Abstract Operations under malicious attack are usually studied in a very
narrow context. The typical example is in the context of point-to-point communi-
cation networks in a graph. The question is whether after k nodes have been de-
stroyed, each remaining node can continue communicating to any remaining one.
The topic was generalized to (1) secure distributed computation (secure multiparty
computation); (2) secure communication, further generalized to the case of partial
broadcast; (3) AND/OR graphs requiring minimal flows after the attack. In this
paper we broaden these topics to robust operations in general.

We give several examples, such as the robust multiple knapsack, and the robust
traveling salesman. We give a general definition.
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1 Introduction

Operations under malicious attack have been studied in narrow contexts. One
finds typical examples in communication and computer security, although there
has been some work on limited generalizations. Evidently, there appears to be a
relationship with the area of reliability. However, there is a major difference. In the
case of reliability theory the failure is assumed to be ergodic. However, assuming
ergodicity makes little sense for a malicious attack.

One of the first problems studied originates from the problem of reliable com-
munication in a network. Imagine an adversary destroys k nodes. An adversary
will fail to disrupt communication if the network is k + 1-connected, i.e. any node
can still communicate with any other (see also [17]). If k nodes are Byzantine (i.e.
they can modify data they are supposed to just forward, stop interacting, etc.)
then one needs 2k + 1 vertex disjoint paths between sender and receiver to achieve
authentic (i.e. guarantee that the received message is the sent one and coming from
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the claimed source) and robust (reliable) message transmission without prior key
exchange between sender and receiver [17, 10].

This topic was generalized to secure distributed computation (called secure mul-
tiparty computation by the cryptographic community). In this, a set of mutually
untrusted players wants to compute an arbitrary function f of their private inputs,
while satisfying two major concerns, being:

correctness, i.e. the output of f is correct using the input of all honest players
(and replacing the one of dishonest ones by randomness),

privacy, i.e. the privacy of the players inputs will be guaranteed, even if some of
the players are corrupted by an adversary and are malicious (Byzantine).

This topic was introduced by Goldreich-Micali-Wigderson [16] (see also e.g. [21, 4,
1]).

In multiparty computation (without assuming computational assumptions):
one assumed a complete graph for private and robust (reliable) communication.
Dolev-Dwork-Waarts-Yung [11] challenged this. They studied two cases:

1. all communication links (edges in the graph) are two-way communications,

2. all communication links are one-way communication, and there is no feedback.

They were able to demonstrate that a complete (directed) graph is not required.
Desmedt and Wang [9] observed that this is not the most general case since there
could be feedback channels and demonstrated that this is indeed a new case. This
problem of private and robust communication was further generalized to include
the broadcast case [14, 6]. Special cases were studied in [13, 20] (see also [9]).

A first approach to broaden the research on robust computer networks to include
non-information infrastructures was made in [3]. We could view it as one the
first research papers towards robust operations. It suggested to use an AND/OR
graph, the AND to model dependencies (as in a PERT graph) and the OR to
model redundancies. Desmedt-Wang [8] (see also [5]) added flows to above model.
The main (from our viewpoint) question studied was whether an adversary when
destroying a number of nodes bounded above by a threshold in such an AND/OR
graph, can reduce the delivered flow to a below a critical level. This issue is
important when one is concerned whether a terrorist with limited resources can
succeed in reducing water/food/fuel/electricity distribution to such a low level
that people will die or the economy will suffer to a point beyond return. A macro
approach was proposed by Desmedt-Burmester-Wang using an economics model
in [7].

A topic developed independently is the one of robust control. Informally, one
could view robust control as a part of control theory, which deals with control
systems that are tolerant to changes in the environment, in the system parameters
and in the system [12].

From these viewpoints one can view that robustness guarantees that desired
properties remain, even if insiders behave dishonestly. It is this viewpoint that is
the driving force of this paper.
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This paper is organized as following. In Section 2 we introduce some examples
to explain the ideas behind robust operations. We then generalize these to explain
the concept of adversary structure in this context (see Section 3). We use these
examples to define robust operations in general (see Section 4). Finally in Section 5
we conclude and present open problems.

2 Simple examples

To motivate the general definition, we introduce the issue of robust operations
using some examples.

2.1 Robust multiple knapsack: the simple case

We first of all remind the reader about the multiple knapsack problem, also
called multiple loading problem. It is the problem of choosing some of n items, each
having its size si and value vi, to be loaded into m distinct containers (or trucks),
such that the total value of the selected items is maximized, without exceeding the
capacity Sj of each of the containers j (or trucks).

We now define the basic robust multiple knapsack.

Definition 1 The adversary can destroy up to t containers (or trucks), specified
by a subset B of the m containers (|B| ≤ t). The multiple knapsack is robust if
the transported value remaining after the attack (regardless which subset B the
adversary chooses) is at least V ′.

We briefly discuss the problem informally. When loading the containers, one
cannot put the most valuable items in one container. Indeed if the adversary targets
this container, then the total value transported using the remaining containers may
be too low.

2.2 Robust traveling salesman: the simple case

Definition 2 Given a (directed) multigraph with weighted edges, a budget, and
a threshold t. We call the weight of the edge, its cost. Question: For any choice
of up to t edges destroyed by the adversary, will a path exist which starts and ends
at the same vertex, includes every other vertex exactly once, and of which the total
cost of edges is less than the budget?

We now explain in the next section how to generalize these two examples to what
is called general adversary structures.
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3 More general examples

3.1 Introduction

The above adversarial situations may be too symmetric or too far from realistic.
We explain this for both examples.

Let us start with the basic robust multiple knapsack. What would happen if
some containers are escorted by security guards, or are armored. The adversary
may not have the resources to destroy t armored containers. However, he might be
able to destroy, let say 1 armored and t′ unarmored.

Let us now focus on the robust traveling salesman. If the transportation mode is
based on airplanes, then if the adversary is a terrorist organization, the scenario of
taking out edges, except when using hijacking, may not be possible. However, the
adversary does not need to be restricted to a terrorism scenario. Consider the case
of a salesman that is traveling during a strike of pilots of some airline company.
Another possibility is that the personnel of two or more airline companies are
striking.

3.2 Background

We will use the concept of adversary structure which was introduced in the area
of cryptography [18] (see also [19]).

Definition 3 Let P be a set. A subset ΓP of the powerset 2P of P is called an
access structure on P [19]. It is monotone if and only if ∅ 6∈ ΓP and supersets
of elements ΓP also belong to ΓP , i.e. formally we require that if A ∈ ΓP and
A ⊆ A′ ⊆ P , then A′ ∈ ΓP . We call AP ⊂ 2P an adversary structure [18] on P if
its complement, i.e., Ac

P = 2P \ AP is a monotone access structure.

3.3 A first generalization

In the examples of Section 2 the adversary could destroy either up to t containers
(or trucks) or up to t edges. In the generalization, the set of containers (or the
set of edges) will correspond to the set P . One then has an adversary structure
AP defined over P . So, AP can be viewed as a list of subsets of the the set of
containers (edges) from which the adversary can choose one. Obviously a special
case of such an adversary structure is the one defined by the threshold, formally,

AP = {B | B ⊂ P and |B| ≤ t}.

Using an adversary structure we can model the fact that some containers (or
trucks) are armored and harder to take out. Similarly the adversary structure
allows to model the list of all flight numbers from 1, 2 or up to t′ airlines. One way
to visualize this is to color the edges corresponding with flights of the same airline
with the same color (see also [2]). If there is a strike of the personnel of t′ airlines,
this corresponds to removing the edges of these colored in one of these t′ colors.
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4 Robust operations

The goal of this section is to define robust operations in its generality, i.e. for
any operational research problem. This is not straightforward for the reasons we
now explain.

4.1 A first attempt

Using theoretical computer science terminology (see e.g [15]), we can split the
operational research problems into decisional and search problems. In the first the
question is whether something is possible or not, while in the second one wants a
more complex reply. The last one are used to study optimization problems.

For simplicity we start with discussing how to define robust decisional problems.
When the input is defined by elements of sets S1, S2, . . . , Sℓ (some of these sets
could be equal) one could try to define an access structure on P = {1, 2, . . . , ℓ}.
If the adversary removes a set B = {i1, i2, . . . , i|B|} ⊂ P the goal of the robust
operation is that the same question is asked, but then the inputs corresponding to
the sets Si1 , Si2 , . . . , Siℓ

are removed. The problem with this approach is that the
original question no longer makes sense. Indeed, consider the decisional multiple
knapsack and suppose that the minimal value V ′ is removed from the input. It
is clear that the original question becomes void. To address this we split up the
input, as we now describe.

4.2 Robust operations: the decisional case

When S is a set, we let S0 = ∅, S1 = S, Si = Si−1 × S, where i ≥ 2.

Definition 4 Let f be a Boolean function. We call f properly deletion defined if
its domain can be written as G ×H , where G is the Cartesian product of a finite
number (ℓ) of sets Gi, where Gi = Si ∪ S2

i ∪ S3

i . . . ∪ Sj
i ∪ . . ., where Si is a set

(0 ≤ i ≤ ℓ) and H is the Cartesian product of finitely many ℓ′ sets S′
i.

Definition 5 An instance x corresponds to x = (a, b) where a ∈ G, b ∈ H , where
a = (a1, a2, . . . , aℓ) in which ai ∈ Ski

i , where all ki are finite. To such an instance
will correspond an adversary structure AP , where

P = {(i, j) | 1 ≤ i ≤ ℓ and 1 ≤ j ≤ ki},

i.e. the i coordinate corresponds to the specification of set Si and j corresponds
with a number between 1 and ki. Since P is naturally defined by the domain of x,
we will also use the notations Ax and Px.

Note that some families of adversary structures {AP} can be described in poly-
nomial size in function of |P|.

We now define a robust version of operational research problems.

Robust Operations 271



Definition 6 Assume that the operational research problem P is specified by a
Boolean function f which is properly deletion defined. We say that an instance
x = (a, b) (using the same notations as in Definition 5) is robust if for each B ∈ Ax,
f(x′B) is TRUE, where x′B = (a′B, b) in which a′B is identical to a, except that the
coordinates of a′B specified by B are removed.

We call the corresponding computational problem, the robust P problem.

4.3 An illustration

To better understand above definition, let us focus on an example.
Let us reconsider the robust multiple knapsack. In fact we will see that our

discussion leads us naturally to what we call the general robust multiple knapsack.
We use the notations from Section 2.1. Obviously ℓ ≤ 3. We now argue that ℓ = 2
makes the most sense.

Let S1 corresponds to the set used to express sizes. So, Sm
1

is used to express
the size of the m containers. Let S2 = T × S1, where T is the set that expresses
values. So, Sn

2
is used to express the (value, size) of each of the n items. Finally

S′
1

= T and V ′ ∈ S′
1
.

So, an instance x of the multiple knapsack has the form:

x = ( ( (S1, S2, . . . , Sm), ( (s1, v1), (s2, v2), . . . , (sn, vn) ) ), V ′ ).

Then Px = {(1, 1), (1, 2), . . . , (1, m), (2, 1), (2, 2), . . . , (2, n)}. Since Ax is an ele-
ment of the powerset of Px, it does not only specify which

1. containers the enemy can destroy, these are the elements in P of the form
(1, ·), but also which

2. items can disappear, these are the elements in P of the form (2, ·). Since
S2 = T × S1, both the value as well as the size of each item that disappears,
are removed from x to make x′B .

In the robust multiple knapsack only containers could be destroyed, but items never
disappeared. One could wonder whether the generalized scenario is realistic.

We now explain such a scenario. Imagine that the m so called “containers” are
actually ships. The n items are containers that are transported by trucks to the
ships. Due to the threat of the adversary, some of the n trucks on their way to the
ships, as well as some of the m ships could be destroyed by the adversary.

Evidently since Ax is an element of the powerset of Px, we can also model the
simple robust multiple knapsack as a special case of the general one, by choosing
an appropriate Ax.

4.4 Technical comments

We note that V ′ in the general robust multiple knapsack cannot be removed
by the adversary since it belongs to S′

1
, which solves the problem we encountered
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in Section 4.1, when we defined P over all coordinates of the input. Evidently
we could also have achieved this by restricting Ax by stating that these special
inputs are never removed. However, the last approach would not allow a natural
framework for defining robust operations in its generality.

For a given instance x, and for a choice B of the adversary, where B ∈ Ax, one
could view the removal as a mapping from

((Sk1

1
,Sk2

2
, . . . ,Skℓ

ℓ ), (S′
1
,S′

2
, . . . ,S′

ℓ′))

to
((Sk1−b1

1
,Sk2−b2

2
, . . . ,Skℓ−bℓ

ℓ ), (S′
1
,S′

2
, . . . ,S′

ℓ′)),

where 0 ≤ bi ≤ ki and |B| =
∑

i bi.
Evidently one would not have obtained the general robust multiple knapsack

if one would had started from the ordinary knapsack. Only items could then be
destroyed, but not the container. One could view the single knapsack as an “hidden
variable.” So when using the above, one may want to first identify hidden variables,
then make a “multiple” version of the original problem. The multiple knapsack is
such a variant of the original one. Note that the robust traveling salesman is defined
over a multigraph to deal exactly with this issue.

4.5 The search problem case

The search based operational research problems seems not so interesting. Indeed
the question then is to solve the original search problem after the adversary removed
some of the inputs.

4.6 When does the adversary strike?

Let us rediscuss the decisional robust traveling salesman. We have silently
assumed that the adversary strikes before the salesman travels. So the adversary
first announces which airlines will not fly, and then the task is to choose the shortest
path.

Let us now imagine the adversary chooses which airlines strikes after the sales-
man started to travel. A problem that may occur is that the salesman is stuck.
Indeed, it could happen that all cities that have edges adjacent with his current lo-
cation have already been visited by him. Worse, if he had done his travel differently,
he might have avoided this problem.

5 Conclusion and open problems

The topic introduces almost1 as many new operational research problems as
there currently are. Evidently to robust operational research correspond a few
natural open questions, such as:

1The reason it is not the double is that a few problems, such as the one on deciding whether

a graph is sufficiently connected, already deal with robustness.
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• for which of these can one find efficient algorithms?

• which of these are hard, and how hard?

• when they are hard, are there efficient heuristic algorithms?
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