
Optimal Region for Binary Search Tree,

Rotation and Polytope

Kensuke Onishi1 Mamoru Hoshi2

1 Department of Mathematical Sciences, School of Science

Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan

Email: onishi@ss.u-tokai.ac.jp
2 Graduate School of Information Systems, University of Electro-Communications

1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan

Email: hoshi@is.uec.ac.jp

Abstract Given a set of keys and its weight, a binary search tree(BST)
with the smallest path length among all trees with the keys and the weight is called
optimal tree. Knuth showed that the optimal tree is computed in the time of square
of the number of keys.

In this paper, we propose algorithms that divide the weight space into regions
corresponding to optimal trees by a construction algorithm of convex hull. It is
proved that each BST has a non-empty region, called optimal region, for which only
the tree is optimal and that two optimal regions are adjacent if the corresponding
trees are transformed to each other by a single rotation. We describe a relation
between associahedron and the convex hull of the whole BSTs.

1 Introduction

In this paper, we deal with weighted binary search trees (BST). Suppose a set
of search keys a1 < a2 < · · · < an and a weight w = (w1, w2, . . . , wn), where wi

is a given weight of key ai. The weighted path length of a binary search tree T ,
denoted by E(T, w), is defined by

∑n
i=1 wi · li, where li is the path length from

the root of T to node ai and li is also called the level of the node. The vector
l(T) := (l1, . . . , ln) is called level vector of the given BST T . A BST with a w is
optimal if E(T, w) is smaller than or equal to E(T ′, w) for any other BST T ′. In
[4] Knuth fixed the set of keys and its weight. In this paper, only the set of keys is
fixed and the weight is regarded as a variable.

We investigate a region of the weight space Wn := {w = (w1, . . . , wn) |wi ∈
R+} in which a given BST is optimal for any weight in the region. The region is
called optimal region for the given BST. The weight space Wn can be divided into
optimal regions defined below.

255

Let Ln be a set of all level vectors of BSTs with n nodes, which has same
cardinal number with the set of all BSTs. Since E(T, w) is rewrited as l(T) ·w by
level vector l(T), the optimal region R(T) of T is defined by:

R(T) = {w | l(T) · w ≤ l(T ′) ·w, ∀l(T ′) ∈ Ln } .

We consider two problems about optimal regions. One question is how to com-
pute such regions. The other question is what properties optimal region has. Since
there is an optimal tree for any weight, the weight space is divided into finite op-
timal regions. Some regions share their boundary in the subdivision. Two regions
are adjacent if two regions share their facet. In other words, two BSTs T, T ′ are ad-
jacent if there exists a weight w such that l(T) ·w = l(T ′) ·w < l(T ′′) ·w, ∀l(T ′′) ∈
Ln (T ′′ 6= T, T ′).

w1

w2

w3

(1,0,1)

(0,1,2)

(0,2,1)
(1,2,0)(2,1,0)

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3
l1

l2

l3

(1,0,1)

(1,2,0)

(2,1,0)

(0,2,1)

(0,1,2)

w : descent direction

w~w
_

Figure 1: Optimal regions for BSTs with 3 nodes (left) and convex hull for L3

(right)

Figure 1 (left) is the subdivision of W3 by optimal regions with 3 nodes. Con-
sider the space Ln := {(x1, . . . , xn) |xi ∈ R} note that Ln (Ln, which is a dual
space of the weight space. In Ln each BST is regarded as a point and the weight
corresponds to a descent direction. So, the computation of optimal BST for a given
weight w(> 0) is regarded as the following optimization problem in Ln:

min
l(T)∈Ln

l ·w for a given w.

Consider a condition that the weighted path length of BST T is smaller or equal
to that of BST T ′: {l(T) − l(T ′)} · w ≤ 0. The inequality shows a halfspace in
Wn and also in Ln. When the inequality above is regarded as an inner product
between {l(T)− l(T ′)} and w, the angle among the vectors is greater or equal to
π. The condition w > 0 for the weight is similarly dealt with (see Figure 2).

Consider a weight w̄ such that l(T) · w̄ < l(T ′′) · w̄ for any l(T ′′) ∈ Ln if exists
(see Figure 1 (right)). In Wn the w̄ is a point of R(l(T)). Consider an inequality
l(T) · w̄ < x · w̄, where x is variable in Ln. Since w̄ is a constant vector, this
inequality shows a halfspace which contains all point of Ln \ {l(T)} in Ln and l(T)
is on the boundary of the halfspace. So, l(T) becomes an vertex of convex hull
of Ln, denoted by conv(Ln), if such a w̄ exists. Figure 1 (right) shows conv(L3).
This figure suggest that any level vector of BST is a vertex of the convex hull.

256 International Symposium on OR and Its Applications 2005

l1

l2

l(T)=(1,0)

l(T’)=(0,1)

l(T) - l(T’)
=(1,0)-(0,1)=(1,-1)

optimal region R((1,0))

optimal region R((0,1))

w1 -w2 <= 0

w1>=0

w2 >=0

(0,0)

Figure 2: Convex hull for L2 and optimal regions for BSTs with 2 nodes

Consider a weight w̃ such that l(T) · w̃ = l(T ′) · w̃ < l(T ′′) · w̃, ∀l(T ′′) ∈ Ln

(see Figure 1 (right)). In Wn the w̃ is a point which is included in R(l(T)) and
R(l(T ′)). Consider l(T) · w̃ < x · w̃, where x is variable in Ln. This inequality
shows a halfspace which contains all point of Ln\{l(T), l(T ′)} in Ln and l(T), l(T ′)
are on the boundary of the halfspace. So, there exists a edge connecting between
l(T) and l(T ′) in conv(Ln). Optimal regions R((1, 0, 1)),R((1, 2, 0)) share a facet
and level vectors (1, 0, 1) and (1, 2, 0) are connected by an edge of the convex hull
in Figure 1.

In section 2, we give an algorithm for computing all the optimal regions by using
a construction algorithm of convex hull. In this algorithm we need to generate all
BSTs. We introduce two algorithms for the generation.

In section 3, some properties of optimal regions are shown. The connectivity,
convexity of optimal regions are easily derived from the definition. We show that
each region is non-empty. We also show that two regions are adjacent if two BSTs
are transformed to each other by a single rotation.

In section 4, we describe relation between the convex hull of all level vector and
associahedron. The connection between BST and triangulation of convex polygon
is shown.

2 Construction Algorithm of Optimal Regions

In this section we propose an algorithm for computing all optimal regions.

2.1 Generation of all level vectors

2.1.1 direct generation

In this subsection we state direct generation of all BSTs. Any BST with n
nodes is expressed by n-dimensional level vector. The vector always includes one

Optimal Region for Binary Search Tree, Rotation and Polytope 257

0, which corresponds to the root node. We must select one index, say i, for the root
node. The level vector is divided into two parts: smaller and larger parts rather
than the index i. Each part also becomes level vector of BST with i− 1 nodes and
with n− i nodes. So, we can use recursive generation. This algorithm is shown in
Figure 1.

Algorithm 1 Generation of all level vectors

Input: number of nodes n;
Output: vector[1..n]

all level vectors with n nodes;
function Generate(i, j, level) {

if (i == j) then set level to vector[i];

return;

for (k=i+1; k<j; k++) {
set level to vector[k];

Generate(i, k-1, level+1);

Generate(k+1, j, level+1);

}
}

This algorithm is very simple, but needs O(nCn) memory for keeping all level
vectors where Cn is the nth Catalan number. The time complexity of the algorithm
is also O(nCn).

2.1.2 computation by generation tree

In this section we state computation by using generation tree, which is a kind
of binary decision diagram. The sequence of labels on a path of the generation tree
corresponds to a binary tree.

Firstly, we explain gambler’s ruin sequence ([5, p.268]). The sequence is a
binary sequence of length 2n satisfying two condition (1) the number of 0s and
that of 1s are n; (2) for any prefix of the sequence, the number of 0s is greater
than or equal to the number of 1s. It is well-known that the number of gambler’s
ruin sequence of length 2n is equal to the nth Catalan number Cn and that there
is one to one correspondence between such sequences and BSTs with n nodes([5,
pp.268-277], [7, pp.219-229]). Let Bn be the set of all gambler’s ruin sequence of
length 2n. We propose a generation method of Bn by generation tree.

A generation tree is a binary decision tree: (1) Any internal node has two
branches with labels 0, 1; (2) There are two leaf nodes(False, True); Consider
an internal node and the subsequence from the root to the node. Let N0, N1

be numbers of 0s and 1s in the subsequence, respectively. By the following rule
0-branch and 1-branch of the node are connected with.

0-branch is connected with

258 International Symposium on OR and Its Applications 2005

{

False leaf if N0 = n
child internal node otherwise

1-branch is connected with

False leaf if N0 = N1

True leaf if N0 = n
child internal node otherwise

(3) Any path from the root node to True leaf corresponds to a binary tree. An
example of the generation tree for 3 nodes is shown in Figure 3 (left).

False True

0

0

0

0 0

0 0 0

11

1

111

1 1

0

01

0

0

1

1

0 1

1

0

0

0

0

0

1

1

1

1

10

0

1

1

False

0

(3,3)

(3,1)

(3,0)

(2,0)

(3,2)

(1,0)

(0,0)
0

True

1

1

(1,1)

(2,1)

Figure 3: Generation tree for BST with 3 nodes (left) and shared diagram (right)

Generation tree includes all gambler’s ruin sequences. This tree has redundant
parts. A subtree with prefix b1b2 . . . bk is defined as the subtree where the root
node can be reached along the prefix in the tree. In Figure 3 (left), the subtree
with prefix 001 is the very same with the subtree with prefix 010. These parts of
the tree can be shared (Figure 3 (right)). In the generation tree, all tuple of such
parts can be identified. So, we gain new diagram (Figure 3 (right)), called shared
diagram. Such kind of share is done when two prefixes have the same number N0

and N1. Because the structure of subtree depends only on the numbers of 0s and
1s which can be used in the subtree, that is, n − N0 and n − N1. Thus these
numbers are determined by the numbers in prefix. In other words, each internal
node corresponds to a pair of the numbers of 0s and that of 1s (N0, N1) where
N0 = 0, . . . , n, N1 = N0, . . . , n. The number of such pairs is easily computed:

(n + 1) + n + (n− 1) + · · · + 2 =
n

2
(n + 3) = O(n2).

Optimal Region for Binary Search Tree, Rotation and Polytope 259

Thus the shared diagram for BST with n nodes has n
2 (n+3)+2 = n

2 (n+3+4) nodes
and n2 + 3n edges. Since this diagram has O(n2) nodes, O(n2) memory needed
for keeping this diagram and the time complexity of computation of this diagram
are also O(n2). When all sequences are generated from the diagram, O(nCn) time
needs.

2.2 Computation by using convex hull

In the previous subsection we showed two methods of generation of all level
vectors. In this subsection we show a computing method for optimal regions by
using convex hull.

Consider the space of level vector, which is the dual space of the weight space.
The optimality of BST is equivalent to that its level vector is a vertex on convex hull
of Ln. The structure of optimal regions is also equal to the structure of conv(Ln)
because of duality. Thus we propose a computation method by using convex hull
(see Algorithm 2).

Algorithm 2 Computation of all optimal regions

Input: n number of nodes in BST
Output: all optimal regions for BSTs with n nodes

1. Generate all level vectors Ln;
2. Compute conv(Ln);

Time complexity of this algorithm depends on computation time of convex hull,
which is well-known O(N ⌊d/2⌋), where N is the number of points and d is dimension
(see [1]). In this case N = Cn and d = n, the time complexity of this algorithm is

O(Cn
⌊n/2⌋).

3 Properties of Optimal Regions

In this section we show some properties of optimal regions.

3.1 Convexity and existence

The optimal region is defined by the intersection of some halfspaces. So, the
region becomes convex cone if exists. When the optimal region for a given tree
exists, the region is convex cone (see Figure 1 (left)).

We show the existence of optimal region for any BST T . Let ai be a root node
of T . Let TL(TR) be the left (right) subtree in T , respectively. It is well-known that
when T with w is optimal, then TL with w1, . . . , wi−1 and TR with wi+1, . . . , wn

are also optimal.

260 International Symposium on OR and Its Applications 2005

Consider a weight w such that wi ≥ W
(

1− 1
n2

)

where W =
∑

i wi. Let T be
any BST with n nodes. If ai is not the root node of T , then

E(T, w) ≥ 1 · wi ≥ W

(

1−
1

n2

)

.

When ai is the root node of T , then

E(T, w) ≤ (n− 1)(W − wi) ≤ W
n− 1

n2

<
W

n
≤ W

(

1−
1

n2

)

.

The first inequality is shown from the fact that the level of any node is less than
n − 1 for any BST with n nodes. Thus, if wi ≥ (1− 1

n2)W , any optimal tree with
w has ai as the root node.

We propose an algorithm for computing weight w such that a given BST is
optimal under w , denoted by Weight(i,j,T, W) (see Algorithm 3).

Algorithm 3 Compute an optimal weight for given BST

Input: T : BST for ai, . . . , aj(i ≤ j);
W : sum of weights of nodes ai, ai+1, · · · , aj ;

Output: weight of each nodes wi, . . . , wj ;
function Weight(i,j,T, W){

if (i == j) then set wi = W ;
if (i != j) then

ak: root node of T ;
TL(TR): left (right) subtree of T ;
set wi = W

(

1− 1
n2

)

;

if (k == i) then call Weight(i+1,j,TR, W
n2);

if (k == j) then call Weight(i,j-1,TL, W
n2);

if ((k > i) && (k < j)) then

call Weight(i,k-1,TL, W
2n2);

call Weight(k+1,j,TR, W
2n2);

}

Algorithm 3 returns an optimal weight w for T when we call Weight(1,n,T, 1).
For any BST an optimal weight can be computed. Consequently, we can show the
existence of optimal region for any BST.

Theorem 1 The optimal region for any BST is non-empty and convex.

3.2 Adjacency

In this subsection, we show that if two BSTs are transformed to each other by
a single rotation, the two corresponding optimal regions are adjacent.

Optimal Region for Binary Search Tree, Rotation and Polytope 261

Let T , T ′ be BSTs which are transformed to each other by a single rotation.
We modify the weight of Weight(1,n,T, 1) so that T and T ′ are only optimal.
Without loss of generality, assume that ai is the root of the BST. Figure 4 shows
the BST T (left) and T ′ (right). T is transformed to T ′ by a single rotation.
Consider the following weight for these BSTs:

wi = wj =
1

2
W

(

1−
1

n2

)

,

where W is the sum of weights of the BST. The weight of each subtree T1, T2 and
T3 are set to be 1

3
W
n2 . The weight for T1, T2, T3 are obtained by the algorithm above.

This weight called modified weight.

ai

aj

T3

1/3 W/n2
T21T

1/3 W/n2 1/3 W/n2

j
2w = 1/2 W(1-1/n) = w i

ai

aj

1T

T2 T3

1/3 W/n2

1/3 W/n2 1/3 W/n2

j
2w = 1/2 W(1-1/n) = w i

T’T

Rotation

Figure 4: Rotation and modified weights

We show that for modified weight w̃, T and T ′ are optimal and other BSTs
are not optimal. Claim that E(T, w̃) = E(T ′, w̃). When the root node is neither
ai nor aj in BST T ′′, the level of ai and aj is greater than or equal to 1. So, the
weighted path length of T ′′ satisfies

E(T ′′, w̃) ≥ 2 ·
1

2
W

(

1−
1

n2

)

=
W

n2
(n2 − 1)

(1)

When the root node is ai and the level of aj is greater than or equal to 2, the same
inequality (1) is settled.

The last case is that the root node is ai and its child is aj or vise versa, cor-
responding BSTs are T and T ′, respectively. Any node have smaller weight than
W/3n2 and the number of such nodes is at most n − 1. In this case E(T, w̃) is
bounded as:

E(T, w̃) ≤
W

2

(

1−
1

n2

)

+
W

3n2
(n − 1)

=
W

6n2
(3n2 + 2n− 5) <

W

n2
(n2 − 1)

262 International Symposium on OR and Its Applications 2005

The last inequality is settled when n ≥ 1. Thus the following inequality is shown:

E(T, w̃) = E(T ′, w̃) < E(T ′′, w̃)

Finally the theorem below is shown.

Theorem 2 If two binary search trees are transformed by a single rotation, their
optimal regions are adjacent.

In [6] rotation distance between a pair of BSTs is defined as the minimum number
of rotations needed to convert one BST into the other. When two binary tree is
transformed to each other by a single rotation, the rotation distance is one.

Restating the theorem above in terms of rotation distance, we get the following
corollary.

Corollary 1 If rotation distance is equal to one for given two binary search trees,
then two corresponding optimal regions are adjacent. In addition, the regions share
a facet.

4 Relation with Associahedron and Triangulation

4.1 Associahedron

In this subsection we describe relation between associahedron and the convex
hull of level vector. We describe that any edge of associahedron Kn−1 exists on
the conv(Ln).

Associahedron Kn−1 is a polytope with Cn vertices each of which corresponds
to a binary parenthesization for a sequence of length n + 1. When two vertices
are transformed by associative law, the two vertices are connected by edge. This
polytope is constructed as a secondary polytope from n-gon. The detail of this
polytope is found in [8]. We illustrate K2 in Figure 5. In K2 there are five vertices:
((12)(34)), (1(2(34))), (1((23)4)), ((1(23))4), (((12)3)4). The second vertex means:
(a) make a pair of last two characters (34); (b) make a pair of second character
and the pair in (a) (2(34)); (c) make a pair of first character and the pair in (b)
(1(2(34))). Associative law is defined by changing the order of pairing i.e. A(BC)
is transformed to (AB)C by associative law. For example, when A = 1, B = 2,
C = (34), then (1(2(34))) is transformed to ((12)(34)) by associative law. So, these
two vertices are connected by edge in Figure 5.

We explain a relation between Kn−1 and conv(Ln). It is well-known that one to
one correspondence between binary parenthesization of (n + 1)-sequence and BST
with n nodes. A pair of brackets in the sequence is equivalent to one node in BST.
The level of the node is equal to the number of pairs of brackets at outside of the pair
of brackets. We claim that any edge of associahedron becomes the edge of conv(Ln).
Consider one binary parenthesization of (n + 1)-sequence (((1 · · · j)(j + 1 · · · i))(i +
1 · · ·n + 1)), where each part is already parenthesized. As the parenthesization
above corresponds to a BST T with n nodes, every subparenthesization is also

Optimal Region for Binary Search Tree, Rotation and Polytope 263

((12)(34))

(1(2(34)))

(1((23)4))((1(23))4)

(((12)3)4)

Figure 5: Associahedron K2

regarded as subtree of the BST. Since the first subparenthesization contains j
characters, the corresponding subtree contains j − 1 nodes and is regarded as T1

in Figure 4 (left). The second and third parts are also regarded as T2 and T3,
respectively. The parenthesization above is transformed to ((1 · · · j)((j +1 · · · i)(i+
1 · · ·n + 1))) by associative law. This parenthesization means: (a) make a pair of
((j+1 · · · i)(i+1 · · ·n+1)); (b) make a pair of ((1 · · · j)((j+1 · · · i)(i+1 · · ·n+1))).
So, the corresponding BST is equal to the T ′ in Figure 4 (right) which is computed
from T by a single rotation.

In Theorem 2, we show the existence of edge in conv(Ln) when two BST is
transformed by a single rotation.

Corollary 2 There is one to one correspondence between Ln and vertex of Kn−1.
Moreover, conv(Ln) contains all edges of Kn−1.

[Remark] Some edges of conv(Ln) are characterized by associahedron. Since
C3 is equal to 5, K2 and conv(L3) have five vertices. While K2 is hexagon, conv(L3)
has more two edges (see Figure 1 (right)). So, the edges of Kn−1 is proper subset
of the edges of conv(Ln).

4.2 Triangulation of polygon

In this subsection, we describe a relation between triangulation of polygon and
BST. It is well-known that there exists one to one correspondence between trian-
gulation of (n+2)-gon and binary tree with n nodes. Rotation is a transformation
among two BSTs. There is also diagonal flip in triangulation of (n+2)-gon. In [6],
the one-to-one correspondence between rotation and diagonal flip was shown. In
other words, the traversing among BSTs by rotation is equivalent to the traversing
among triangulations by diagonal flip.

We show that an optimal weight of a BST is computed from the area of cor-
responding triangulation such that BST with the weight is optimal. A BST and
corresponding triangulation are fixed. Each triangle is labeled by the index of node
of the BST.

Consider the weight in Algorithm 3. When root node has W (1 − 1
n2) and its

child has at most W
n2 for any subtree, the BST is optimal. Let ai and aj be parent

and child in the BST and their weights be wi, wj , respectively. If the pair of wi

264 International Symposium on OR and Its Applications 2005

and wj satisfies

wi/wj ≥
1− 1/n2

1/n2
= n2 − 1,

then ai becomes the root node in the subtree. When all pair of parent and child
satisfy this condition, the BST with the weight is optimal.

Let si, sj be normalized area of triangle in the triangulation such that 0 < si < 1
and

∑

i si = 1 where si, sj correspond to nodes ai, aj, respectively.
Constant integers Kij and K are defined by:

Kij =

⌊

log si − log(n2 − 1)

log sj

⌋

,

K = max
any pair(ai,aj)

Kij .

For any pair of parent and child, the following relation is shown:

si/(sj)
K ≥ n2 − 1.

Thus the BST under (s1
Kl1 , s2

Kl2 , . . . , sn
Kln) is optimal where li is level of node

ai.

5 Conclusion

In this paper optimal regions of binary search trees are dealt with. We state
about generation of optimal regions, properties and relation with associahedron and
triangulation. The generation of optimal regions needs two steps: (1) computation
of all level vector with n nodes; (2) construction of convex hull of all level vectors.
All level vector are expressed by shared generation tree with O(n2) memory and

O(n2) time. And the program generate all optimal regions in O(C
⌊n/2⌋
n) time.

Time complexity per an optimal region is O(C
⌊n/2⌋−1
n).

We show that every optimal region is non-empty and convex. The result is
equivalent to that all level vectors are vertices of the convex hull. Adjacency of
two regions are also showed: if two trees are transformed to each other by a single
rotation, their optimal regions share a facet. In the convex hull their level vectors
are connected by an edge.

Two related topics are described in Section 4. The first is the relation with
associahedron. The convex hull of level vectors has the same number of vertexes
and strictly contains all edges of associahedron(see Figure 1 (right) and Figure
5). The adjacency is not completely characterized by only single rotation. It
is interesting problem to consider sufficient and necessary condition of adjacency
among two optimal regions.

Triangulation of polygon is also related with the optimal regions. In this paper
we show that computability of an optimal weight from a given triangulation. The
weight depends on the pair of nodes ai and aj . So, the constant Ki,j is also depends

Optimal Region for Binary Search Tree, Rotation and Polytope 265

on corresponding weights si, sj . If the number K in Section 4.2 is used, then
optimal weight for a given BST can be computed from corresponding triangulation
of a polygon and K.

References

[1] H. Edelsbrunner : Algorithms in Combinatorial Geometry, Springer-Verlag,
Berlin, 1987.

[2] D. Eppsitein: Finding the k shortest paths. SIAM Journal of Computing, Vol.
28, 1998, pp.652-673.

[3] D.E. Knuth: The Art of Computer Programming, Vol. 1, Third Edition,
Addison-Wesley, 1997.

[4] D.E. Knuth: The Art of Computer Programming, Vol. 3, Second Edition,
Addison-Wesley, 1998.

[5] R. Sedgewick, P. Flajolet: An Introduction to the Analysis of Algorithms,
Addison-Wesley, 1996.

[6] D.D. Sleator, R.E. Tarjan and W.P. Thurston: Rotation Distance, Triangula-
tions, and Hyperbolic Geometry, Proceedings of the Eighteenth Annual ACM
Symposium on the Theory of Computing, 1986, pp.122 - 135.

[7] R. P. Stanley: Enumerative Combinatorics, Vol. 2, Cambridge University
Press, 1999.

[8] G. M. Ziegler: Lectures on Polytope, Springer-Verlag, 1995.

266 International Symposium on OR and Its Applications 2005

