
Reduction and Exact Algorithms for the

Disjunctively Constrained

Knapsack Problem

Aminto Senisuka∗ Byungjun You† Takeo Yamada‡

Department of Computer Science

The National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

Abstract We are concerned with a variation of the knapsack problem (KP),
where some items are incompatible with some others. As in ordinary KPs, each
item is associated with profit and weight, we have a knapsack of a fixed capacity,
and the problem is to determine the set of items to be packed into the knapsack.
However, the knapsack is not allowed to include incompatible pairs of items. The
knapsack problem with these additional constraints is referred to as the disjunctively
constrained knapsack problem (DCKP). We present an algorithm to solve this prob-
lem to optimality by combining the Lagrangian relaxation with the pegging test for
ordinary KPs. The developed algorithm solves DCKPs with several thousands of
items within a reasonable computing time.

1 Introduction

We are concerned with a variation of the knapsack problem (KP) [11, 8], where
some items are incompatible with some others. As in ordinary KPs, we have n
items to be packed into a knapsack of capacity c. Let wj and pj denote the weight
and profit of the jth item respectively. Without much loss of generality we assume
the following.

A1 : Problem data wj , pj (j = 1, . . . , n) and c are all positive integers.

A2 :
∑n

j=1 wj > c and ∀wj ≤ c.

A3 : Items are arranged in non-increasing order of profit per weight, i.e.,

p1/w1 ≥ p2/w2 ≥ . . . ≥ pn/wn. (1)

∗Currently with Indonesian Air Force
†Currently with The Republic of Korea Navy
‡Corresponding author: yamada@nda.ac.jp

241

In addition, let E ⊆ {(i, j) | 1 ≤ i 6= j ≤ n} denote the set of incompatible
pairs, and m := |E| is the number of such pairs. That is, if (i, j) ∈ E items i
and j are not allowed to be included in the knapsack simultaneously. This relation
is assumed to be reflective, i.e., (i, j) ∈ E ⇔ (j, i) ∈ E. We call this disjunctive
constraint, and the knapsack problem with these additional constraints is referred
to as the disjunctively constrained knapsack problem (DCKP) [15, 6].

The problem is to fill the knapsack with items such that the capacity and
disjunctive constraints are all satisfied and the total profit of items in the knapsack
is maximized. Let xj be the decision variable such that xj = 1 if item j is included
in the knapsack, and xj = 0 otherwise. Then, mathematically the problem is
formulated as the following 0-1 programming problem.

DCKP:

maximize z(x) :=

n
∑

j=1

pjxj (2)

subject to
n

∑

j=1

wjxj ≤ c, (3)

xi + xj ≤ 1, ∀(i, j) ∈ E, (4)

xj ∈ {0, 1}, j = 1, . . . , n. (5)

Here by X we denote the set of all feasible solutions, and z(x) is the objective
value for x ∈ X . Throughout the paper x⋆ denotes an optimal solution with the
corresponding optimal objective value z⋆ := z(x⋆). DCKP is NP-hard [7], since
for E = ∅ it reduces to KP which is already NP-hard.

DCKP may be solved using any free or commercial integer programming pack-
age such as LINDO, CPLEX and so on [4], but to obtain an optimal solution
within reasonable computing time, instances must be of a limited size. DCKP was
formulated by Yamada et al. [15], where they solved the problem with upto 2000
items by an implicit enumeration algorithm. In this paper we solve much larger
instances by combining the Lagrangian relaxation [13, 14, 11] with the pegging test
for ordinary KPs [2, 3, 7] to reduce the size of the problem significantly. Even if the
original problem is difficult to solve by the above mentioned solvers, the reduced
problem is often tractable by such a software.

2 Upper and lower bounds

In this section we derive an upper bound to DCKP by applying the Lagrangian
relaxation [13], and then obtain a lower bound based on a local search method [1]
to find an approximate solution.

242 International Symposium on OR and Its Applications 2005

2.1 Lagrangian relaxation

An upper bound to DCKP is obtained by solving the following Lagrangian
relaxation problem.

LDCKP(λ):

maximize L :=
n

∑

j=1

pjxj +
∑

(i,j)∈E

λij(1 − xi − xj) (6)

subject to

n
∑

j=1

wjxj ≤ c, (7)

0 ≤ xj ≤ 1, j = 1, ..., n. (8)

Here, L is the Lagrangian for DCKP, λ = (λij) ∈ Rm
+ , and λij ≥ 0 is the

Lagrange multiplier associated with constraint (4). In addition, let E(j) := {i ∈
N | (i, j) ∈ E} denote the set of items which are incompatible with j. Then, the
objective function L can be rewritten as

L :=

n
∑

j=1

(pj −
∑

i∈E(j)

λij)xj +
∑

(i,j)∈E

λij (9)

Then for a fixed λ ∈ Rm
+ , LDCKP(λ) is a continuous knapsack problem [11]

which is easily solved. Let an optimal solution to this problem be x̄(λ) = (x̄j) with
the optimal objective value z̄(λ). Then, for an arbitrary λ ≥ 0 we have

z⋆ ≤ z̄(λ), (10)

namely, z̄(λ) is an upper bound. The followings are well known [13, 14].

Proposition 1 z̄(λ) is piecewise linear convex function.

Proposition 2 If z(λ) is differentiable at λ,

∂z̄(λ)

∂λij

= 1− xi − xj . (11)

Proposition 3 If x̄(λ) is feasible and

λij(1− x̄i − x̄j) = 0 ∀(i, j) ∈ E (12)

is satisfied, then x̄(λ) is an optimal solution.

2.2 Subgradient method

To make the upper bound z̄(λ) as small as possible, we employ the subgradient
method [13, 14] described below. Here subgradient is the vector ∂z̄(λ)/∂λ whose
element is given by (11).

Algorithms for the Disjunctively Constrained Knapsack Problem 243

Algorithm Subgradient Method

Step 1. Set λ := 0.

Step 2. Solve LDCKP(λ) to obtain x̄(λ) and z̄(λ).

Step 3. Let the direction of movement be d := −∂z̄(λ)/∂λ.

Step 4. (Line search) Find α ≥ 0 such that z̄(λ + αd) is minimized.

Step 5. If (12) is satisfied or α ∼= 0, stop.

Step 6. Update λ←− λ + αd and go to Step 2.

Let λ† be the λ at the termination of the above algorithm, and z̄ := z̄(λ†)
denotes the optimal upper bound to DCKP.

2.3 Lower bounds

Let x† = (x†j) be the solution to LDCKP(λ†). This satisfies the constraint (3).

If, in addition (4) and (5) are also satisfied, x† gives a feasible solution to DCKP,
and thus a lower bound. Even if (4) and/or (5) are not satisfied, we may modify
the solution to obtain a feasible solution. For example, if we have a non-integer
0x†j , we simply put x†j ← 0. If x†j + x†i > 1, again we fix either one of x†i or x†j at 0.
The feasible solution thus obtained is referred to as the Lagrangian solution, and
the corresponding lower bound is denoted as zL.

The Lagrangian solution can be improved by the following greedy algorithm.
Here we examine items, one by one from j = 1 to n, if it is not yet included in the
knapsack and can be accommodated without violating any constraints. If item j
is found acceptable, we simply put it into the knapsack, and repeat this process
for j = 1, . . . , n. The resulting solution is the greedy solution, and zG denotes the
corresponding lower bound.

The greedy solution may further be improve by applying a more sophisticated
local search method. An example is the 2-opt method, which repeat the following
until no improvement of solution is possible any further.

Procedure 2-opt

(i) Look for a pair of items, one inside and the other outside the knapsack,
and see if it is possible to exchange these items without violating any
constraints.

(ii) If this exchange increases the total value of items included in the knap-
sack, swap these items.

We call the resulting solution the 2-opt solution, and the corresponding lower
bound is denoted as z2

244 International Symposium on OR and Its Applications 2005

3 A Pegging Approach

A pegging test is well known for the ordinary 0-1 KPs [7, 3, 2]. By applying this
test, many variables are fixed either at 0 or 1, and the size of such a problem is often
reduced significantly. In this section, we shall demonstrate that similar pegging test
is applicable to DCKPs as well by introducing the Lagrangian relaxation first.

3.1 Pegging test

Assume that we have the optimal Lagrangian multiplier λ†, the corresponding
upper bound z̄ = z̄(λ†), and a lower bound z to DCKP, and let p̄j be as follows.

p̄j := pj −
∑

i∈E(j)

λ†ij (13)

Then, LDCKP(λ†) can be rewritten as

maximize
n

∑

j=1

p̄jxj +
∑

(i,j)∈E

λij (14)

subject to (7) and (8).

For an arbitrary k = 1, . . . , n, let z⋆(xk = δ) denote the optimal objective value
to DCKP with an additional constraint xk = δ, where δ is either 0 or 1. Similarly,
z̄(xk = δ) denote the optimal objective value to LDCKP(λ†) with an additional
constraint xk = δ. Then, for k = 1, . . . , n the followings are obvious.

z⋆ = max{z⋆(xk = 0), z⋆(xk = 1)} (15)

z⋆(xk = δ) ≤ z̄(xk = δ) (16)

Then, if

z̄(xk = 0) < z, (17)

it is not possible that x⋆
k = 0 in any optimal solution x⋆ = (x⋆

j) to DCKP, i.e., x⋆
k

must take x⋆
k = 1. Similarly, in the case that

z̄(xk = 1) < z, (18)

x⋆
k = 0 must follow. This is the basic idea of the pegging test.

To determine (17) and (18), the following method is used to save the amount
of computation. First of all, without loss of generality, we assume the following.

B1 : p̄j > 0, ∀j

B2 : The items are ordered in the non-increasing order of p̄j/wj .

Algorithms for the Disjunctively Constrained Knapsack Problem 245

Let Wj and Pj be, respectively the accumulated weight and profit, i.e.,

Wj :=

j
∑

i=1

wi, Pj :=

j
∑

i=1

p̄i, (19)

where W0 = P0 = 0. Then, {(Wj , Pj) | j = 0, · · · , n} gives a piecewise-linear,
monotonically non-decreasing, concave function [10].

The intersection of this graph with the vertical line W = c gives the upper
bound z̄. The item s satisfying Ws−1 < c ≤ Ws is said to be the critical item.
Here, if for any k < s we set xk = 0, it is known that

z̄(xk = 0) ≤ z̄ − θk, (20)

where we define

θk := p̄k − rswk. (21)

Then, if

z̄ − z < θk, (22)

from (20) we have z̄(xk = 0) < z, and thus x⋆
k = 1. By similar argument, if

z̄ − z < −θk (23)

for any k > s, we obtain x⋆
k = 0. Thus we have the following.

Theorem 1 For any optimal solution x⋆ = (x⋆
j) of DCKP, both of the followings

hold true.

(i) z̄ − z < θk ⇒ x⋆
k = 1,

(ii) z̄ − z < −θk ⇒ x⋆
k = 0.

3.2 A pegging algorithm

Now we can solve DCKPs in the following way.

Algorithm Pegging Test

Step 1. Compute the upper and lower bounds by the Lagrangian relaxation
and local search methods.

Step 2. Reduce the problem size by applying Theorem 1.

Step 3. Solve the reduced problem using an IP solver, e.g., NUOPT [12].

246 International Symposium on OR and Its Applications 2005

4 Numerical experiments

In this section we evaluate the performance of the pegging approach to DCKP.
We implemented the algorithm of the previous section in C language and conducted
some numerical experiments on an IBM RS/6000 Model 270 workstation (CPU :
POWER3-II SMP 2way, 375MHz).

4.1 Experimental design

The number of items n is set between 1000 and 16000, and the correlation type
between weights and profits are assumed as the following.

• UNCOR
wj : Uniformly random over [1, 1000],
pj : Uniformly random over [1, 1000]; independent of wj .

• WEAK
wj : Uniformly random over [1, 1000],
pj : Uniformly random over [wj , wj +200].

The capacity of the knapsack is set to c = 250n. This means that approximately
a half of all the items can be accommodated into the knapsack, since the average
weight of items is approximately 500. ¿From n(n − 1)/2 possible pairs of items,
disjunctive constraints are generated randomly with probability d/(n−1), where d
is the parameter that controls the density of constraints in the following way. That
is, from this probability, the average number of disjunctive constraints is nd/2. We
examined the cases of d = 0.1, 0.2 and 0.4.

4.2 Upper and lower bounds

Tables 4.1 and 4.2 give an overview of computation of upper and lower bounds.
Here shown are d, n, m and the Lagrangian upper bound z̄L with the corresponding
CPU time in seconds. For the columns of ‘Greedy LB’ and ‘2-opt LB’, ‘gap’ shows
the the gap between z̄L and respective lower bounds, and each row is the average
of 10 independent runs.

From these tables, we observe the followings.

1. Computation time for the Lagrangian upper bound increases with the in-
crease of either n or d, but it is rather insensitive to the correlation type
(UNCOR/WEAK) of problems.

2. Gaps remain almost the same in Greedy and 2-opt lower bounds, but in CPU
time the former overperforms the latter.

3. In Greedy method, as d increases, CPU times are almost constant but gaps
deteriorate significantly. Gaps are usually smaller in WEAK instances.

From this result, we employ the Greedy method for the computation of lower
bounds in the later experiments.

Algorithms for the Disjunctively Constrained Knapsack Problem 247

Table 4.1 Upper and lower bounds (UNCOR).

d n m
Lagrange UB Greedy LB 2-opt LB

zL CPU gap CPU gap CPU

0.1 1000 48.9 398721.9 0.1 30.4 0.0 28.5 0.1

2000 96.9 802688.5 0.4 21.3 0.0 18.9 1.1

4000 199.5 1601207.5 0.9 42.8 0.0 40.9 8.7

8000 403.8 3196945.2 2.7 8.5 0.1 7.3 71.2

16000 802.6 6394867.3 8.1 90.8 0.5 90.5 544.6

0.2 1000 99.0 394132.6 0.2 55.4 0.0 49.7 0.1

2000 197.0 794909.3 0.5 24.6 0.0 22.5 1.2

4000 394.3 1584789.9 1.5 45.1 0.0 43.1 8.7

8000 805.0 3162459.6 4.0 34.3 0.1 32.8 71.9

16000 1598.4 6328402.4 11.3 25.9 0.5 24.8 754.0

0.4 1000 198.9 386437.4 0.3 84.7 0.0 82.9 0.1

2000 396.5 778653.3 0.8 86.0 0.0 83.3 1.3

4000 792.1 1553682.9 2.2 85.5 0.0 84.3 7.7

8000 1605.6 3097011.0 9.8 258.2 0.1 238.2 76.5

16000 3215.3 6199034.2 30.6 430.4 0.5 429.4 798.6

Table 4.2 Upper and lower bounds (WEAK).

d n m
Lagrange UB Greedy LB 2-opt LB

zL CPU gap CPU gap CPU

0.1 1000 48.9 329563.6 0.1 21.3 0.0 18.2 1.0

2000 96.9 660578.6 0.3 18.0 0.0 15.5 8.7

4000 199.5 1320306.8 0.7 15.6 0.0 11.1 55.9

8000 403.8 2640457.7 2.0 14.4 0.1 12.2 462.4

16000 802.6 5280144.6 4.8 8.8 0.5 6.2 20330.0

0.2 1000 99.0 328703.7 0.2 42.0 0.0 28.0 0.9

2000 197.0 659140.0 0.4 28.2 0.0 24.4 10.7

4000 394.3 1316941.0 1.1 30.6 0.0 29.3 49.9

8000 805.0 2633633.5 2.9 29.7 0.1 27.1 440.6

16000 1598.4 5266806.6 9.9 85.3 0.5 83.2 17081.7

0.4 1000 198.9 327089.9 0.3 53.3 0.0 47.6 1.1

2000 396.5 655981.1 0.6 43.2 0.0 39.3 8.5

4000 792.1 1310745.1 1.8 30.6 0.0 28.3 48.8

8000 1605.6 2620504.0 6.0 88.5 0.1 85.6 417.9

16000 3215.3 5241053.9 15.1 106.5 0.6 105.0 14454.5

4.3 Exact solution by NUOPT

We now turn to exact methods. First of all, in Table 4.3 we give the result ob-
tained by NUOPT [12], which is a commercial MP solver produced by a Japanese
vendor, and is considered competitive to such popular solvers as LINDO, CPLEX,
etc [4]. Here shown are, in addition to d and n, the number of subproblems (♯subp)
generated by the branch and bound procedure within NUOPT, CPU time in sec-
onds, and the number of solved problems (#solvd) out of 10 randomly generated

248 International Symposium on OR and Its Applications 2005

UNCOR and WEAK instances. Each row is the average over the solved cases, and
dash (-) means that non of the instances were solved to optimality due to time
limit of 3600 CPU seconds or insufficient computer memory. From this table we
observe that the problem becomes hard to solve by NUOPT for the problem with
n ≥ 8000. Increase of d, and hence the number of disjunctive constraints (m) also
makes problem harder.

Table 4.3 Direct solution using NUOPT (UNCOR).

d n
UNCOR WEAK

#subp CPU #solvd #subp CPU #solvd

0.1 1000 2081.3 8.8 10 2956.5 8.9 10

2000 1718.7 17.5 10 5451.7 36.7 10

4000 3022.0 57.4 10 9697.4 95.3 10

8000 2614.6 162.5 6 107476.2 1306.2 9

16000 4871.2 588.0 7 2299.0 178.4 4

0.2 1000 2014.0 9.6 10 2349.8 8.3 10

2000 2228.1 25.0 10 5363.5 38.5 10

4000 3191.8 83.4 9 9399.6 129.7 10

8000 4717.1 223.9 7 36909.5 615.3 7

16000 3595.4 600.6 7 68886.6 2427.4 3

0.4 1000 1362.1 9.1 10 4258.2 20.0 9

2000 2347.4 26.6 10 4178.1 53.3 10

4000 2161.2 88.1 9 7334.1 142.8 9

8000 1946.0 179.2 9 38197.4 693.6 7

16000 2304.6 427.2 3 -

4.4 Exact solution by the pegging algorithm

Tables 4.4 and 4.5 summerize the result of the pegging approach to UNCOR
and WEAK instances respectively. Here shown are the sizes of the reduced problem
(n′, m′), the rate of reduction (reduc.) defined by

reduc. :=
√

n′m′/nm, (24)

and CPU times in seconds. These show, respectively, the computing time for
the Lagrangian relaxation + Greedy + pegging (CPUP), the time to solve the
reduced problem using NUOPT (CPUN), and the total CPU time to solve DCKP
completely this way (CPUT = CPUP + CPUN). Again, ‘#solvd’ is the number
of solved instances out of 10 randomly generated instances, and each row is the
average over the solved instances. From these tables, we observe the followings.

1. Larger instances are solved by this method in considerably smaller computa-
tion time than by the direct use of NUOPT.

2. As n increases, pegging becomes less effective and both of the computing time
CPUP and CPUN increase. The former is smaller than the latter, especially
in WEAK case.

Algorithms for the Disjunctively Constrained Knapsack Problem 249

3. Reduction rate (reduc.) is better in UNCOR than in WEAK instances, and
thus the former is easier to solve. This is in accordance with the general
tendency in ordinary KPs.

Table 4.4 Solution by the pegging algorithm (UNCOR).
d n n

′
m

′ reduc. CPUP CPUN CPUT #solvd

0.1 1000 66.0 2.7 0.05 0.1 0.3 0.5 10

2000 92.0 3.9 0.06 0.4 0.2 0.6 10

4000 326.5 13.9 0.14 0.9 2.6 3.5 10

8000 150.2 6.1 0.05 2.8 1.2 4.0 10

16000 2432.6 119.3 0.60 8.5 80.2 88.6 10

0.2 1000 115.6 8.5 0.10 0.2 0.5 0.7 10

2000 105.1 5.8 0.04 0.5 0.6 1.1 10

4000 385.3 31.0 0.09 1.5 4.1 5.6 10

8000 566.6 48.6 0.06 4.1 15.6 19.7 10

16000 885.6 66.8 0.05 11.8 18.2 30.0 10

0.4 1000 164.6 27.2 0.15 0.3 1.6 1.9 10

2000 302.5 91.7 0.16 0.9 5.5 6.3 10

4000 696.7 121.1 0.16 2.2 18.4 20.6 10

8000 3236.2 621.7 0.40 9.9 59.5 69.5 10

16000 8935.4 1728.7 0.55 31.2 111.4 141.7 6

Table 4.5 Solution by the pegging algorithm (WEAK).
d n n

′
m

′ reduc. CPUP CPUN CPUT #solvd

0.1 1000 211.4 7.8 0.18 0.1 1.6 1.7 10

2000 356.4 15.0 0.16 0.3 4.1 4.3 10

4000 627.1 23.1 0.13 0.8 18.6 19.4 10

8000 1162.8 48.3 0.13 2.1 196.0 198.1 10

16000 1158.9 43.0 0.06 5.4 539.2 544.6 7

0.2 1000 391.2 34.2 0.37 0.2 3.2 3.3 10

2000 537.8 45.6 0.25 0.4 7.0 7.4 10

4000 1104.0 98.6 0.26 1.2 26.8 27.9 10

8000 241.6 203.9 0.27 3.2 118.3 121.5 10

16000 8737.2 857.9 0.54 10.5 135.5 141.8 4

0.4 1000 394.5 68.7 0.43 0.3 6.4 7.2 9

2000 785.0 137.8 0.37 0.6 8.8 9.3 10

4000 1150.7 196.7 0.27 1.9 33.5 35.4 10

8000 5577.5 1101.3 0.69 6.2 185.0 191.1 7

16000 9308.5 1819.7 0.57 17.3 507.5 524.8 1

5 Virtual Pegging Test

The effect of the pegging test of Section 3depends on the gap between the upper
and lower bounds. If the gap is not small enough, the effectiveness of the previous
method will be limited, since the size of the problem will not be reduced much in

250 International Symposium on OR and Its Applications 2005

such a case. In the present section, we introduce the virtual pegging test in order
to cope with this problem.

5.1 The principle

In the pegging test, we input an upper bound z̄, and a lower bound z to the
reduction algorithm Pegging Test, and partition the original problem into a fixed
part and the remaining reduced problem. Of course, upper and lower bounds satisfy

z ≤ z⋆ ≤ z̄. (25)

However, we may carry out the pegging test with an arbitrary value l within [z̄, z]
as an assumed lower bound. Such a hypothetical lower bound is referred to as a
trial value. By carrying out the pegging test using z̄ and l, some xj ’s will be fixed
either at 0 or 1. But it is not guaranteed that this pegging is correct because l
is not necessarily a true lower bound. Let the index sets of variables, which are
(virtually) fixed at 0 and 1 in this procedure, be F0(l) and F1(l) respectively. Then,
we have the following reduced problem.

R(l):

maximize
n

∑

i=1

pixi (26)

subject to x ∈ X, (27)

xi = 1, i ∈ F1(l), (28)

xi = 0, i ∈ F0(l) (29)

The optimal objective value to this problem will be denoted as z⋆
l , and is referred

to as the realized value for l. If R(l) is infeasible, we define z⋆
l := −∞. Then, we

have

Theorem 2

(i) l ≤ z⋆ ⇒ z⋆
l = z⋆,

(ii) l > z⋆ ⇒ z⋆
l ≤ z⋆,

(iii) l ≤ l′ ⇒ z⋆
l ≥ z⋆

l′ ,

(iv) l ≤ z⋆
l ⇒ z⋆

l = z⋆.

Proof: (i) If l ≤ z⋆, l is actually a lower bound; thus the pegging test works
correctly and finds the optimal value z⋆. (ii) Note that for an arbitrary l ≤ z̄
R(l) is DCKP with additional constraints (28) and (29). Thus, by definition, the
optimal objective values satisfy this relation. (iii) As we apply Theorem 1 with gap
:= z̄ − l, we note that the more variables are fixed either at 1 or 0 as we have the
larger l (and thus a smaller gap); i.e., for l ≤ l′ we have Fδ(l) ⊆ Fδ(l

′) (δ = 0, 1).

Algorithms for the Disjunctively Constrained Knapsack Problem 251

From this, the above relation is straightforward. (iv) This is a consequence of (i) -
(iii).

As an immediate consequence of (iii), if R(l) is infeasible and l ≤ l′(≤ z̄), then
R(l′) is also infeasible for any l′ ≥ l.

5.2 A virtual pegging algorithm

At an arbitrary trial value l, after carrying out the virtual pegging test and
solving the reduced problem R(l), we obtain the realised value z⋆

l . Then, if (iv) is
satisfied in Theorem 2, the problem is solved. In addition, if gap := z̄ − l is small,
it is probable that R(l) is much smaller than the original in size. We may solve the
reduced problem easily using, e.g., NUOPT. We propose the following algorithm
including the measures for the case where (iv) is not satisfied.

Algorithm Virtual Pegging Test

Step 1. l← max{z̄ − α, z}

Step 2. Apply Pegging Test with the trial value l, solve R(l) and obtain z⋆
l

Step 3. If l ≤ z⋆
l , go to Step 5.

Step 4. Update parameters by α← α/2 and l ← l− α, and go to Step 2.

Step 5. An optimal solution is obtained with z⋆ = z⋆
l .

Here, α is an arbitrary ‘small’ value. In our numerical experiment, we set this
as α := (z̄ − z)/2, and the trial value is initially set at l := z̄ − α. If the optimal
value is not obtained in step 3, we halve α and reducel by α, and repeat Steps 2 -
4 until the optimal solution is found.

5.3 Numerical test

Tables 5.1 and 5.2 show the results of numerical experiment for the virtual
pegging method, where d = 0.05, 0.1, 0.2 and n = 16000, 32000, 64000 are tried.
Direct application of NUOPT seldom solves problems, and even when successful,
it is usually time consuming. By the virtual pegging approach, we are able to solve
many instances of this range, usually in much smaller computing time.

In all cases solved, we had to repeat Steps 2 through 4 only once, and the
reduction ratio (reduc.) is substantially smaller in these cases than those by plain
pegging test shown in Tables 4.4 and 4.5. Thus, the virtual pegging approach works
favorably for the instances of this size. Again, WEAK cases are harder to solve
than the UNCOR instances.

Table 5.1 Virtual pegging algorithm vs. NUOPT (UNCOR).

252 International Symposium on OR and Its Applications 2005

d n m
Virtual Pegging NUOPT

reduc. CPU #solvd CPU #solvd

0.05 16000 408.5 0.006 9.1 10 688.7 7

32000 801.2 0.006 24.6 10 1122.3 4

64000 1582.8 0.005 600.0 9 1760.5 2

0.10 16000 802.6 0.083 50.0 10 588.6 7

32000 1605.0 0.016 41.2 10 137.2 1

64000 3182.3 0.030 372.0 8 1760.9 2

0.20 16000 802.6 0.025 21.7 10 607.8 7

32000 1605.0 0.097 165.1 10 -

64000 3182.3 0.016 746.5 7 -

Table 5.2 Virtual pegging algorithm vs. NUOPT (WEAK).

d n m
Virtual Pegging NUOPT

reduc. CPU #solvd CPU #solvd

0.05 16000 408.5 0.029 299.3 9 1592.4 4

32000 801.2 0.022 213.2 4 -

64000 1582.8 0.006 488.1 1 -

0.10 16000 802.6 0.032 361.8 7 178.5 3

32000 1605.0 0.109 707.5 5 1369.0 3

64000 3182.3 0.060 59.5 1 -

0.20 16000 802.6 0.091 71.6 4 1781.0 2

32000 1605.0 0.052 615.9 2 -

64000 3182.3 0.128 718.1 1 -

6 Conclusion

Knapsack problem with disjunctive constraints was solved by applying the peg-
ging test combined with the Lagrangian relaxation. We were able to solve larger
problems than using a commercial software directly in considerably smaller com-
puting time.

To solve yet larger problems exactly, we need to explore the methods to obtain
more strict upper and lower bounds, as well as the specialized algorithms to solve
the reduced problem more efficiently. These are left for future work.

References

[1] Aarts, E. and Lenstra, J. K. (eds.), Local Search in Combinatorial Optimiza-
tion, John Wiley & Sons, Chichester, England (1997).

[2] Dembo, R. S. and Hammer, P. L., “A reduction algorithm for knapsack prob-
lems”, Methods of Operations Research, 36, 49-60, 1980.

Algorithms for the Disjunctively Constrained Knapsack Problem 253

[3] Fayard, D. and Plateau, G., “Resolution of the 0-1 knapsack problem: com-
parison of methods ”, Mathematical Programming, 8, 272-307, 1975.

[4] Fourer, R., “Software Survey: Linear Programming”, OR/MS Today, 26,
64-71 (1999).

[5] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman and Company, New York, 1979.

[6] Hifi, M. and Michrafy, M., “A reactive local search-based algorithm for the
disjunctively constrained knapsack problem”, LaRIA, Univ. Paris, Working
paper, 2004.

[7] Ingargiola, G. P and Korsh, J. F., “A reduction algorithm for zero-one single
knapsack problem”, Management science, 20, 460-463, 1973.

[8] Kellerer, H., Pferschy, U. and Pisinger, D., Knapsack Problems, Springer Ver-
lag, Berlin, 2004.

[9] Konno, H. and Suzuki, H. (Eds), Integer Programming and Combinatorial
Optimization (in Japanese), Nikka Giren, Tokyo, 1982.

[10] Kuno, T., Konno, H. and Zemel, E., “A linear-time algorithm for solving con-
tinuous maximin knapsack problems”, Operations Research Letters, 10, 23-26
(1991).

[11] Martello, S. and Toth, P., Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons, Chichester, 1990.

[12] Mathematical Systems Incorporated, NUOPT manual, 2002. URL:
http://www.msi.co.jp/nuopt

[13] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial Optimization,
John Wiley & Sons, New York, 1988.

[14] Wolsey, L. A., Integer Programming, John Wiley & Sons, New York, 1998.

[15] Yamada, T. Kataoka, S. and Watanabe, K., “Heuristic and exact algorithms
for disjunctively constrained knapsack problem”, IPS Journal, 43, 2864-2870,
2002.

254 International Symposium on OR and Its Applications 2005

