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Abstract In this paper, we propose a sampler for the product-form solution
of basic queueing networks, closed Jackson networks with single servers. Our ap-
proach is sampling via Markov chain, but it is NOT a simulation of behavior of
customers in queueing networks. We propose a new ergodic Markov chain whose
unique stationary distribution is the product form solution of a closed Jackson
Network, thus we can sample from the product form solution without knowing the
value of its normalizing constant. The sampler is based on monotone Coupling
from the Past (monotone CFTP) and realizes the sampling from the target distri-
bution exactly. We show that the chain is monotone and rapidly mixing, and that
the expected running time of the sampling algorithm is O(n3 ln(Kn)) where n is
the number of nodes in the network and K is the number of customers.

1 Introduction

The Jackson network is proposed by Jackson in 1957 [14], and is one of the
basic and significant models in queueing network theory. The Jackson network
consists of some nodes, each of which has one or more servers. In the network, a
customer receives a service by a server on a node according to the exponentially
distributed service time, moves stochastically to a next node after the service, and
waits one’s turn in a line on first-come-first-served (FCFS) basis. It is well known
that the steady-state distribution of customers in a Jackson network is a product
form [14, 12, 11].

We say a network is closed if no customers leave or enter the network. By
computing the normalizing constant of the product form solution of a given closed
queueing network, we can obtain significant evaluated value like as throughput,
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rates of utilization of stations, and so on [11]. There is well-known Buzen’s algo-
rithm [5], which computes the normalizing constant of closed queueing networks.
However the running time of Buzen’s algorithm is pseudo-polynomial time that
depends on the number of customers in a closed network.

One of hopeful efficient approximations is randomized algorithm. In particular,
MCMC (Markov chain Monte Carlo) is useful and practically used for computing
a normalizing constant of a distribution. It is important to discuss the conver-
gence speed of Markov chain for an efficient algorithm based on MCMC. Chen and
O’Cinneide [7] proposed a randomized algorithm based on MCMC, but their algo-
rithm is weakly polynomial-time in some very special cases. Ozawa [22] proposed a
perfect sampler for closed Jackson networks with single servers, however his chain
mixes in pseudo-polynomial-time.

In many practical situations, each node of a network has a single server. In
this paper, we are concerned with a closed Jackson network with single servers.
We propose a Markov chain and show that the chain is monotone and rapidly
O(n3 ln(Kn)) mixing, where n is the number of nodes and K is the number of
customers in a closed Jackson network. Here we note that the chain is not a simu-
lation of customer’s move in a queueing network, but just have a unique stationary
distribution which is the same as the product form solution for a given network.

An ordinary sampling via Markov chain is an approximate sampler, whereas
Propp and Wilson devised monotone CFTP (Coupling from the Past) algorithm
which realizes a perfect (exact) sampling from stationary distribution in probabilis-
tically finite time by ingeniously simulating the chain [23]. Thus our chain provides
an efficient perfect sampler based on monotone CFTP. One of the great advantages
of perfect sampling is that we never need to determine the error rate ε when to use.
Another is that a perfect sampler becomes faster than any approximate sampler
based on a Markov chain when we need a sample according to highly accurate
distribution.

There are two benefits at least, if we have a fast sampler. One is that we may
design a fast randomized algorithms for computing normalizing constant, and so for
throughput. Actually, we can design a polynomial-time randomized approximation
scheme, though we will not deal with it in this paper. The other is that a fast
sampler finds a state with respect to the steady-state distribution of networks,
thus we can use it as an initial state of a simulation of behavior of customers.

2 Preliminaries

2.1 Product-form Solution

We denote the set of real numbers (non-negative, positive real numbers) by R

(R+, R++), and the set of integers (non-negative, positive integers) by Z (Z+, Z++),
respectively. A closed Jackson network is a queueing network model satisfying the
followings;
(i) The network has n ∈ Z++ nodes. Each node contains exactly one server, thus
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at most one customer can receive a service on a node at a time.
(ii) In each node, customers are served one by one on first-come-first-served (FCFS)
basis. The servicing time on node i ∈ {1, . . . , n} is exponentially distributed with
mean 1/µi.
(iii) Once served in node i ∈ {1, . . . , n}, a customer goes to node j ∈ {1, . . . , n}
with probability Wij ∈ R+. We assume that the matrix W = (Wij) of transition
probability of customers is irreducible and aperiodic, so ergodic.
(iv) No customers leave or enter the network. Thus, there are always K ∈ Z++

customers in the network.
In queueing network theory, it is well known that a closed Jackson network has

a product form solution as a steady state distribution of customers in a network.
Let us consider the set of non-negative integer points

Ξ
def.
=
{

x = (x1, x2, . . . , xn) ∈ Z
n
+ |
∑n

i=1 xi = K
}

,

in an n− 1 dimensional simplex. Clearly, a state of customers in the network with
K customers is represented by x = (x1, x2, . . . , xn) ∈ Ξ. Since matrix W of the
transition probability of customers is ergodic, 1 is an eigenvalue and corresponding
eigenvector is unique, excluding constant factor. Let θ ∈ R

n
++ be an eigenvector

for W with corresponding to the eigenvalue 1, i.e., θW = θ. The steady-state
distribution J : Ξ → R++ for the closed Jackson network is product form defined
by

J(x) =
1

G

n
∏

i=1

αxi

i

(

≡
1

G

n
∏

i=1

(

θi

µi

)xi

)

(1)

where αi
def.
= θi/µi and G

def.
=
∑

x∈Ξ

∏n

i=1 αxi

i is the normalizing constant [14].

2.2 Monotone Coupling from the Past

Here we review CFTP briefly. Suppose that we have an ergodic Markov chain
M with a finite state space Ω and a transition matrix P . The transition rule of
the Markov chain X 7→ X ′ can be described by a deterministic function φ : Ω×
[0, 1) → Ω, called update function, as follows. Given a random number Λ uniformly
distributed over [0, 1), update function φ satisfies that Pr(φ(x, Λ) = y) = P (x, y)
for any x, y ∈ Ω. We can realize the Markov chain by setting X ′ = φ(X, Λ). Clearly,
update functions corresponding to the given transition matrix P are not unique.
The result of transitions of the chain from the time t1 to t2 (t1 < t2) with a sequence
of random numbers λ = (λ[t1], λ[t1 + 1], . . . , λ[t2 − 1]) ∈ [0, 1)t2−t1 is denoted by

Φt2
t1

(x, λ) : Ω × [0, 1)t2−t1 → Ω where Φt2
t1

(x, λ)
def.
= φ(φ(· · · (φ(x, λ[t1]), . . . , λ[t2 −

2]), λ[t2−1]). We say that a sequence λ ∈ [0, 1)|T | satisfies the coalescence condition,
when ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0

T (x, λ).
Suppose that there exists a partial order “�” on the set of states Ω. A transi-

tion rule expressed by a deterministic update function φ is called monotone (with
respect to “�”) if ∀λ ∈ [0, 1), ∀x, ∀y ∈ Ω, x � y ⇒ φ(x, λ) � φ(y, λ). We also say
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that a chain is monotone if the chain has a monotone update function. Here we
suppose that there exists a unique pair of states (xmax, xmin) in partially ordered
set (Ω,�), satisfying xmax � x � xmin, ∀x ∈ Ω.

With these preparations, a standard monotone Coupling From The Past algo-
rithm is expressed as follows.

Algorithm 1 (Monotone CFTP Algorithm [23])

Step 1. Set the starting time period T := −1 to go back, and set λ be the empty
sequence.

Step 2. Generate random real numbers λ[T ], λ[T + 1], . . . , λ[⌈T/2⌉ − 1] ∈ [0, 1),
and insert them to the head of λ in order, i.e., put λ := (λ[T ], λ[T +1], . . . , λ[−1]).

Step 3. Start two chains from xmax and xmin, respectively, at time period T ,
and run each chain to time period 0 according to the update function φ with
the sequence of numbers in λ. (Here we note that every chain uses the common
sequence λ.)

Step 4. [ Coalescence check ] The state obtained at time period 0 is denoted by
Φ0

T (x, λ).
(a) If ∃y ∈ Ω, y = Φ0

T (xmax, λ) = Φ0
T (xmin, λ), then return y.

(b) Else, update the starting time period T := 2T , and go to Step 2.

Theorem 2.1 (Monotone CFTP Theorem [23]) Suppose that a Markov chain de-
fined by an update function φ is monotone with respect to a partially ordered set
of states (Ω,�), and ∃xmax, ∃xmin ∈ Ω, ∀x ∈ Ω, xmax � x � xmin. Then the
monotone CFTP algorithm (Algorithm 1) terminates with probability 1, and ob-
tained value is a realization of a random variable exactly distributed according to
the stationary distribution. �

Theorem 2.1 gives a (probabilistically) finite time algorithm for infinite time sim-
ulation.

2.3 Path Coupling

Given a pair of probability distributions ν1 and ν2 on a finite state space

Ω, the total variation distance between ν1 and ν2 is defined by dTV(ν1, ν2)
def.
=

1
2

∑

x∈Ω |ν1(x) − ν2(x)|. The mixing rate of an ergodic Markov chain is defined

by τ
def.
= maxx∈Ξ{min{t | ∀s ≥ t, dTV(π, P s

x ) ≤ 1/e}} where π is the stationary
distribution and P s

x is the probability distribution of the chain at time period s ≥ 0
with initial state x at time period 0.

The Path Coupling Theorem proposed by Bubbly and Dyer is a useful technique
for bounding the mixing rate.

Theorem 2.2 (Path Coupling Theorem [4]) Let M be a finite ergodic Markov
chain with state space Ω. Let H = (Ω, E) be a connected undirected graph with

vertex set Ω and edge set E ⊆

(

Ω

2

)

. Let l : E → R++ be a positive length defined
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on the edge set. For any pair of vertices {x, y} of H, the distance between x and y,
denoted by d(x, y) and/or d(y,x), is the length of a shortest path between x and y,
where the length of a path is the sum of the lengths of edges in the path. Suppose that
there exists a joint process (X, Y ) 7→ (X ′, Y ′) with respect to M whose marginals
are a faithful copy of M and satisfying

∃β, 0 < β < 1, ∀{X, Y } ∈ E , E[d(X ′, Y ′)] ≤ βd(X, Y ).

Then the mixing rate τ of the Markov chain M satisfies τ ≤ (1−β)−1(1+ln(D/d))

where d
def.
= min{d(x, y) | ∀x, ∀y ∈ Ω} and D

def.
= max{d(x, y) | ∀x, ∀y ∈ Ω}. �

The above theorem differs from the original theorem in [4] since the integrality
of the edge length is not assumed. We drop the integrality and introduced the
minimum distance d. Theorem 2.2 can be proved by a slight modification of the
original proof.

3 Perfect Sampler

In the following we consider a closed Jackson network with n nodes, K cus-
tomers and parameters α1, α2, . . . , αn ∈ Z++, which has the product form solu-
tion (1) for any x ∈ Ξ.

3.1 Monotone Markov Chain

Now we propose new Markov chain MP. with state space Ξ. A transition of
MP from a current state X ∈ Ξ to a next state X ′ is defined as follows. First, we
choose a pair of consecutive indices {j, j + 1} (j ∈ {1, 2, . . . , n− 1}) uniformly at
random. Next, put k = Xj + Xj+1, and choose l ∈ {0, 1, . . . , k} with probability

αl
jα

k−l
j+1

∑k

s=0 αs
jα

k−s
j+1

(

≡
αl

jα
k−l
j+1

∏

i6∈{j,j+1} αXi

i
∑k

s=0 αs
jα

k−s
j+1

∏

i6∈{j,j+1} αXi

i

)

and set

X ′
i =







l (for i = j),
k − l (for i = j + 1),
Xi (otherwise).

The Markov chain MP is irreducible and aperiodic, so ergodic, hence has a unique
stationary distribution. Also, MP satisfies the detailed balance equation, thus the
stationary distribution is the product form solution J(x).

Here, we consider the cumulative distribution function gk
ij : {0, 1, . . . , k} → R+

defined by

gk
ij(l)

def.
=

∑l
s=0 αs

i α
k−s
j

Ak
ij

=











α
l+1

i −α
l+1

j

α
k+1

i
−α

k+1

j

· αk−l
j (αi 6= αj),

l
k+1 (αi = αj),
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for l ∈ {0, 1, . . . , k}, where Ak
ij

def.
=
∑k

s=0 αs
i α

k−s
j is a normalizing constant. We

also define gk
ij(−1)

def.
= 0, for convenience. For the chain MP, we define an update

function φ : Ξ × [1, n) → Ξ as follows. For a current state X ∈ Ξ, the next state
X ′ = φ(X, λ) ∈ Ξ with respect to a random number λ ∈ [1, n) is defined by

X ′
i =







l (for i = ⌊λ⌋),
k − l (for i = ⌊λ⌋+ 1),
Xi (otherwise),

where k = X⌊λ⌋ + X⌊λ⌋+1 and l ∈ {0, 1, . . . , k} satisfies

gk
⌊λ⌋(⌊λ⌋+1)(l − 1) < λ− ⌊λ⌋ ≤ gk

⌊λ⌋(⌊λ⌋+1)(l).

In the following, we show the monotonicity of MP. Here we introduce a partial
order “�” on Ξ. For any state x ∈ Ξ, we introduce cumulative sum vector cx =
(cx(0), cx(1), . . . , cx(n)) ∈ Z

n+1
+ defined by

cx(i)
def.
=

{

0 (for i = 0),
∑i

j=1 xj (for i ∈ {1, 2, . . . , n}).

For any pair of states x, y ∈ Ξ, we say x � y if and only if cx ≥ cy . Next, we

define two special states xmax, xmin ∈ Ξ by xmax
def.
= (K, 0, · · · , 0) and xmin

def.
=

(0, . . . , 0, K). Then we can see easily that ∀x ∈ Ξ, xmax � x � xmin.

Theorem 3.1 Markov chain MP is monotone on the partially ordered set (Ξ,�),
i.e., ∀λ ∈ [1, n), ∀X, ∀Y ∈ Ξ, X � Y ⇒ φ(X, λ) � φ(Y, λ).

Proof: We say that a state X ∈ Ξ covers Y ∈ Ξ (at j), denoted by X ·≻ Y (or
X ·≻j Y ), when

Xi − Yi =







+1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

We show that if a pair of states X, Y ∈ Ξ satisfies X · ≻j Y , then ∀λ ∈ [1, n),
φ(X, λ) � φ(Y, λ). We denote φ(X, λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For
any index i 6= ⌊λ⌋, it is easy to see that cX(i) = cX′(i) and cY (i) = cY ′(i), and so
cX′(i) − cY ′(i) = cX(i) − cY (i) ≥ 0 since X � Y . In the following, we show that
cX′(⌊λ⌋) ≥ cY ′(⌊λ⌋).

Case 1: In case that ⌊λ⌋ 6= j − 1 and ⌊λ⌋ 6= j + 1. If we put k = X⌊λ⌋ + X⌊λ⌋+1,
then it is easy to see that Y⌊λ⌋ + Y⌊λ⌋+1 = k. Accordingly X ′

⌊λ⌋ = Y ′
⌊λ⌋ = l

where l satisfies

gk
⌊λ⌋(⌊λ⌋+1)(l − 1) ≤ λ− ⌊λ⌋ < gk

⌊λ⌋(⌊λ⌋+1)(l),

hence cX′(⌊λ⌋) = cY ′(⌊λ⌋).
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0 α0
i α

k
j /A α1

i α
k−1
j /A · · · αk

i α0
j/A 1

0 α0
i α

k+1
j /A′ α1

i α
k
j /A′ α2

i α
k−1
j /A′ · · · αk+1

i α0
j/A

′ 1

Figure 1: A figure of alternating inequalities for a pair of indices (i, j) and a non-

negative integer k. In the figure, A
def.
=
∑k

s=0 αs
i α

k−s
j and A′ def.

=
∑k+1

s=0 αs
i α

k+1−s
j

are normalizing constants.

Case 2: Consider the case that ⌊λ⌋ = j − 1. Let k + 1 = Xj−1 + Xj . Then
Yj−1 +Yj = k, since X ·≻j Y . From the definition of cumulative sum vector,
cX′(⌊λ⌋) − cY ′ (⌊λ⌋) = cX′(j − 1) − cY ′ (j − 1)

= cX′(j − 2) + X′
j−1 − cY ′ (j − 2) − Y ′

j−1 = cX(j − 2) + X′
j−1 − cY (j − 2) − Y ′

j−1

= X′
j−1 − Y ′

j−1.

Thus, it is enough to show that X ′
j−1 ≥ Y ′

j−1. Now suppose that l ∈

{0, 1, . . . , k} satisfies gk
(j−1)j(l − 1) ≤ λ − ⌊λ⌋ < gk

(j−1)j(l) for λ. Then

gk+1
(j−1)j(l − 1) ≤ λ − ⌊λ⌋ < gk+1

(j−1)j(l + 1), since the alternating inequalities

gk+1
(j−1)j(l−1) ≤ gk

(j−1)j(l−1) < gk+1
(j−1)j(l) ≤ gk+1

(j−1)j(l+1), which we will show

in the next, hold. Thus we have that if Y ′
j−1 = l then X ′

j−1 = l or l + 1. In
other words,
(

X ′
j−1

Y ′
j−1

)

∈

{(

0
0

)

,

(

1
0

)

,

(

1
1

)

,

(

2
1

)

, . . . ,

(

k
k

)

,

(

k + 1
k

)}

and X ′
j−1 ≥ Y ′

j−1 in all cases. Accordingly, we have that cX′(⌊λ⌋) ≥ cY ′(⌊λ⌋).

Case 3: Consider the case that ⌊λ⌋ = j + 1. We can show cX′(⌊λ⌋) ≥ cY ′(⌊λ⌋) in
a similar way to Case 2.

For any pair of states X, Y satisfying X � Y , it is easy to see that there exists
a sequence of states Z1, Z2, . . . , Zr with appropriate length satisfying X = Z1 ·≻
Z2 ·≻ · · · ·≻ Zr = Y . Then applying the above claim repeatedly, we obtain that
φ(X, λ) = φ(Z1, λ) � φ(Z2, λ) � · · · � φ(Zr , λ) = φ(Y, λ). �

Lemma 3.2 The function gk
ij satisfies the alternating inequalities,

gk+1
ij (l) ≤ gk

ij(l) ≤ gk+1
ij (l + 1), ∀k ∈ {1, . . . , K}, ∀l ∈ {1, . . . , k}.

Proof: First, we prove the former inequality gk+1
ij (l) ≤ gk

ij(l) as follows,

gk
ij(l)

gk+1
ij (l)

=

∑l

s=0 αs
i α

k−s
j

Ak
ij

Ak+1
ij

∑l

s=0 αs
i α

k+1−s
j

=
Ak+1

ij

αjAk
ij

=

∑k+1
s=0 αs

i α
k+1−s
j

αj

∑k
s=0 αs

iα
k−s
j

=

∑k+1
s=0 αs

i α
k+1−s
j

∑k
s=0 αs

i α
k+1−s
j

≥ 1.
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Next, we prove the latter inequality gk
ij(l) ≤ gk+1

ij (l + 1) as follows,

gk+1
ij (l + 1)

gk
ij(l)

=
Ak

ij

Ak+1
ij

∑l+1
s=0 αs

i α
k+1−s
j

∑l

s=0 αs
i α

k−s
j

=

(

∑k

s=0 αs
i α

k−s
j

)(

∑l+1
s=0 αs

i α
k+1−s
j

)

(

∑k+1
s=0 αs

i α
k+1−s
j

)(

∑l
s=0 αs

i α
k−s
j

)

=

(

∑k

s=0 αs
i α

k−s
j

)(

∑l

s=0 αs
i α

k+1−s
j + αl+1

i αk−l
j

)

(

∑k

s=0 αs
i α

k+1−s
j + αk+1

i

)(

∑l

s=0 αs
i α

k−s
j

)

=

(

∑k
s=0 αs

i α
k−s
j

)(

αj

∑l
s=0 αs

i α
k−s
j

)

+ αl+1
i αk−l

j

(

∑k
s=0 αs

i α
k−s
j

)

(

αj

∑k
s=0 αs

i α
k−s
j

)(

∑l
s=0 αs

i α
k−s
j

)

+ αk+1
i

(

∑l
s=0 αs

i α
k−s
j

)

=

(

αl+1
i αk−l

j

)−1
αj

(

∑k

s=0 αs
i α

k−s
j

)(

∑l

s=0 αs
iα

k−s
j

)

+
∑k

s=0 αs
i α

k−s
j

(

αl+1
i αk−l

j

)−1
αj

(

∑k
s=0 αs

i α
k−s
j

)(

∑l
s=0 αs

i α
k−s
j

)

+ αk−l
i αl−k

j

∑l
s=0 αs

i α
k−s
j

=

(

αl+1
i αk−l

j

)−1
αj

(

∑k

s=0 αs
i α

k−s
j

)(

∑l

s=0 αs
iα

k−s
j

)

+
∑k

s=0 αs
i α

k−s
j

(

αl+1
i αk−l

j

)−1
αj

(

∑k

s=0 αs
i α

k−s
j

)(

∑l

s=0 αs
i α

k−s
j

)

+
∑k

s=k−l αs
i α

k−s
j

≥ 1.

Thus we obtain the claim. �

Since MP is a monotone chain, we can design a perfect sampler based on
monotone CFTP. We could also employ Wilson’s read once algorithm [24] and
Fill’s interruptible algorithm [9, 10], each of which also gives a perfect sampler.

3.2 Expected Running Time

Here, we assume a condition, which gives expected polynomial time monotone
CFTP algorithm.

Condition 1 Parameters are arranged in non-increasing order i.e., α1 ≥ α2 ≥
· · · ≥ αn.

The following is a main result of this paper.

Theorem 3.3 Under Condition 1, the expected running time of our perfect sam-
pler is bounded by O(n3 lnK), where n is the number of nodes and K is the number
of customers in a closed Jackson network.

We can show Theorem 3.3 by estimating the expectation of coalescence time T∗ ∈

Z++ defined by T∗
def.
= min{t > 0 | ∃y ∈ Ξ, ∀x ∈ Ξ, y = Φ0

−t(x,Λ)}. Note that T∗
is a random variable.

First, we show the following lemma.

Lemma 3.4 Under Condition 1, the mixing rate τ of our Markov chain M satis-
fies

τ ≤ n(n− 1)2(1 + lnKn).
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Proof: Let G = (Ξ, E) be an undirected simple graph with vertex set Ξ and
edge set E defined as follows. A pair of vertices {X, Y } is an edge if and only
if (1/2)

∑n
i=1 |Xi − Yi| = 1. Clearly, the graph G is connected. For each edge

e = {X, Y } ∈ E , there exists a unique pair of indices j1, j2 ∈ {1, . . . , n}, called the
supporting pair of e, satisfying

|Xi − Yi| =

{

1 (i = j1, j2),
0 (otherwise).

We define the length l(e) of an edge e = {X, Y } ∈ E by

l(e)
def.
= (1/(n− 1))

j∗−1
∑

i=1

(n− i)

where j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair of e. Note that
1 ≤ mine∈E l(e) ≤ maxe∈E l(e) ≤ n/2. For each pair X, Y ∈ Ξ, we define the
distance d(X, Y ) be the length of a shortest path between X and Y on G. Clearly,
the diameter of G, i.e., max(X,Y )∈Ξ2 d(X, Y ), is bounded by Kn/2, since d(X, Y ) ≤
(n/2)

∑n

i=1(1/2)|Xi − Yi| ≤ (n/2)K for any (X, Y ) ∈ Ξ2. The definition of edge
length implies that for any edge {X, Y } ∈ E , d(X, Y ) = l({X, Y }).

We define a joint process (X, Y ) → (X ′, Y ′) as (X, Y ) → (φ(X, Λ), φ(Y, Λ))
with uniform real random number Λ ∈ [1, n) and the update function φ defined in
the previous subsection. Now we show that

E[d(X ′, Y ′)] ≤ β · d(X, Y ) where β = 1− 1/(n(n− 1)2), (2)

for any pair {X, Y } ∈ E . In the following, we denote the supporting pair of
{X, Y } by {j1, j2}. Without loss of generality, we can assume that j1 < j2, and
Xj2 + 1 = Yj2 .

Case 1: When ⌊Λ⌋ = j2 − 1, we will show that

E[d(X ′, Y ′) | ⌊Λ⌋ = j2 − 1] ≤ d(X, Y )− (1/2)(n− j2 + 1)/(n− 1).

In case j1 = j2 − 1, X ′ = Y ′ with conditional probability 1. Hence d(X ′, Y ′) = 0.
In the following, we consider the case j1 < j2 − 1. Put k′ = Xj2−1 + Xj2 and
k′′ = Yj2−1 + Yj2 . Since Xj2 + 1 = Yj2 , k′ + 1 = k′′ holds. From the definition of
the update function of our Markov chain, we have the followings,

X ′
j2−1 = l ⇔ [gk′

(j2−1)j2
(l − 1) ≤ Λ− ⌊Λ⌋ < gk′

(j2−1)j2
(l)]

Y ′
j2−1 = l ⇔ [gk′+1

(j2−1)j2
(l − 1) ≤ Λ− ⌊Λ⌋ < gk′+1

(j2−1)j2
(l)].

Now, the alternating inequalities

0 < gk′+1
(j2−1)j2

(0) = gk′

(j2−1)j2
(0) ≤ gk′+1

(j2−1)j2
(1) ≤ gk′

(j2−1)j2
(1) ≤ · · ·

≤ gk′+1
(j2−1)j2

(k′) ≤ gk′

(j2−1)j2
(k′) = gk′+1

(j2−1)j2
(k′ + 1) = 1,
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hold. Thus we have
(

X ′
j2−1

Y ′
j2−1

)

∈

{(

0
0

)

,

(

0
1

)

,

(

1
1

)

,

(

1
2

)

, . . . ,

(

k′

k′

)

,

(

k′

k′ + 1

)}

.

If X ′
j2−1 = Y ′

j2−1, the supporting pair of {X ′, Y ′} is {j1, j2} and so d(X ′, Y ′) =
d(X, Y ). If X ′

j2−1 6= Y ′
j2−1, the supporting pair of {X ′, Y ′} is {j1, j2 − 1} and so

d(X ′, Y ′) = d(X, Y )− (n− j2 + 1)/(n− 1).
Lemma 3.5 (proved later) implies that if αj2−1 ≥ αj2 , then

Pr[X ′
j2−1 6= Y ′

j2−1 | ⌊Λ⌋ = j2 − 1]− Pr[X ′
j2−1 = Y ′

j2−1 | ⌊Λ⌋ = j2 − 1]

=
∑k′

l=0

(

gk′

(j2−1),j2
(l)− gk′+1

(j2−1),j2
(l)
)

−
∑k′

l=1

(

gk′+1
(j2−1),j2

(l)− gk′

(j2−1),j2
(l − 1)

)

− gk′+1
(j2−1),j2

(0) ≥ 0.

Hence

Pr[X ′
j2−1 = Y ′

j2−1 | ⌊Λ⌋ = j2 − 1] ≤ (1/2),

Pr[X ′
j2−1 6= Y ′

j2−1 | ⌊Λ⌋ = j2 − 1] ≥ (1/2).

Thus we obtain that

E[d(X′, Y ′)|⌊Λ⌋ = j2 − 1] ≤ (1/2)d(X, Y ) + (1/2)(d(X, Y ) − (n − j2 + 1)/(n − 1))

= d(X, Y ) − (1/2)(n − j2 + 1)/(n − 1).

Case 2: When ⌊Λ⌋ = j2, we can show that E[d(X ′, Y ′)|⌊Λ⌋ = j2] ≤ d(X, Y ) +
(1/2)(n− j2)/(n− 1) in a similar way to Case 1.

Case 3: When ⌊Λ⌋ 6= j2 − 1 and ⌊Λ⌋ 6= j2, it is easy to see that the supporting
pair {j′1, j

′
2} of {X ′, Y ′} satisfies j2 = max{j′1, j

′
2}. Thus d(X, Y ) = d(X ′, Y ′).

The probability of appearance of Case 1 is equal to 1/(n− 1), and that of Case
2 is less than or equal to 1/(n− 1). From the above,

E[d(X′, Y ′)] ≤ d(X, Y ) −
1

n − 1
·
1

2
·

n − j2 + 1

n − 1
+

1

n − 1
·
1

2
·

n − j2

n − 1
= d(X, Y ) −

1

2(n − 1)2

≤

 
1 −

1

2(n − 1)2
·

1

max{X,Y }∈E{d(X, Y )}

!
d(X, Y ) =

�
1 −

1

n(n − 1)2

�
d(X, Y ).

Since the diameter of G is bounded by Kn/2, Theorem 2.2 implies that the mixing
rate τ satisfies τ ≤ n(n− 1)2(1 + ln(Kn/2)). �

Lemma 3.5 When αi ≥ αj > 0, the inequality

k
∑

l=0

(

gk
ij(l)− gk+1

ij (l)
)

−

k
∑

l=1

(

gk+1
ij (l)− gk

ij(l − 1)
)

− gk+1
ij (0) ≥ 0.

holds.
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Proof: We can transform the left-hand side asPk
l=0

�
gk

ij(l) − gk+1
ij (l)

�
−
Pk

l=1

�
gk+1

ij (l) − gk
ij(l − 1)

�
− gk+1

ij (0)

=
Pk

l=0

�
gk

ij(l) − gk+1
ij (l)

�
−
Pk−1

l=0

�
gk+1

ij (k − l) − gk
ij(k − l − 1)

�
− gk+1

ij (0)

=
Pk−1

l=0

�
gk

ij(l) − gk+1
ij (l) − gk+1

ij (k − l) + gk
ij(k − l − 1)

�
+ 1 − gk+1

ij (k) − gk+1
ij (0),

and we can see that,

1− gk+1
ij (k)− gk+1

ij (0) = 1−
Pk

s=0
αs

i αk+1−s
jPk+1

s=0
αs

i
α

k+1−s
j

−
P

0

s=0
αs

i αk+1−s
jPk+1

s=0
αs

i
α

k+1−s
j

=
α

k+1

iPk+1

s=0
αs

i
α

k+1−s
j

−
α

k+1

jPk+1

s=0
αs

i
α

k+1−s
j

≥ 0,

since αi ≥ αj (Condition 1). Thus it is enough to show that

gk
ij(l)− gk+1

ij (l)− gk+1
ij (k − l) + gk

ij(k − l − 1) ≥ 0.

for any l (0 ≤ l ≤ k − 1). The above inequalities are obtained as follows,

gk
ij(l)− gk+1

ij (l)− gk+1
ij (k − l) + gk

ij(k − l − 1)

= gk
ij(l)− gk+1

ij (l)−
Pk−l

s=0
αs

i α
k+1−s
jPk+1

s=0
αs

i
α

k+1−s
j

+
Pk−l−1

s=0
αs

i α
k−s
jP

k
s=0

αs
i
α

k−s
j

= gk
ij(l)− gk+1

ij (l)−

(

1−
Pk+1

s=k−l+1
αs

i α
k+1−s
jPk+1

s=0
αs

i
αk+1−s

j

)

+

(

1−
P

k
s=k−l αs

i α
k−s
jP

k
s=0

αs
i
αk−s

j

)

=
Pl

s=0
αs

i α
k−s
j

Ak
ij

−
Pl

s=0
αs

i α
k+1−s
j

A
k+1

ij

+
Pk+1

s=k−l+1
αs

i α
k+1−s
j

A
k+1

ij

−
Pk

s=k−l
αs

i α
k−s
j

Ak
ij

=
P

l
s=0

αs
i α

k−s
j

Ak
ij

−
P

l
s=0

αs
i α

k+1−s
j

A
k+1

ij

+
Pl

s=0
α

k+1−s
i

αs
j

A
k+1

ij

−
Pl

s=0
α

k−s
i

αs
j

Ak
ij

=

(

1
Ak

ij

−
αj

A
k+1

ij

)

∑l
s=0 αs

i α
k−s
j +

(

αi

A
k+1

ij

− 1
Ak

ij

)

∑l
s=0 αk−s

i αs
j

=
Pl

s=0
αs

i α
k−s
j

Ak
ij

A
k+1

ij

(

∑k+1
s=0 αs

i α
k+1−s
j −

∑k

s=0 αs
iα

k+1−s
j

)

+
P

l
s=0

α
k−s
i

αs
j

Ak
ij

A
k+1

ij

(

∑k+1
s=1 αs

i α
k+1−s
j −

∑k+1
s=0 αs

i α
k+1−s
j

)

= 1

Ak
ij

A
k+1

ij

(

αk+1
i

∑l

s=0 αs
i α

k−s
j − αk+1

j

∑l

s=0 αk−s
i αs

j

)

= 1
Ak

ij
A

k+1

ij

∑l
s=0

(

αk+1+s
i αk−s

j − αk−s
i αk+1+s

j

)

= 1

Ak
ij

A
k+1

ij

∑l

s=0

(

αk−s
i αk−s

j

(

α2s+1
i − α2s+1

j

))

≥ 0,

since αi ≥ αj (Condition 1). �

Next we estimate the expectation of the coalescence time of MP.

Lemma 3.6 Under Condition 1, the coalescence time T∗ of MP satisfies E[T∗] =
O(n3 ln(Kn)).
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Proof: Let G = (Ξ, E) be the undirected graph and d(X, Y ), ∀X, ∀Y ∈ Ξ, be
the metric on G, both of which are defined in the proof of Lemma 3.4. We define

D
def.
= d(xmax, xmin) and τ0

def.
= n(n − 1)2(1 + lnD). By using the inequality (2)

obtained in the proof of Lemma 3.4, we have

Pr[T∗ > τ0] = Pr
�
Φ0
−τ0

(xmax, Λ) 6= Φ0
−τ0

(xmin,Λ)
�

= Pr
�
Φτ0

0 (xmax,Λ) 6= Φτ0

0 (xmin,Λ)
�

≤
P

(X,Y )∈Ξ2 d(X, Y )Pr
�
X = Φτ0

0 (xmax,Λ), Y = Φτ0

0 (xmin, Λ)
�

= E
�
d
�
Φτ0

0 (xmax, Λ), Φτ0
0 (xmin,Λ)

��
≤

�
1 −

1

n(n − 1)2

�τ0

d(xmax, xmin)

=

�
1 −

1

n(n − 1)2

�n(n−1)2(1+ln D)

D ≤ e−1e− ln DD =
1

e
.

By The submultiplicativity of coalescence time ([23]), for any k ∈ Z+, Pr[T∗ >

kτ0] ≤ (Pr[T∗ > τ0])
k
≤ (1/e)k. Thus

E[T∗] =
∑∞

t=0 tPr[T∗ = t] ≤ τ0 + τ0Pr[T∗ > τ0] + τ0Pr[T∗ > 2τ0] + · · ·

≤ τ0 + τ0/e + τ0/e2 + · · · = τ0/(1− 1/e) ≤ 2τ0.

Clearly D ≤ Kn, then we obtain the result that E[T∗] = O(n3 ln(Kn)). �

Proof of Theorem 3.3 Let T∗ be the coalescence time of our chain. Clearly T∗
is a random variable. Put m = ⌈log2 T∗⌉. Algorithm 2 terminates when we set the
starting time period T = −2m at (m + 1)st iteration. Then the total number of
simulated transitions is bounded by 2(20+21+22+· · ·+2K) < 2·2·2m ≤ 8T∗, since
we need to execute two chains from both xmax and xmin. Thus the expectation of
total number of transitions of M is bounded by O(E[8T∗]) = O(n3 lnKn). �

4 Concluding Remarks

We proposed a perfect sampler based on monotone CFTP for closed Jackson
networks with single servers. We estimated the mixing rate of our chain and showed
the running time of the perfect sampler is O(n3 ln(Kn)). One of future works is
extension to closed Jackson networks with multiple serves. Extension to closed
BCMP networks is another.
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