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Abstract Let Tp denote any tetrahedralization of a convex polyhedron P

and let GT be the dual graph of Tp such that each node of GT corresponds to
a tetrahedron of Tp and two nodes are connected by an edge in GT if and only
if the two corresponding tetrahedra share a common facet in Tp. Tp is called a
Hamiltonian tetrahedralization if GT contains a Hamiltonian path (HP). A well-
known open problem in computational geometry is: can every polytope in 3D be
partitioned into tetrahedra such that the dual graph has an HP? In this note, we
shall show that there exists a 92-vertex polyhedron in which the pulling method does
not yield a Hamiltonian tetrahedralization, here the pulling method is the simplest
method to ensure a linear-size decomposition and is one of the most commonly used
tetrahedralization methods for convex polyhedra. Furthermore, we can construct a
convex polyhedron with n vertices such that the longest path in the dual graph in
question can be as short as O(1). This fact suggests that it may not be possible to
find a good approximation of a HP for convex polyhedra using the pulling method.

1 Introduction

A tetrahedralization of a convex polyhedron P , denoted by Tp, is a partition of
P by a set of simplices called tetrahedra. Tetrahedralization Tp has a number of
interesting properties. For example, the number of tetrahedra in different tetrahe-
dralizations of a polyhedron with n vertices may vary from θ(n) in the low end to
O(n2) in the high end. The most commonly used tetrahedralization methods are
pulling and shelling ( the latter includes plane-sweeping as a special case). In the
pulling method, a vertex v of P , called an apex, is connected to all other vertices of
P by edges to form a tetrahedralization of P , and in the shelling method, a cap is
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removed from P and tetrahedralized at each step, where a cap is a space between
the convex hulls CH(P ) and CH(P − {v}) for a vertex v of P . Note that pulling
ensures a linear number of tetrahedra while shelling may generate Θ(n logn) tetra-
hedra in the worst case [3]. Furthermore, finding a tetrahedralization of P with
the minimum number of tetrahedra, called an optimal tetrahedralization, has been
proved to be NP-Complete [2], and the best approximation ratio one can obtain is
2− 1√

n
[4]. This fundamental geometry structure also has many applications. For

example, in computer graphics, the performance of certain rendering algorithms is
closely related to the quality of tetrahedralization, and in progressive transfer of
figures in computer network, the performance is closely related to the data rate. In
particular, one hopes that the dual graph of the tetrahedralization contains an HP
so that the data rate to the algorithms or to the networks can be reduced. While
every 2D polygon has a triangulation with an HP, it is not known if this holds even
for 3D convex polyhedron. It is conjectured that there always exists a Hamiltonian
tetrahedralization for any convex polyhedron [1], and the associated problem later
has been listed in the open problem project [5]. In this note, we show that there
exists a convex polyhedron Q in which pulling does not yield a Hamiltonian tetra-
hedralization. The ultimate solution to this problem is still elusive. We shall also
show that no tetrahedralization obtained by pulling admits a good approximation
to an HP, in terms of a fraction of n vertices. As a minor result, we present a
94-node 3-regular and 3-connected planar graph without HP.

2 A convex polyhedron in which pulling does not

yield a Hamiltonian tetrahedralization

We first describe a basic convex polyhedron building block and its properties.
We then construct a convex polyhedron using these blocks and show that the
resulting polyhedron does not have a Hamiltonian tetrahedralization by pulling.
This building block uses the so-called Tuttes non-HC graph component [6].

2.1 The 2D basic case

Let us consider a triangulation of 10 vertices in 2D and its dual graph. This
dual graph of 25 nodes is a component of a 3-regular and 3-connected graph which
does not have Hamiltonian circle [6]. Observe that the dual graph GT10 has exactly
three degree-2 nodes and there is no HP for certain pair of start and end nodes, in
particular, degree-2 nodes a and c (refer to Figure 1).

We use this graph to build a larger graph of 45 nodes, in which no Hamiltonian
paths exist. The corresponding triangulation has 25 vertices in the plane (refer to
the lefthand side of Figure 2). It will be verified in Lemma 2 that any planar graph
G containing this 45-nodes subgraph would have to leave at least one end of an HP
in this subgraph if G has any HP (refer to the righthand side of Figure 2).

Lemma 1. There is no HP in GT25 .
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A triangulation of 10 points, T  .10
T10The dual graph of the triangulation G  .
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Figure 1: A dual graph without Hamiltonian path of fixed-end between nodes a

and c.

A triangulation of 25 points, T  ,
which combines three T  ’s
 and forms 45 inner facets.
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T25The dual graph of T  , G   , in which
no HP exists for any pair of 45 nodes.
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Figure 2: A dual graph without Hamiltonian path between any pair of its 45 nodes.

Proof. Note that any path which has traversed the first GT10 and entered the second
GT10 must start at node a (respectively, node c) of the second GT10 . Hence, the
path cannot traverse the second GT10 with node c (respectively, node a) as the last
node by our previous observation. Consequently, the longest path L in GT25 can
cover at most two GT10 ’s, and L is not an HP in GT25 .

Lemma 2. Any graph G containing GT25 as subgraph and connecting G−GT25 to
GT25 through three nodes of degree 2 (node b) has to leave at least one end of an
HP in GT25 if G has such an HP.

Proof. Let L be a longest path in G. If L starts inside GT25 , the lemma is done.
Otherwise, by the given connection restriction between G−GT25 and GT25 and by
Lemma 1, the longest segment of L inside GT25 can only cover two of the GT10 of
GT25 . Then, the rest of L must return to G−GT25 and re-enters GT25 through the
connector of the third GT10 . Then L must terminate inside GT25 since two other
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connectors are already used.

Now we combine three T25’s to form a new triangulation T70 (refer to Figure 3).
We shall show that its dual graph GT70 does not have an HP and any graph G

containing GT70 would not have an HP either.

T25
T25

T25

T70

T70G

Y

Z

X

b b

b

W

Figure 3: Dual graph GT70 does not have a Hamiltonian path.

Lemma 3. There is no HP in GT70 . Moreover, no graph G containing GT70 as a
subgraph and connecting G −GT25 and GT25 through three degree-2 nodes in GT70

has an HP.

Proof. Let L be a longest path in G. By Lemma 2, the longest segment of L can
cover at most two GT10 ’s in a GT25 . Path L must either leave GT70 or enter one of
the two neighboring GT25 ’s through a connector. Thus, if L does not leave GT70 ,
the longest segment of L can cover at most seven GT10 ’s and leave one end of L

inside GT70 so that GT70 also has two uncovered disjoint GT10 ’s. Note that when
L leaves GT70 and reenters GT70 , it can only cover one of these two disjoint GT10 ’s.
Thus, eventhough L covers all of G−GT70 , it is still not an HP in G.

2.2 Constructing the polyhedron

In this section, we describe how to construct a convex polyhedron Q without a
Hamiltonian tetrahedralization relative to the pulling method using the 2D units
observed in Section 2.1.

Let abc, abe, bcf , and cag be four neighboring triangles on the surface of a
convex polyhedron. The bounding tetrahedron associated with triangle abc, say
abcd, is one in which the dihedral between abc and abd equals the dihedral between
abe and the plane extending abd, and a similar equality holds for the dihedrals
related to bcd and for the dihedrals related to cad, respectively. (Refer to part (a)
of Figure 4.)
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bounding tetrahedron abcd
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Figure 4: The surface graph of the constructed convex hull of 10 points is homeo-
morphic to T10. The vertices of the two graphs have the following correspondence:
(a←→ 3)(b←→ 2) (c←→ 1)(v ←→ 4) (q′ ←→ 5)(u←→ 6) (w ←→ 7)(p←→ 8)
(r ←→ 9)(t′ ←→ 10)

.

Roughly speaking, we first build a regular tetrahedron. For each of the four
triangular faces of the tetrahedron, we patch a basic building block inside its corre-
sponding bounding tetrahedron, where the block is a 3D convex hull of 25 vertices
with triangular face (refer to part (b) of Figure 5). Each basic building block
contains three similar basic parts (sharing some boundaries), and each basic part
contains a convex hull of 10 vertices inside its corresponding bounding tetrahedron.
The graph of this convex hull is homeomorphic to that of the desired triangulation
(refer to part (a) of Figure 5).

T
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T  , on the convex surface.10

A triangulation of 25 points, T  ,
on the convex surface, which is
the combination of 3 T  s.10
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A polyhedron Q with 92 vertices.

Figure 5: The surface graph of the convex hull of 10 points is homeomorphic to
that of T10; Three T10 surfaces with some overlapped boundary edges and vertices
form a surface of a basic building block. Four such blocks patched on a regular
tetrahedron form a Q.

In more detailed constructions of a 10-vertex basic part, one may refer to Fig-

210 International Symposium on OR and Its Applications 2005



ure 4. Let abcd be a bounding tetrahedron. Let o be the common point of the
three inner-angle-bisectors of triangle abc. Let t be the midpoint of the line segment
which is vertical to abc, lies inside abcd, and ends at o. Let circle C, be centered
at the midpoint of line segment ot, be vertical to ot and be touching the boundary
of tetrahedron abct. Let p, q, and r be the respective tangent points of C from
the plane containing edge ab, the plane containing bc, and the plane containing ca.
Let u and v be the intersection points between the arc pq and plane containing
bcuv and between the arc qr and this plane, respectively. Note that u and v are
very close to q. Let t′ be a point on the line segment connecting t and the center
of C. Let q′ be a point close to face bcuv. The points t′ and q′ is so placed that
line segment t′q′ lies right below line segment uv. We now place vertices on points
a, b, c, p, q′, r, u, v, w and t′ as described above. It can be verified that the convex
hull of these ten vertices, excluding triangle abc, forms a surface graph isomorphic
to T10. Let CHabc denote this convex hull (refer to part (c) of Figure 4). To build
a basic building block, for a triangular face of the regular tetrahedron, say XY Z,
we place a vertex U on the middle point of the line segment (constructed simi-
larly to ox in the basic part) inside the bounding tetrahedron of XY Z. Then, for
each of trianglar faces XY U , Y ZU , and ZXU , we attach a basic part inside the
corresponding bounding tetrahedron. The convex hull of the 25-vertex building
block forms a surface graph homeomorphic to the triangulation T25 as shown in
the lefthand side of Figure 2. Polyhedron Q is formed by attaching each of the
four triangular faces of a regular tetrahedron with a basic building block inside the
corresponding bounding tetrahedron.

The above construction has two properties:
Property 1: Let CHabc be a basic part patched on a triangular face abc of a

convex polyhedron Q. Then, the new polyhedron Q′ = Q ∪ CHabc is convex.
This is because the basic part is placed in its corresponding bounding tetrahe-

dron with respect to Q. The restriction of bounding tetrahedron ensures that the
convexity of the neighboring pieces in the surface of Q′ does not be violated.

Let Q be a ‘general’ convex polyhedron, i.e., all the faces of Q are planar
triangles.

Property 2: The new polyhedron Q′ = Q ∪ CHabc is also a general convex
polyhedron.

This is because the space between the bounding tetrahedron abcd and CHabc

is always non-empty due to our construction. Hence, the subquent faces are all
triangles and their corresponding bounding tetrahedra are non-empty too.

Property 2 implies that the above convex hull patch process can be recursively
executed, and the number of vertices of Q′ can be increased to as large as necessary.

2.3 The triangulated surfaces viewing from different pulling

apecies

In this section, we shall describe the internal facet-graph of such a convex
polyhedron Q as viewed from a pulling apex. The corresponding dual graph is also
presented.
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Let W be a shared vertex of three T25’s in Q, and let U be a shared vertex
of the three T10’s, and let V be one of the remaining vertices in T10 (refer to the
bottom part of Figure 5). We now consider three cases and subcases according to
these three types of apecies.

1. Case 1 shows the facet graph of Q viewed from apex W . The dual graph G

contains a subgraph GT25 (refer to Figure 6).

2. Case 2(a) shows the facet graph of Q viewed from apex U . The dual graph G

contains a subgraph GT70 and G −GT70 contains three disjoint components
(refer to Figure 7).

3. Case 2(b) shows the facet graph of Q viewed from apex V . The dual graph
G contains a subgraph GT70 and G − GT70 is a connected component (refer
to Figure 8).

Theorem 4. There exists a convex polyhedron Q with 92 vertices in which pulling
does not yield a Hamiltonian tetrahedralization.

Proof. The vertices of Q can be classified into three groups depending on what
type of subgraphs Q’s dual graph GTQ contains. In Case 1, GTQ contains a GT25

as well as nine bridge edges. Each component of GTQ − GT25 which connected to
GT25 must contain one end of a path since they are disjoint. There are three such
components. Therefore, the longest path cannot be an HP in GTQ . In Case 2 (a)
and (b), GTQ contains GT70 as a subgraph, and by Lemma 3, there is no HP in
GTQ . In any case, GTQ does not have an HP.
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Figure 6: Case 1: A inner surface viewed from apex w, and the dual graph of the
tetrahedralization with pulling apex w.
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Figure 7: Case 2(a): A inner surface viewed from apex u, and the dual graph of
the tetrahedralization with pulling apex u.

3 Constructing a convex n-vertex polyhedron P

with a constant-length longest path in GTP

In this section, we shall construct a convex n-vertex polyhedron P such that
the longest path in the dual graph of Tp using pulling has constant length in terms
of number of vertices n. We can always patch a basic part or a basic building block
to a triangular face of convex polyhedron Q to form a new convex polyhedron with
more vertices by Properties 1 and 2. The resulting polyhedron P after n such patch
process shall contain Θ(n) vertices. We shall show that the longest path in GTP

can be as short as O(1) and the maximum number of ‘distinct paths’ can be as
large as Θ(n). Here, the term ‘distinct’ means two paths do not share a common
node.

To do so, we shall first describe a 3-regular and 3-connected planar graph, called
a path sink. We then use this path sink to build a component which does not have
any HP itself and blocks the paths of any graph that contains this component as a
subgraph.

It is easy to check that any path entering the path sink must leave one end
there (refer to part (a) of Figure 9). The graph in part (c) of Figure 9 shows that
no path can escape the GT109 and no path can enter to the center of GT109 from
outside through nodes b. This is a basic component in the desired dual graph.

To construct the desired convex polyhedron P , we replace the trianglar faces:
b, j, i, and h in each T10 of T25 of Q by basic parts. The four basic parts are so
placed that their dual graph form a path sink. The new triangulation face on old
T25 now contains 109 vertices and its dual graph GT109 is a basic component. The
above patch process can be continued as many as n times due to Property 2 and the
resulting polyhedron P is convex by Property 1. Now P has at least (109−25)×n

(= Θ(n)) vertices.
Note that a component GT109 requires two paths to be covered. If the path
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Figure 8: Case 2(b): inner surface viewed from apex v, and the dual graph of the
tetrahedralization with pulling apex v.

starts at inside GT109 , then the longest path can cover at most two path sinks and
two GT10 ’s, which has 142 nodes. If the path starts at outside a GT109 , then the
longest path can cover at most two path sinks, which has 120 nodes. Thus, the
resulting P may have Θ(n) distinct longest paths and each path has a constant
length.

Theorem 5. There exists a convex polyhedron P with n vertices in which pulling
does not yield a Hamiltonian tetrahedralization. The longest path in GTP covers
142 nodes and the maximum number of distinct longest paths is Θ(n).

Corollary 6. There exists a 3-regular and 3-connected planar graph of 94 nodes
which does not have an HP.

4 conclusion

In this note, we constructed a convex polyhedron such that any tetrahedraliza-
tion of this polyhedron produced by the pulling method contains no HP in its dual
graph. We further showed that the longest path in such a dual graph with Θ(n)
nodes may be as short as O(1). We also described a 3-regular and 3-connected
planar graph of 94 nodes which does not have an HP.

The obvious open problem is whether or not there is an HP for any tetrahe-
dralization of an arbitrary convex polyhedron by shelling.
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(a) A path sink with 60 nodes

(b) The four basic parts patch in
the shaded area to form a path sink

(c) A component for isolating paths

b’

b

b’’

a c

a’

c’

c’’

a’’

d

e

f

g

h
i

j

k

l

m

no

d’

e’
f’

g’

h’

i’

j’
k’

l’

m’

n’

d’’

e’’

f’’

g’’
h’’

i’’

j’’

k’’

l’’

m’’

n’’

o’’

connector

o’

d
a

c

e
f o j
g

nm
l
k

b
h

i

b

ji

h

Figure 9: The path sink graph contains 60 nodes. The graph GT109 consists of a
GT25 with three path sinks.

References

[1] Arkin E., Held M., Mitchell J., and Skiena S., (1996), ‘Hamiltonian triangula-
tion for fast rendering’, The Visual Computer 12, pp. 429-444.

[2] Below A., De Loera J., and Richard-Gebert J.,(2000), ‘Finding minimal tri-
angulations of convex 3-polytopes are HP-hard’, The proceedings of the tenth
annual ACM-SIAM symposium on discrete algorithms, pp.65-66.

[3] M. Bern, (1993), ’Compatible Tetrahedralizations,’ The proceedings of 9th An-
nual ACM Symposium on Computational Geometry, 281-288.

[4] F. Chin, S. Feng, and C.A.Wang, (2001), ’Approximation for Minimum Tri-
angulations of Simplicial Convex 3-polytopes’, Discrete & Computational

Geometry. Vol.26, No.4, pp.499-511.

[5] E. Demine, J. Mitchell, and J. O’Rourk, Open problem Project.

http://cs.smith.edu/ orourk/TOPP/

[6] W. Tutte, (1946), “On Halmitonian circuits”, Journal of the London Math-

ematical Society, Vol. 21, pp. 98-101.

On Hamiltonian Tetrahedralizations Of Convex Polyhedra 215



Figure 10: The 3-regular and 3-connected graph G of 94 nodes contains no HP.
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