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Abstract An arbitrary starting variable dimension algorithm is developed

for computing an integer point of a polytope, P = {x | Ax ≤ b}, which satisfies that

each row of A has at most one positive entry. The algorithm is derived from an

integer labelling rule and a triangulation of the space. It consists of two phases, one

of which forms a variable dimension algorithm and the other a full-dimensional piv-

oting procedure. Starting at an arbitrary integer point, the algorithm interchanges

from one phase to the other, if necessary, and follows a finite simplicial path that

either leads to an integer point of the polytope or proves that no such point exists.
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1 Introduction

The problem we consider in this paper is find an integer point of a polytope
given by

P = {x ∈ Rn | Ax ≤ b}, (1)

where

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn
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satisfies that each row has at most one positive entry, and b = (b1, b2, · · · , bm)⊤.
The problem is very general though it looks special. In fact, if A is an arbitrary
integer (n + 1) × n matrix satisfying that there is a positive vector ρ such that
ρ⊤A = 0 and that any n × n submatrix of A is nonsingular, a procedure given in
[19] shows that applying the following three elementary column operations to A,

1. interchange two columns,

2. multiply a column by −1,

3. add any integer times a column to another column,

one can transform A into a matrix such that each row has at most one positive
entry. There seems no way to transform with a unimodular matrix an arbitrary
m× n integer matrix into a matrix having at most one positive entry in each row,
however, finding an integer point of a polytope can be reduced to finding an integer
point of a simplex through applying aggregation techniques ([28]). The problem
in general is an NP-hard problem though, for a special case, a polynomial-time
algorithm has been developed in [24].

Simplicial methods were originated by Scarf in [20] for computing fixed points of
a continuous mapping. After Scarf’s work some substantial developments based on
simplicial subdivisions were made (e.g., [1], [2], [3], [9], [10], [11], [12], [14], [15], [16],
[17], [18], [20], [21], [25], [26], etc. For a general polytope, by applying primitive
sets, Scarf defines in [22] and [23] a path that either leads to an integer point of
the polytope or proves that no such point exists. After Scarf’s development, the
question whether it is possible to find an integer point of a simplex with a simplicial
approach was raised. A few attempts were made in [4], [5] and [27]. A positive
answer was completely realized by us in [6] only after Scarf brought our attention
to Pnueli’s work [19] during our visit to Yale in 1994 and we observed a beautiful
property given in Lemma 1 of [6]. After this work, some significant improvements
were made in [7] and [8].

In this paper we develop an arbitrary starting variable dimension algorithm for
computing an integer point of (1). It is derived from an elegant integer labelling
rule and a triangulation of the space. The algorithm is composed of two phases,
one of which forms a variable dimension algorithm and the other a full-dimensional
pivoting procedure. The algorithm starts at an arbitrary integer point, interchanges
from one phase to the other, and follows a finite simplicial path that either leads to
an integer point of the polytope or proves that no such point exists within a finite
number of iterations. Numerical results show that the algorithm is very efficient.

The rest of this paper is organized as follows. In Section 2, we introduce the
integer labelling rule. In Section 3, we describe the algorithm and prove its con-
vergence.

2 Integer Labelling

Let a⊤i denote the ith row of A for i = 1, 2, . . . , m. Let M = {1, 2, · · · , m},N =
{1, 2, · · · , n}, and N0 = {1, 2, . . . , n + 1}. We assume that P is bounded and has

180 International Symposium on OR and Its Applications 2005



an interior point. As a direct consequence of the assumption, one can easily obtain
the following lemma.

Lemma 1.

• For any nonzero vector ξ ∈ Rn, there are i and j satisfying that a⊤i ξ < 0 and

0 < a⊤j ξ.

• There is a vector ρ = (ρ1, ρ2, . . . , ρm)⊤ > 0 satisfying ρ⊤A = 0.

Let η = (η1, η2, . . . , ηn)⊤ be an arbitrary integer point of Rn, which will be
the starting point of the algorithm. For j = 1, 2, . . . , n, let uj denote the jth unit
vector of Rn. Let e = (1, 1, . . . , 1)⊤ and h(n + 1) = e. For j = 1, 2, . . . , n, let
h(j) = −uj. For any proper subset K ⊂ N0, let

G(η, K) = {η +
∑

j∈K

λjh(j) | 0 ≤ λj , j ∈ K}.

Clearly, ∪j∈N0G(η, N0\{j}) = Rn, and for any two subsets K1 ⊂ N0 and K2 ⊂ N0,
the intersection of G(η, K1) and G(η, K2), G(η, K1) ∩G(η, K2), is a common face
of both of them. Thus, {G(η, K) | K ⊂ N0} forms a partition of Rn.

To implement the algorithm, we need a triangulation of Rn that subdivides
every integer unit cube of Rn into integer simplices, and G(η, K) into integer sim-
plices for any subset K ⊂ N0. Here, an integer unit cube is a unit cube having only
integer vertices and an integer simplex is a simplex having only integer vertices.
There are several triangulations of Rn suitable for this purpose, which include the
K1-triangulation in [13], the J1-triangulation in [25], a modification of the D1-
triangulation in [3], etc. A specific choice of the triangulation plays however no
dominant role at all in this paper though efficiency of the algorithm may depends
on the underlying triangulation. For simplicity, we choose the K1-triangulation as
an underlying triangulation of the algorithm. For completeness of the algorithm,
we introduce the K1-triangulation here.

A simplex of the K1-triangulation of Rn is the convex hull of n + 1 vectors, y0,
y1, . . . , yn, given by y0 = y and yk = yk−1 + uπ(k), k = 1, 2, . . . , n, where y is
an integer point of Rn and π = (π(1), π(2), . . . , π(n)) a permutation of elements of
N = {1, 2, . . . , n}. Let K1 be the set of all such simplices. Since a simplex of the
K1-triangulation is uniquely determined by y and π, we use K1(y, π) to denote it.

We say that two simplices of K1 are adjacent if they have a common facet. We
show how to generate all the adjacent simplices of a simplex of the K1-triangulation
of Rn in the following. For a given simplex σ = K1(y, π) with vertices y0, y1, . . . ,
yn, its adjacent simplex opposite to a vertex, say yi, is given by K1(ȳ, π̄), where ȳ
and π̄ are generated in the following table.

Pivot Rules of the K1-Triangulation

i ȳ π̄

0 y + uπ(1) (π(2), . . . , π(n), π(1))
1 < i < n y (π(1), . . . , π(i + 1), π(i), . . . , π(n))

n y − uπ(n) (π(n), π(1), . . . , π(n− 1))
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Let K1 be the set of faces of simplices of K1. A q-dimensional simplex of K1

with vertices y0, y1, . . . , yq is denoted by < y0, y1, . . . , yq >. The restriction of K1

on G(η, K) for any subset K ⊂ N0 is given by

K1|G(η, K) = {σ ∈ K1 | σ ⊂ G(η, K) and dim(σ) = |K|},

where | · | denotes the cardinality of a set and dim(·) the dimension of a set.
Obviously, K1|G(η, K) is a triangulation of G(η, K).

For σ ∈ K1, let grid(σ) = max{‖x− y‖ | x ∈ σ and y ∈ σ}, where ‖ · ‖ denotes
the infinity norm. We define mesh(K1) = maxσ∈K1 grid(σ). Then it is clear that
mesh(K1) = 1.

For x ∈ Rn, let

f(x) =











0 ∈ Rn if x ∈ P ,

∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj
aj if x /∈ P ,

where J(x) = {j ∈ M | a⊤j x − bj > 0}. From the definition of f(x), one can see
that

f(x) = (
∑

j∈J(x)

aja
⊤
j

a⊤j aj
)x−

∑

j∈J(x)

bj

a⊤j aj
aj .

Clearly, f : Rn → Rn is a continuous piece-wise linear mapping, which is composed
of a finite number of affinely linear pieces since there can be only a finite number
of different J(x)’s. Therefore, there exists some L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖

for any x and y of Rn.

Lemma 2. For any given x∗ ∈ Rn,
(x−x∗)⊤f(x)

‖x‖ →∞ as ‖x‖ → ∞.

Proof. Let x0 be any given point of P . Since P is bounded, there is a ball B(x0, r)
containing P strictly. Let S(x0, r) be the sphere of the ball. Then, for any x /∈
B(x0, r), there exists some point y ∈ S(x0, r) and some number ρ > 1 satisfying
that x = x0 + ρ(y − x0). Thus, for any k,

a⊤k x− bk

= a⊤k (x0 + ρ(y − x0))− bk

= ρ(a⊤k y − bk) + (ρ− 1)(bk − a⊤k x0)

≥ ρ(a⊤k y − bk)

since bk ≥ a⊤k x0 and ρ > 1. Therefore, if k ∈ J(y), then a⊤k x − bk approaches
infinity as ρ → ∞ since a⊤k y − bk > 0. Observe that J(y) is not empty for any
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y ∈ S(x0, r) and that, for any x /∈ P with x 6= 0,

(x−x∗)⊤f(x)
‖x‖ =

∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj‖x‖
(x− x∗)⊤aj

=
∑

j∈J(x)

(a⊤j x−bj)
2

a⊤
j

aj‖x‖
+

∑

j∈J(x)

(a⊤j x−bj)(bj−a⊤j x∗)

a⊤
j

aj‖x‖
.

Thus, (x−x∗)⊤f(x)
‖x‖ →∞ as ‖x‖ → ∞. The lemma follows.

Applying f(x), we obtain the following integer labelling rule for assigning an
integer to each point of Rn in the algorithm.

Definition 1. For x ∈ Rn, we assign to x an integer l(x) given by l(x) = 0 if

f(x) = 0, and

l(x) =







max{k | fk(x) = max1≤j≤n fj(x)} if fj(x) > 0 for some j ∈ N ,

n + 1 if f(x) ≤ 0 and f(x) 6= 0.

Based on this definition, the next definition gives us a few notations that will
be used in our further developments.

Definition 2.

• A q-dimensional simplex σ =< y0, y1, . . . , yq > of K1 is complete if l(yi) 6=
l(yj) for 0 ≤ i < j ≤ q, and l(yk) 6= 0, k = 0, 1, . . . , q.

• A q-dimensional simplex σ =< y0, y1, . . . , yq > of K1 is 0-complete if l(yi) 6=
l(yj) for 0 ≤ i < j ≤ q, and there is some k satisfying that l(yk) = 0.

• A q-dimensional simplex σ =< y0, y1, . . . , yq > of K1 is almost complete if

labels of q + 1 vertices of σ consist of q different nonzero integers.

From Definition 2, it is easy to see that an almost complete simplex has exactly
two complete facets.

Let S be a subset of Rn. For any given x ∈ Rn, the distance between x and S
is given by d(x, S) = supy∈S ‖x− y‖. For any two subsets of Rn, S and T , and any
nonnegative scalar δ, let

∆(S, T, δ) = {x ∈ T | d(x, S) ≤ δ}.

Theorem 1. There exists a positive scalar δ satisfying that all the complete n-

dimensional simplices of K1 are contained in ∆(x0, Rn, δ), where x0 is any given

point of P .

Proof. Let σ =< y0, y1, · · · , yn > be any complete n-dimensional simplex of K1.
Without loss of generality, we assume l(y0) = n+1 and l(yi) = i, i = 1, 2, · · · , n. Let
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x be an arbitrary point of σ. Note that fi(y
i) > 0 and fi(y

0) ≤ 0, i = 1, 2, · · · , n.
Then, for i = 1, 2, · · · , n,

fi(x) = fi(x)− fi(y
i) + fi(y

i) ≥ fi(x)− fi(y
i) ≥ −L‖x− yi‖ ≥ −L

and
fi(x) = fi(x)− fi(y

0) + fi(y
0) ≤ fi(x) − fi(y

0) ≤ L‖x− y0‖ ≤ L

since mesh(K1) = 1. Thus,

−L ≤ fi(x) ≤ L, i = 1, 2, · · · , n. (2)

Therefore,
‖f(x)‖ ≤ L.

This implies that any complete n-dimensional simplex is contained in

Wc = {x | ‖f(x)‖ ≤ L}.

From (2), we obtain that, for any x ∈ Wc,

−L|xi| ≤ xifi(x) ≤ L|xi|

for i = 1, 2, · · · , n. Thus, for any x ∈ Wc,

−L

n
∑

i=1

|xi| ≤ x⊤f(x) ≤ L

n
∑

i=1

|xi|.

Therefore, for any x ∈ Wc,

−L ≤
x⊤f(x)

‖x‖1
≤ L, (3)

where ‖x‖1 =
∑n

i=1 |xi|. Combining Lemma 2 and (3) together, one can see that
Wc is bounded. The theorem follows.

Lemma 3. Let

Q =











q11 q12 · · · q1n

q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn











be a matrix such that qij ≤ 0 for any i 6= j and qii > 0, i = 1, 2, · · · , n. If there

is some ρ = (ρ1, ρ2, · · · , ρn)⊤ > 0 satisfying that ρ⊤Q > 0, then Q is nonsingular

and Q−1 ≥ 0.

Proof. We prove the lemma by the mathematical induction.

1. When n = 1, Q = (q11). Since q11 > 0, hence, Q is nonsingular and Q−1 =
(1/q11) ≥ 0. The lemma is true.
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2. Assume that the lemma is true for n = m− 1. Consider n = m. Let

U =











1
−q21/q11 1

...
. . .

−qn1/q11 1











and

W =











1 −q12/q11 · · · −q1n/q11

1
. . .

1











.

The inverse matrix of U is given by

U−1 =











1
q21/q11 1

...
. . .

qn1/q11 1











.

Note that −qi1/q11 ≥ 0 and −q1i/q11 ≥ 0, i = 2, 3, · · · , n. Multiplying U to
the left side of Q, we obtain

UQ =











q11 q12 · · · q1n

0 q22 −
q21q12

q11
· · · q2n −

q21q1n

q11

...
...

. . .
...

0 qn2 −
qn1q12

q11
· · · qnn −

qn1q1n

q11











.

Clearly, all the entries of UQ except its diagonal entries are non-positive.
Multiplying ρ to U−1, we obtain

ρ⊤U−1 = (ρ1 +

n
∑

i=2

qi1ρi

q11
, ρ2, · · · , ρn)⊤.

From 0 < q11 and 0 < ρ⊤Q = (ρ⊤U−1)(UQ), we derive that

ρ1 +

n
∑

i=2

qi1ρi

q11
> 0

and all the diagonal entries of UQ are positive. Let ρ̄ = (ρ2, · · · , ρn)⊤. By
deleting the first row and the first column of UQ, we obtain an (m−1)×(m−1)
matrix,

Q̄ =







q22 −
q21q12

q11
· · · q2n −

q21q1n

q11

...
. . .

...
qn2 −

qn1q12

q11
· · · qnn −

qn1q1n

q11






.
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Since 0 < ρ̄, 0 < ρ̄⊤Q̄, and Q̄ is an (m− 1)× (m− 1) matrix, it follows from
the hypothesis that Q̄ is nonsingular and Q̄−1 ≥ 0. Multiplying W to the
right side of UQ, we obtain

UQW =

(

q11 0
0 Q̄

)

.

Thus, Q is nonsingular and

Q−1 = W

(

1/q11 0
0 Q̄−1

)

U.

Therefore, Q−1 ≥ 0 since q11 > 0, Q̄−1 ≥ 0, U ≥ 0, and W ≥ 0. The lemma
follows.

As a corollary of Lemma 3, we obtain the following result.

Corollary 1. For any x ∈ Rn, if 0 < f(x), then 0 < x− x0 for any x0 ∈ P .

Proof. Let Ji(x) = {j ∈ J(x) | aji > 0}, i = 1, 2, · · · , n, and Jn+1(x) = {j ∈
J(x) | aj ≤ 0}. Then, J1(x), J2(x), · · ·, Jn+1(x) forms a partition of J(x). Since
f(x) > 0, hence, Ji(x) 6= ∅, i = 1, 2, · · · , n. Let

ri(x) =
∑

j∈Ji(x)

(a⊤j x− bj)
2

a⊤j aj

i = 1, 2, · · · , n, and r(x) = (r1(x), r2(x), · · · , rn(x))⊤. Clearly, r(x) > 0. Let

āi(x) =

∑

j∈Ji(x)

a⊤j x−bj

a⊤
j

aj
aj

ri(x)
,

i = 1, 2, · · · , n, and Ā(x) = (ā1(x), ā2(x), · · · , ān(x)). Since 0 < f(x) and

∑

j∈Jn+1(x)

a⊤j x− bj

a⊤j aj
aj ≤ 0,

hence,

0 < f(x)−
∑

j∈Jn+1(x)

a⊤j x−bj

a⊤
j

aj
aj =

∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj
aj −

∑

j∈Jn+1(x)

a⊤j x−bj

a⊤
j

aj
aj

=
∑n

i=1

∑

j∈Ji(x)

a⊤j x−bj

a⊤
j

aj
aj =

∑n
i=1

∑

j∈Ji(x)

a⊤
j

x−bj

a⊤
j

aj
aj

ri(x) ri(x)

=
∑n

i=1 āi(x)ri(x) = Ā(x)r(x).
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Note that each row and each column of Ā(x) have exactly one positive entry.
According to Lemma 3, Ā(x) is nonsingular and Ā(x)−1 ≥ 0. From the definition
of r(x), we obtain that

r(x) =























∑

j∈J1(x)

a⊤
j

x−bj

a⊤
j

aj
(a⊤j (x− x

0) + a
⊤
j x

0
− bj)

∑

j∈J2(x)

a⊤
j

x−bj

a⊤
j

aj
(a⊤j (x− x

0) + a
⊤
j x

0
− bj)

...
∑

j∈Jn(x)

a⊤
j

x−bj

a⊤
j

aj
(a⊤j (x− x

0) + a
⊤
j x

0
− bj)























=























∑

j∈J1(x)

a⊤
j

x−bj

a⊤
j

aj
a
⊤
j

∑

j∈J2(x)

a⊤
j

x−bj

a⊤
j

aj
a
⊤
j

...
∑

j∈Jn(x)

a⊤
j

x−bj

a⊤
j

aj
a
⊤
j























(x− x
0) +























∑

j∈J1(x)

a⊤
j

x−bj

a⊤
j

aj
(a⊤j x

0
− bj)

∑

j∈J2(x)

a⊤
j

x−bj

a⊤
j

aj
(a⊤j x

0
− bj)

...
∑

j∈Jn(x)

a⊤
j

x−bj

a⊤
j

aj
(a⊤j x

0
− bj)























.

Let

s(x0) =























∑

j∈J1(x)

a⊤j x−bj

a⊤
j

aj
(a⊤j x0 − bj)

∑

j∈J2(x)

a⊤j x−bj

a⊤
j

aj
(a⊤j x0 − bj)

...
∑

j∈Jn(x)

a⊤j x−bj

a⊤
j

aj
(a⊤j x0 − bj)























.

Then, s(x0) ≤ 0 since x0 ∈ P . Thus,

0 < r(x) − s(x0) =























∑

j∈J1(x)

a⊤j x−bj

a⊤
j

aj
a⊤j

∑

j∈J2(x)

a⊤j x−bj

a⊤
j

aj
a⊤j

...
∑

j∈Jn(x)

a⊤j x−bj

a⊤
j

aj
a⊤j























(x − x0).

Let

R(x) =











r1(x)
r2(x)

. . .

rn(x)











.
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Then,

R(x)Ā(x)⊤ =























∑

j∈J1(x)

a⊤j x−bj

a⊤
j

aj
a⊤j

∑

j∈J2(x)

a⊤j x−bj

a⊤
j

aj
a⊤j

...
∑

j∈Jn(x)

a⊤j x−bj

a⊤
j

aj
a⊤j























.

Therefore,

x− x0 =























∑

j∈J1(x)

a⊤j x−bj

a⊤
j

aj
a⊤j

∑

j∈J2(x)

a⊤j x−bj

a⊤
j

aj
a⊤j

...
∑

j∈Jn(x)

a⊤j x−bj

a⊤
j

aj
a⊤j























−1

(r(x) − s(x0))

= (Ā(x)−1)⊤R(x)−1(r(x) − s(x0)) > 0

since Ā(x)−1 ≥ 0. The corollary follows.

Lemma 4. For any x0 ∈ P , C(x0) = Rn\{x ∈ Rn | x0 ≤ x} contains at most

a finite number of almost complete n-dimensional simplices carrying only integer

labels in N .

Proof. Let σ =< y0, y1, · · · , yn > be any almost complete n-dimensional simplex
of K1 carrying only integer labels in N . Without loss of generality, we assume that
l(y0) = k and l(yi) = i, i = 1, 2, · · · , n, and that fk(y0) ≤ fi(y

i), i = 1, 2, · · · , n.
Note that fk(y0) > 0 and fi(y

i) > 0, i = 1, 2, · · · , n. Let x be an arbitrary point of
σ. Then, for i = 1, 2, · · · , n,

fi(x)−fk(y0) = fi(x)−fi(y
i)+fi(y

i)−fk(y0) ≥ fi(x)−fi(y
i) ≥ −L‖x−yi‖ ≥ −L

and

fi(x)− fk(y0) = fi(x)− fi(y
0) + fi(y

0)− fk(y0) ≤ fi(x)− fi(y
0) ≤ L‖x− y0‖ ≤ L

since fi(y
i)− fk(y0) ≥ 0, fi(y

0)− fk(y0) ≤ 0, and mesh(K1) = 1. Thus,

−L ≤ fi(x) − fk(y0) ≤ L, i = 1, 2, · · · , n. (4)

Therefore,
‖f(x)− fk(y0)e‖ ≤ L.
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This implies that any almost complete n-dimensional simplex carrying only integer
labels in N is contained in

Wa = {x | ‖f(x)− µe‖ ≤ L for some µ > 0}.

Let x be any point of Rn satisfying f(x) = µe > 0. From Corollary 1, we
know that x > x0. Thus, a⊤j x ≤ a⊤j x0 ≤ bj for any aj ≤ 0. Let Ji(x) = {j ∈
J(x) | aji > 0}, i = 1, 2, · · · , n. Then, J1(x), J2(x), · · ·, Jn(x) forms a partition of
J(x). Since f(x) > 0, hence, Ji(x) 6= ∅, i = 1, 2, · · · , n. For i = 1, 2, · · · , n, let ji be
any given index of Ji(x) satisfying a⊤ji

x − bji
= minj∈Ji(x) a⊤j x − bj . Clearly, for

any j ∈ Ji(x), there exists rj ≥ 1 satisfying a⊤j x− bj = rj(a
⊤
ji

x− bji
). Thus,

∑

j∈Ji(x)

a⊤j x− bj

a⊤j aj
aj =

∑

j∈Ji(x)

rj

a⊤j aj
aj(a

⊤
ji

x− bji
) = (

∑

j∈Ji(x)

rj

a⊤j aj
aj)(a

⊤
ji

x− bji
).

Let dji
=

∑

j∈Ji(x)
rj

a⊤
j

aj
aj and D = (dj1 , dj2 , · · · , djn

)⊤. Note that each row and

each column of D have exactly one positive entry. From Lemma 3, we know that
D is nonsingular and D−1 ≥ 0. From f(x) = µe > 0, we get that

0 < µe =
∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj
aj

=
∑n

i=1

∑

j∈Ji(x)

a⊤j x−bj

a⊤
j

aj
aj

=
∑n

i=1(
∑

j∈Ji(x)
rj

a⊤
j

aj
aj)(a

⊤
ji

x− bji
)

= D(a⊤j1x− bj1 , a
⊤
j2

x− bj2 , · · · , a
⊤
jn

x− bjn
)⊤.

Therefore,

(a⊤j1x− bj1 , a
⊤
j2x− bj2 , · · · , a

⊤
jn

x− bjn
)⊤ = µD−1e > 0

since D−1 ≥ 0. Let Ā⊤ = (aj1 , aj2 , · · · , ajn
) and b̄ = (bj1 , bj2 , · · · , bjn

)⊤. Then,

Āx− b̄ = (a⊤j1x− bj1 , a
⊤
j2x− bj2 , · · · , a

⊤
jn

x− bjn
)⊤.

Thus,
Āx = µD−1e + b̄.

Since each row and each column of Ā have exactly one positive entry, from Lemma 3,
we obtain that Ā is nonsingular, Ā−1 ≥ 0, and Ā−1D−1e > 0. Therefore,

x = µĀ−1D−1e + Ā−1b̄. (5)

Let Γ = {x | f(x) = µe, µ > 0}, and Γ(µ) = {x | f(x) = µe} for any given
µ > 0. Note that Γ = ∪µ>0Γ(µ). From (5), it is clear that Γ(µ) contains a finite
number of points for any given µ > 0. Let ǫ be a given positive number such that

{z | ‖x− z‖ < ǫ} ∩ {z | ‖y − z‖ < ǫ} = ∅
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for any x and y of Γ(µ) with x 6= y. For any given µ > 0, let

Wa(µ) = {x | ‖f(x)− µe‖ ≤ L}.

Then,
Wa = ∪0<µWa(µ).

Let
Wa(µ, ǫ) = Wa(µ)\(∪x∈Γ(µ){z | ‖z − x‖ < ǫ}).

Then, for any y ∈ Wa(µ, ǫ) and x ∈ Γ(µ), there exists some positive number νǫ

satisfying
‖f(y)− f(x)‖ ≥ νǫ‖y − x‖,

where

νǫ = argmin{ν | ‖f(y)− f(x)‖ = ν‖x− y‖ for some y ∈ Wa(µ, ǫ) and x ∈ Γ(µ)}

is independent of µ. Since ‖f(y) − µe‖ ≤ L for any y ∈ Wa(µ, ǫ), hence, for any
y ∈ Wa(µ, ǫ) and x ∈ Γ(µ),

L ≥ ‖f(y)− µe‖ = ‖f(y)− f(x)‖ ≥ νǫ‖y − x‖.

Therefore, for any y ∈ Wa(µ, ǫ) and x ∈ Γ(µ),

‖x− y‖ ≤
L

νǫ
.

Let δ = max{ǫ, L
νǫ
}, which is independent of µ. Then,

Wa(µ) ⊆ ∆(Γ(µ), Rn, δ).

Thus,
Wa = ∪µ>0Wa(µ) ⊆ ∪µ>0∆(Γ(µ), Rn, δ) ⊆ ∆(Γ, Rn, δ).

Therefore, all the almost complete n-dimensional simplices carrying only integer
labels in N are contained in ∆(Γ, Rn, δ). Consider C(x0) ∩∆(Γ, Rn, δ). From (5),
we know that, as µ → ∞, every component of x satisfying f(x) = µe approaches
infinity. It implies that C(x0) ∩∆(Γ, Rn, δ) is bounded. The lemma follows.

For any positive number δ and any nonempty subset K ⊂ N0, let

Λ(η, δ, K) = {x ∈ G(η, K) | ‖x− η‖ ≤ δ}.

Lemma 5. There is a sufficiently large positive number δ0 satisfying that, for any

nonempty subset K ⊂ N0, all the almost complete |K|-dimensional simplices in

G(η, K) carrying only the integer labels in K are contained in Λ(η, δ0, K).
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Proof. Consider n + 1 /∈ K. Let

D(K) = {x ∈ G(η, K) | fk(x) = µ, k ∈ K, for some µ > 0}.

From the definition of G(η, K), we know that xk − ηk ≤ 0 for any k ∈ K and
xk − ηk = 0 for any k /∈ K. Then, for any x ∈ G(η, K),

(x− η)⊤f(x) =
∑

k∈K

(xk − ηk)fk(x).

Thus, for any x ∈ D(K),
(x− η)⊤f(x) ≤ 0

since fk(x) > 0 and xk − ηk ≤ 0 for any k ∈ K. According to Lemma 2, (x −
η)⊤f(x) > 0 when ‖x‖ is sufficiently large. Therefore, D(K) is bounded. Similar
to the proof in Lemma 4, one can show that, when δ is sufficiently large, all the
almost complete |K|-dimensional simplices in G(η, K) carrying only the integer
labels in K are contained in

∆(D(K), G(η, K), δ) = {x ∈ G(η, K) | d(x, D(k)) ≤ δ}.

The boundedness of D(K) implies that ∆(D(K), G(η, K), δ) is bounded.
Consider n + 1 ∈ K. Let

C(K) = {x ∈ G(η, K) | fk(x) = 0, k ∈ K\{n + 1}, and fk(x) ≤ 0, k /∈ K}.

From the definition of G(η, K), we know that, for any x ∈ G(η, K), there are
0 ≤ λ(x) and 0 ≤ γk(x), k ∈ K\{n + 1}, such that xk − ηk = λ(x)− γk(x) for any
k ∈ K\{n + 1} and xk − ηk = λ(x) for any k /∈ K. Then, for any x ∈ G(η, K),

(x− η)⊤f(x) =
∑

k∈K\{n+1}

(λ(x) − γk(x))fk(x) +
∑

k/∈K

λ(x)fk(x).

Thus, for any x ∈ C(K),

(x− η)⊤f(x) =
∑

k/∈K

λ(x)fk(x) ≤ 0

since λ(x) ≥ 0 and fk(x) ≤ 0, k /∈ K. According to Lemma 2, (x − η)⊤f(x) > 0
when ‖x‖ is sufficiently large. Therefore, C(K) is bounded. Similar to the proof in
Lemma 4, one can show that, when δ is sufficiently large, all the almost complete
|K|-dimensional simplices in G(η, K) carrying only the integer labels in K are
contained in

∆(C(K), G(η, K), δ) = {x ∈ G(η, K) | d(x, C(K)) ≤ δ}.

The boundedness of C(K) implies that ∆(C(K), G(η, K), δ) is bounded. The
lemma follows.
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Lemma 6. If f(x) ≤ 0 and f(x) 6= 0, then, for any x0 ∈ P , there is some k
satisfying xk − x0

k < 0.

Proof. Suppose that x− x0 ≥ 0. Then,

0 ≥ (x− x0)⊤f(x) =
∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj
a⊤j (x − x0)

=
∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj
(a⊤j x− bj + bj − a⊤j x0)

≥
∑

j∈J(x)

a⊤j x−bj

a⊤
j

aj
(a⊤j x− bj) > 0.

A contradiction occurs. The lemma follows.

For ξ ∈ Rn and K ⊆ N , let

H(ξ, K) = {ξ + x ∈ Rn | 0 ≤ xi, i ∈ K, and xi = 0, i /∈ K}.

Lemma 7. If z0 is an integer point of P , then, for any K ⊆ N , every point

x ∈ H(z0, K) carries a label of either 0 or an integer of K.

Proof. From Lemma 6, we know that no point of H(z0, K) carries integer label
n + 1. For x ∈ H(z0, K), let λ = x− z0. Then, 0 ≤ λj , j ∈ K, and λj = 0, j /∈ K.
Thus, for i with aij ≤ 0 for any j ∈ K,

a⊤i x = a⊤i z0 + a⊤i λ

≤ bi + a⊤i λ

= bi +
∑

j∈K aijλj

≤ bi.

Therefore, according to Definition 1, no point in H(z0, K) carries an integer label
in N0\K. The lemma follows.

As a direct result of Lemma 7, we obtain the following result.

Corollary 2. If z0 is an integer point of P , there is no complete n-dimensional

simplex in H(z0, N), and for any j ∈ N , there is no complete (n− 1)-dimensional

simplex in H(z0, N\{j}) carrying all integer labels in N .

3 The Algorithm

Let xmax denote the unique solution of maxx∈P e⊤x.

Lemma 8. For any x ∈ P , x ≤ xmax.
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Proof. Let x1 = (x1
1, x

1
2, · · · , x

1
n)⊤ and x2 = (x2

1, x
2
2, · · · , x

2
n)⊤ be two arbitrary

points of P . Let x̄ = (max{x1
1, x

2
1}, max{x1

2, x
2
2}, · · · , max{x1

n, x2
n})

⊤. Let j be an
arbitrary index of M . From the assumption on P , we know that each row of A has
at most one positive entry. If aj ≤ 0, then

a⊤j x̄ ≤ a⊤j x1 ≤ bj .

Consider aj with a positive entry, say aji. Without loss of generality, assume
x̄i = x1

i . Since ajk ≤ 0 for any k 6= i, hence,

a⊤j x̄ = ajix̄i +
∑

k 6=i

ajkx̄k = ajix
1
i +

∑

k 6=i

ajkx̄k ≤ ajix
1
i +

∑

k 6=i

ajkx1
k = a⊤j x1 ≤ bj.

Thus, x̄ ∈ P .
Suppose that there is a point x̂ ∈ P satisfying x̂q > xmax

q for some q ∈ N . Let

x = (max{x̂1, x
max
1 }, max{x̂2, x

max
2 }, · · · , max{x̂n, xmax

n })⊤. Then, x ∈ P . Clearly,
e⊤x > e⊤xmax, which contradicts that e⊤xmax = maxx∈P e⊤x. The lemma follows.

For any number α, let ⌈α⌉ denote the smallest integer greater than or equal to
α. We define xu = (xu

1 , xu
2 , . . . , xu

n)⊤ with

xu
i =







⌈xmax
i ⌉ if xmax

i < ⌈xmax
i ⌉,

1 + ⌈xmax
i ⌉ otherwise,

for i = 1, 2, . . . , n. Then, x < xu for any x ∈ P .
Applying the results in the previous section and the above results, we have

developed an arbitrary starting variable dimension algorithm for computing an
integer point of P , which is as follows.

Initialization: Let K = ∅, y0 = η, σ0 =< y0 >, y+ = y0, p = 1, and k = 0. Go
to Step 1.

Step 1: Compute l(y+). If l(y+) = 0 then the algorithm terminates, and an
integer point of P has been found. If l(y+) ∈ K then let y− be the vertex of
σk other than y+ and carrying integer label l(y+), and τk+1 the facet of σk

opposite to y−, and go to Step 2. If l(y+) /∈ K then go to Step 3.

Step 2: If τk+1 ⊂ G(η, K\{j}) for some j ∈ K then K = K\{j} and go to Step

4. Otherwise, do as follows: Let σk+1 be the unique simplex that is adjacent
to σk and has τk+1 as a facet. Let y+ be the vertex of σk+1 opposite to τk+1

and k = k + 1. Go to Step 1.

Step 3: If |K| = n then go to Step 5. Otherwise, do as follows: Let K =
K ∪{l(y+)} and τk+1 = σk. Let σk+1 be the unique |K|-dimensional simplex
in G(η, K) having τk+1 as a facet, and y+ the vertex of σk+1 opposite to
τk+1. Let k = k + 1 and go to Step 1.
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Step 4: Let σk+1 = τk+1, y− be the vertex of σk+1 carrying integer label j, and
τk+2 the facet of σk+1 opposite to y−. Let k = k + 1 and go to Step 2.

Step 5: If p is even then let p = p + 1, j be the index of N0 satisfying that
σk ⊂ G(η, N0\{j}), y− the vertex of σk carrying integer label j, τk+1 the
facet of σk opposite to y−, and K = N0\{j}, and go to Step 2. If p is odd,
do as follows: Let p = p + 1, y− be the vertex of σk carrying integer label
n + 1 and τk+1 the facet of σk opposite to y−. Go to Step 6.

Step 6: Let σk+1 be the unique simplex that is adjacent to σk and has τk+1 as a
facet, and y+ the vertex of σk+1 opposite to τk+1. Let k = k + 1 and go to
Step 7.

Step 7: Compute l(y+). If l(y+) = 0 then the algorithm terminates, and an
integer point of P has been found. If xu ≤ y+ then the algorithm terminates,
and there is no integer point in P . If l(y+) = n + 1 then go to Step 5. If
l(y+) 6= n + 1 then let y− be the vertex of σk other than y+ and carrying
integer label l(y+), and τk+1 the facet of σk opposite to y−. Go to Step 6.

Note that the first phase (Steps 1-4) of the algorithm comes from Laan and Tal-
man’s (n+1)-ray algorithm ([17]). In the following we prove the finite convergence
of the algorithm.

Theorem 2. Within a finite number of iterations, the algorithm either yields an

integer point of P or proves that no such point exists.

Proof. For any positive integer µ, let

Λ(η, µ) = {x ∈ Rn | ‖x− η‖ ≤ µ}.

Lemma 5 implies that there exists some µ1 > 0 such that all the simplices generated
by the algorithm in Steps 1, 2, 3 and 4 are contained in Λ(η, µ1). Lemma 4 implies
there exists some µ2 > 0 such that all the simplices generated by the algorithm in
Steps 5, 6, and 7 are contained in Λ(η, µ2). To show that the algorithm does not
cycle, one can simply introduces two undirected graphes in the same way as that in
[7]. Then, applying Theorem 1 and Corollary 2 and following a similar argument
to that in [7], one can readily obtain the theorem.

The following example illustrates how the algorithm works.
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Example 1. Find an integer point of P given by

P =







































































x = (x1, x2)
⊤
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−x2 ≤ 1/2







































































.

Let η = (−2, 1)⊤, K = ∅, y0 = η, σ0 =< y0 >, y+ = y0, and p = 1.

Iteration 1: Computing l(y+), we obtain l(y+) = 2. Then l(y+) /∈ K. Let K =
K ∪ {2} = {2}, τ1 = σ0, y1 = (−2, 0)⊤, σ1 =< y0, y1 >, and y+ = y1 =
(−2, 0)⊤.

Iteration 2: Computing l(y+), we obtain l(y+) = 2. Then l(y+) = l(y0) ∈ K.

Let τ2 =< y1 >, y0 = y1, y1 = (−2,−1)⊤, σ2 =< y0, y1 >, and y+ = y1 =
(−2,−1)⊤.

Iteration 3: Computing l(y+), we obtain l(y+) = 3. Then l(y+) /∈ K. Let K =
K ∪ {l(y+)} = {2, 3}, τ3 = σ2, y2 = (−1, 0)⊤, σ3 =< y0, y1, y2 >, and

y+ = y2 = (−1, 0)⊤.

Iteration 4: Computing l(y+), we obtain l(y+) = 2. Then l(y+) = l(y0) ∈ K.

Let τ4 =< y1, y2 >, y0 = y1, y1 = y2, y2 = (−1,−1)⊤, σ4 =< y0, y1, y2 >,

and y+ = y2 = (−1,−1)⊤.

Iteration 5: Computing l(y+), we obtain l(y+) = 3. Then l(y+) = l(y0) ∈ K.

Let τ5 =< y1, y2 >, y0 = y1, y1 = y2, y2 = (0, 0)⊤, σ5 =< y0, y1, y2 >, and

y+ = y2 = (0, 0)⊤.

Iteration 6: Computing l(y+), we obtain l(y+) = 0. An integer point of P has

been found.

One may see from this example that the algorithm will never perform Steps 4, 5,

6, and 7 when n = 2. However, the situation is far more complicated when n > 2.
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